
Syntax and Grammars

1 / 21

Outline

What is a language?

Abstract syntax and grammars

Abstract syntax vs. concrete syntax

Encoding grammars as Haskell data types

What is a language? 2 / 21

What is a language?

Language: a system of communication using “words” in a structured way

Natural language
• used for arbitrary communication
• complex, nuanced, and imprecise

English, Chinese, Hindi,
Arabic, Spanish, . . .

Programming language
• used to describe aspects of computation
i.e. systematic transformation of representation

• programs have a precise structure and meaning

Haskell, Java, C, Python,
SQL, XML, HTML, CSS, . . .

We use a broad interpretation of “programming language”

What is a language? 3 / 21

Object vs. metalanguage

Important to distinguish two kinds of languages:

• Object language: the language we’re defining
• Metalanguage: the language we’re using to define
the structure and meaning of the object language!

A single language can fill both roles at different times! (e.g. Haskell)

What is a language? 4 / 21

Syntax vs. semantics

Two main aspects of a language:

• syntax: the structure of its programs
• semantics: the meaning of its programs

Metalanguages for defining syntax: grammars, Haskell, . . .

Metalanguages for defining semantics: mathematics, inference rules, Haskell, . . .

What is a language? 5 / 21

Outline

What is a language?

Abstract syntax and grammars

Abstract syntax vs. concrete syntax

Encoding grammars as Haskell data types

Abstract syntax and grammars 6 / 21

Programs are trees!

Abstract syntax tree (AST): captures the essential structure of a program
• everything needed to determine its semantics

+

2 *

3 4

2 + 3 * 4

*

+

5 6

+

7 8

(5 + 6) * (7 + 8)

if

true +

2 3

5

if true then (2+3) else 5

Abstract syntax and grammars 7 / 21

Grammars

Grammars are a metalanguage for describing syntax

The language we’re defining is called the object language

syntactic category nonterminal symbol

s ∈ Sentence ::= n v n | s and s
 production rulesn ∈ Noun ::= cats | dogs | ducks

v ∈ Verb ::= chase | cuddle

terminal symbol

Abstract syntax and grammars 8 / 21

Generating programs from grammars

How to generate a program from a grammar
1. start with a nonterminal s
2. find production rules with s on the LHS
3. replace s by one possible case on the RHS

A program is in the language if and only if it can be generated by the grammar!

Animal behavior language

s ∈ Sentence ::= n v n | s and s
n ∈ Noun ::= cats | dogs | ducks
v ∈ Verb ::= chase | cuddle

s
⇒ n v n
⇒ cats v n
⇒ cats v ducks
⇒ cats cuddle ducks

Abstract syntax and grammars 9 / 21

Exercise

Animal behavior language

s ∈ Sentence ::= n v n | s and s
n ∈ Noun ::= cats | dogs | ducks
v ∈ Verb ::= chase | cuddle

Is each “program” in the animal behavior language?
• cats chase dogs
• cats and dogs chase ducks
• dogs cuddle cats and ducks chase dogs
• dogs chase cats and cats chase ducks and ducks chase dogs

Abstract syntax and grammars 10 / 21

Abstract syntax trees

Grammar (BNF notation)

t ∈ Term ::= true
| false
| not t
| if t t t

Example ASTs

true if

true false true

not

not

false

Language generated by grammar: set of all ASTs

Term = {true, false} ∪ {
not

t
| t ∈ Term} ∪ {

if

t1 t2 t3

| t1, t2, t3 ∈ Term}

Abstract syntax and grammars 11 / 21

Exercise

Arithmetic expression language

i ∈ Int ::= 1 | 2 | . . .
e ∈ Expr ::= add e e

| mul e e
| neg e
| i

1. Draw two different ASTs for the
expression: 2+3+4

2. Draw an AST for the expression:
-5*(6+7)

3. What are the integer results of
evaluating the following ASTs:

neg

add

5 3

add

neg

5

3

Abstract syntax and grammars 12 / 21

Outline

What is a language?

Abstract syntax and grammars

Abstract syntax vs. concrete syntax

Encoding grammars as Haskell data types

Abstract syntax vs. concrete syntax 13 / 21

Abstract syntax vs. concrete syntax

Abstract syntax: captures the essential structure of programs
• typically tree-structured
• what we use when defining the semantics

Concrete syntax: describes how programs are written down
• typically linear (e.g. as text in a file)
• what we use when we’re writing programs in the language

Abstract syntax vs. concrete syntax 14 / 21

Parsing

Parsing: transforms concrete syntax into abstract syntax

Parser source code
(concrete syntax)

abstract
syntax tree

Typically several steps:
• lexical analysis: chunk character stream into tokens
• generate parse tree: parse token stream into intermediate “concrete syntax tree”
• convert to AST: convert parse tree into AST

Not a focus of this class!

Abstract syntax vs. concrete syntax 15 / 21

Pretty printing

Pretty printing: transforms abstract syntax into concrete syntax

Inverse of parsing!

Pretty
Printer

source code
(concrete syntax)

abstract
syntax tree

Abstract syntax vs. concrete syntax 16 / 21

Abstract grammar vs. concrete grammar

Abstract grammar

t ∈ Term ::= true
| false
| not t
| if t t t

Concrete grammar

t ∈ Term ::= true
| false
| not t
| if t then t else t
| (t)

Our focus is on abstract syntax
• we’re always writing trees, even if it looks like text
• use parentheses to disambiguate textual representation of ASTs
but they are not part of the syntax

Abstract syntax vs. concrete syntax 17 / 21

Outline

What is a language?

Abstract syntax and grammars

Abstract syntax vs. concrete syntax

Encoding grammars as Haskell data types

Encoding grammars as Haskell data types 18 / 21

Encoding abstract syntax in Haskell

Abstract grammar

b ∈ Bool ::= true | false

t ∈ Term ::= not t
| if t t t
| b

Abstract syntax trees

true if

true false true

not

not

false

Haskell data type definition
data Term = Not Term

| If Term Term Term
| Lit Bool

Haskell values
• Lit True
• If (Lit True)

(Lit False)
(Lit True)

• Not (Not (Lit False))

Encoding grammars as Haskell data types 19 / 21

defines set

defines set

linear
encoding

Translating grammars into Haskell data types

Strategy: grammar→ Haskell

1. For each basic nonterminal, choose a built-in type, e.g. Int, Bool
2. For each other nonterminal, define a data type
3. For each production, define a data constructor
4. The nonterminals in the production determine the arguments to the constructor

Special rule for lists:
• in grammars, s ::= t∗ is shorthand for: s ::= ε | t s or s ::= ε | t , s
• can translate any of these to a Haskell list:

data Term = ...
type Sentence = [Term]

Encoding grammars as Haskell data types 20 / 21

Example: Annotated arithmetic expression language

Abstract syntax

n ∈ Nat ::= (natural number)

c ∈ Comm ::= (comment string)

e ∈ Expr ::= neg e negation
| e @ c comment
| e + e addition
| e * e multiplication
| n literal

Haskell encoding
type Comment = String

data Expr = Neg Expr
| Annot Expr Comment
| Add Expr Expr
| Mul Expr Expr
| Lit Int

Encoding grammars as Haskell data types 21 / 21

	What is a language?
	Abstract syntax and grammars
	Abstract syntax vs. concrete syntax
	Encoding grammars as Haskell data types

