Syntax-based Testing

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 9.1]

Spring 2022 — University of Virginia © Praphamontripong



Structures for Criteria-Based Testing

Four structures for modeling software

| L\ |

Graph Logic Syntax

L Source L source L source

— Models

— Design — Specs

Applied to
Applied to

(©)
-
©
Qv
a

(@)
<

— Specs — FSMs — Integration

— Use cases — DNF — Inputs

El &

Spring 2022 — University of Virginia © Praphamontripong




ISP, Graph, Logic, and Syntax

# Return index of the first occurrence of a letter in string,

# Otherwise, return -1 (note: faulty version)

def get index of (string, letter):
index = -1
for i in range(l, len(string)):
if string[i] == letter:
return i

return index

Software artifact

Syntax (Grammar-based Testing)

for_stmt: 'for' exprlist 'in' testlist ;' suite ['else’ "' suite]
exprlist : (expr|star_expr) (,' (expr|star_expr))* [',]
testlist :test (', test)* [',]

suite : simple_stmt | ...

Syntax (Program-based Mutation)

def get index of (string, letter):
index = -1

for i in range(l, len(string)):

/\ if string[i] '= letter:
return i

return index

Spring 2022 — University of Virginia © Praphamontripong




Syntax-Based Testing

Rely on syntactic description of software artifacts

Syntactic descriptions can come from many sources:
Programs
Integration elements
Design documents
Input descriptions

- Tests are created with two general goals
Cover the syntax in some way
- Generate artifacts that are valid (correct syntax)

- Violate the syntax
- Generate artifacts that are invalid (incorrect syntax)

Spring 2022 — University of Virginia © Praphamontripong




Grammar-Based Coverage Criteria

Common practice: uses automata theory to describe
software artifacts

BNF - describe programming languages

Finite state machines - describe program behavior

Grammars and regular expressions — describe allowable
inputs

 Focus:

Testing the program with valid inputs
Exercise productions of the grammar according to some
criterion

Testing the program with invalid inputs
Use grammar-based mutation to test the program with invalid
input

Spring 2022 — University of Virginia © Praphamontripong




Grammar: Regular Expression
(Gs n|_|B t nE'

Closure operator
Zero or more occurrences

Choice
Either one can be used

Sequence
Any sequence of "G s n” and "B t n”
“"G"” and "B” may be commands, methods, or events
“s” “t”, and “n” may be arguments, parameters, or values

W\ /77 \\

s”, “t”, "and “n” may be literals or a set of values

Spring 2022 — University of Virginia © Praphamontripong




Test Cases from Grammar

- A test case can be a sequence of strings that satisfies the
regular expression

Example

(G S N | Bt n)* Recognizer (“parsing")

N\ I\ A\ W/ * IS d String (Or teSt IanIt) in
Suppose “s”, “'t”, and "n the grammar?

are numbers - Useful for input validation

G 25 08.01.90 Generator

B 21 06.27.94 « Given a grammar, derive
strings in the grammar
G 21 11.21.94

B 12 01.09.03

Spring 2022 — University of Virginia © Praphamontripong




Backus-Naur-Form (BNF)
Grammars

- Although regular expressions are sometimes sufficient, a
more expressive grammar is often used

mmm Start symbol

IStreamI action* :
Production rules
action g actG | actB Possible rewriting of a

actG - ‘G”ls n given nonterminal
actB - ‘Bl t n

digitt-3

n
\\OII | 1 | \\2[’ \\3" \\4[’ \\5" | \\6[’ | \\7II | \\8II | \\9’[ Il

L Non-terminal symbols L Terminal symbol
Everything in the quotes

Spring 2022 — University of Virginia © Praphamontripong




More Example: BNF Grammar

Simple grammar for a toy language of arithmetic
expressions in BNF notation

expr ;= id | num | expr op expr

id 1= letter | letter id

num i = digit | digit num

op = TN YT YT

letter ::= “a” | "b" | “c" | ... | V2"

digit = 0" 1T 2" I R3] . N9

Spring 2022 — University of Virginia © Praphamontripong




Example: Derivations

::= id | num | expr op expr syntax tree for
id 1= letter | letter id ab+12
digit | digit num

Op \\+II | \\_II \\*Il | \\/Il eXpr
Ietter :: \\alll\\bll \\Clllllll\\zll , \
Q 0 A\Y ”n A\Y n A\Y 144 A\ 144 A\Y ”n e r O eX r
digit = N0 | M N27 Y37 ] .. | N XIP Ip Ip

s + 144 num

id
expr => id => letter => “a” / \ / \
letter id digit num
I I I I
num => digit num => "4" num ugn letter “lr dii;it

\\4II di it => \\4II \\9[’ I
g ub" 112"

d

expr => expr or expr => expr "+" expr Which derivation should
=> ... =>"g"“b" " +"N1" VD" be used - leads to how
criteria are defined

Spring 2022 — University of Virginia © Praphamontripong




Grammar Coverage Criteria

- Terminal Symbol Coverage (TSC)

- TR contains each terminal in the grammar
One test case per terminal

Node Coverage

Production Coverage (PDC)

Edge Coverage

- TR contains each production rule in the grammar

One test case per production (hence PDC subsumes TSC)

Derivation Coverage (DC)

- TR contains every possible derivation of the grammar

One test case per derivation
Not practical — TR usually infinite
When applicable, DC subsumes PDC

Spring 2022 — University of Virginia © Praphamontripong




Example: TSC

Imagine you are testing a parser or interpreter for the example
toy language. Define a test set (i.e., a set of grammar derivations)

that satisfies TSC

Op :: \\+II | \\_II
letter = "a" | "b”
digit = 0" | Y17

expr ;= id | num | expr op expr
id .= letter | letter id
num ::= digit | digit num

\\*II | \\/II

C Z
\\2[’ | \\3[’ | | \\9[’

A\ Wy / 4 | | A\ gy / 4

grammar

Terminal Symbol Coverage (TSC)

« TR contains each terminal in the

 One test case per terminal

Spring 2022 — University of Virginia

© Praphamontripong

Tests for TSC

Number of tests is
bounded by the number
of terminal symbols

Need 40 tests

« 26 tests: a, b, ..., z
e« 10tests: 0, 1, ...,9
* 4 tests: +, -, %,/




Example: PDC

Imagine you are testing a parser or interpreter for the example
toy language. Define a test set (i.e., a set of grammar derivations)
that satisfies PDC

expr ;1= id | num | expr op expr Tests for PDC

id 1= letter | letter id Need 47/ tests:

num .= digit | digit num « 40 tests that satisfy TSC
ARV « 4 for op, 26 for letter,

O :: \\+II \\_II
> | « 10 for digit

Ietter :: \\aII | \\bll \\CII | . | \\ZII

digit :: \\OII | \\1" \\2" | \\3" | . | \\9" ¢ Addltlonal 7 teStS
. expr ::=id
expr ::=
Production Coverage (PDC) expr ::= expr op expr

- TR contains each production rule in id ::= letter
the grammar id ::= letter id

- One test case per production (hence num ::= digit
PDC subsumes TSC) num ::= digit num

Spring 2022 — University of Virginia © Praphamontripong




Example: DC

Imagine you are testing a parser or interpreter for the example
toy language. Define a test set (i.e., a set of grammar derivations)
that satisfies DC

expr ;1= id | num | expr op expr Tests for DC
id 1= letter | letter id * The number of tests
depends on details of

num ::= digit | digit num the program

op = TN YR Y
letter = ta" [ b7 | e | . | T2 * For this example:

digit = 0" YL t2" 1 3 .| M9 « Infinite due to

id ::= letter id

num ::= digit num
expr ::= expr op expr

Derivation Coverage (DC)

« TR contains every possible derivation
of the grammar

 One test case per derivation

Spring 2022 — University of Virginia © Praphamontripong




Mutation Testing

A process of changing the software artifact based on well

defined rules IVMeelS: operators: Rules that specify syntactic
variations of strings generated from a grammar

Rules are defined on syntactic descriptions

We perform mutation analysis when we want to make
systematic changes, resulting in variations of a valid

string Mutants: Result of one application of
a mutation operator
We can mutate the syntax or objects developed from the

Syntax Ground strings
(Strings in the grammar)

Spring 2022 — University of Virginia © Praphamontripong




Underl¥ing Concept:

Mutation Testing

subject

Run tests on
subject

Apply T
mutation Record
operators Cemeiaie Distinguishable killed

) tests
result? (mutants mutants

‘1' ‘1' are Killed]

mutants Run tests on
mutants

Spring 2022 — University of Virginia © Praphamontripong




Mutants and Ground Strings

Mutation operators

- The key to mutation testing is the design of the mutation
operators

Well designed operators lead to powerful testing

Sometimes mutant strings are based on ground strings

Sometimes they are derived directly from the grammar
Ground strings are used for valid tests
Invalid tests do not need ground string

Spring 2022 — University of Virginia © Praphamontripong




Example: Valid and Invalid Mutants

Stream ::= action*
action ;= actG | actB
actG = "G”"s n
actB = "B” t n
:= digitl3
digitl-3
= digit? “.” digit?2 “.” digit?
= 0" | M17 | 2" | 3" | 4" | 57| e | Y77 | 8" | V9"

Valid Mutants Invalid Mutants

Ground Strings Mutants 2 25 08.01.90
G 25 08.01.90 B 25 08.01.90 B 21 06.27.9

B 21 06.27.94 B 41 06.27.94

Spring 2022 — University of Virginia © Praphamontripong




Grammar-based Mutation
Coverage Criteria

Coverage is defined in terms of killing mutants

number killed mutants

Mutation score = ,
total number non—equivalent mutants

Mutation Coverage (MC)
TR contains exactly one requirement to kill each mutant

Mutation Operator Coverage (MOC)

For each mutation operator, TR contains exactly one
requirement to create a mutant using that operator

Mutation Production Coverage (MPC)

For each mutation operator, TR contains several
requirements to create a mutant that includes every product
that can be mutated by that operator

Spring 2022 — University of Virginia © Praphamontripong




Example Mutation Operators

Terminal and nonterminal deletion

- Remove a terminal or nonterminal symbol from a production

Terminal and nonterminal duplication

- Duplicate a terminal or nonterminal symbol in a production

Terminal replacement

- Replace a terminal with another terminal

Nonterminal replacement

- Replace a terminal with another nonterminal

Spring 2022 — University of Virginia © Praphamontripong




Ground String
Stream ::= action* G 25 08.01.90
action ;= actG | actB B 21 06.27.94

actG = “G”s n
actB .= “B” t n Mutation Operators

digit1-3 1. Exchange actG and actB
digit1-3 2. Replace digits with other digits

= digit2 “.” digit2/"/" digit?
— \\OII | \\1II | \\2[’ | \\3[’ | \\4II | \\5’[ | \\6’[ | \\7II | \\8II | \\9[’

Mutants using MPC

_ B 25 08.01.90 G 21 06.27.94 *
Mutants using MOC G 15 08.01.90 B 22 06.27.94

B 25 08.01.90 G 35 08.01.90 B 23 06.27.94
B 24 06.27.94 G 45 08.01.90 B 24 06.27.94

Spring 2022 — University of Virginia © Praphamontripong




Summary

- The number of test requirements for mutation depends

- The syntax of the artifact being mutated
- The mutation operators

- Mutation testing is very difficult (and time consuming) to
apply by hand

- Mutation testing is very effective — considered the “gold
standard” of testing

- Mutation testing is often used to evaluate other criteria

Spring 2022 — University of Virginia © Praphamontripong




