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Abstract—Bitcoin is digital assets infrastructure powering the
first worldwide decentralized cryptocurrency of the same name.
All history of Bitcoins owning and transferring (addresses and
transactions) is available as a public ledger called blockchain.
But real-world owners of addresses are not known in general.
That’s why Bitcoin is called pseudo-anonymous. However, some
addresses can be grouped by their ownership using behavior pat-
terns and publicly available information from off-chain sources.

Blockchain-based common behavior pattern analysis (common
spending and one-time change heuristics) is widely used for
Bitcoin clustering as votes for addresses association, while off-
chain information (tags) is mostly used to verify results. In this
paper, we propose to use off-chain information as votes for
address separation and to consider it together with blockchain
information during the clustering model construction step. Both
blockchain and off-chain information are not reliable, and our
approach aims to filter out errors in input data.

The results of the study show the feasibility of a proposed
approached for Bitcoin address clustering. It can be useful
for the users to avoid insecure Bitcoin usage patterns and for
the investigators to conduct a more advanced de-anonymizing
analysis.

Index Terms—Bitcoin, blockchain, clustering, privacy,
anonymity.

I. INTRODUCTION

Bitcoin is the widest spread and the most secure blockchain,
it is a distributed ledger, digital assets infrastructure, crypto
blockchain messaging system, and as well it may work as a
cryptocurrency. Exactly cryptocurrency aspect is considered in
this paper. Bitcoin is supported by the eponymous decentral-
ized network [1]. The medium of exchange for it is a payment
unit with the same name. Cryptocurrancy is transferred us-
ing transactions that utilize common cryptographic primitives
(such as digital signatures and hash functions) to provide
authentication capabilities. All transactions are included in
a publicly available distributed ledger (the blockchain) after
being verified by the nodes in the Bitcoin network. Currently,
Bitcoin is the most widespread and the most secure blockchain
serving as digital assets infrastructure and secure blockchain
messaging system.

One of the important properties of Bitcoin is its
pseudonymity [2]. Participants in the Bitcoin network are not
obliged to disclose ownership of bitcoins. Thus, data about
the owners of bitcoins is generally not available. However,
given the transaction history and data that Bitcoin users have
disclosed about themselves, it is possible in some cases to
recover information about particular bitcoins. The goal of this

paper is to provide a Bitcoin clustering algorithm such that all
the addresses in each cluster are controlled by the same user.

The research in both anonymization and de-anonymization
in the Bitcoin system is actively developing in recent years
and both blockchain (transactions analysis) and off-chain
information (analyzing other public information from the
Internet) are used. The overviews of anonymization and de-
anonymization techniques are provided in [3], [2], [4], [5].
Possible anonymization approaches are: shared coin and send
mixers [6], [7], [8], [9], transaction remote release [10]
to hide the IP address of the transaction’s author, Zero-
Cash [11] for advanced coin mixing. Different approaches for
de-anonymization and analysis are: Sybil Attack [12] and Fake
Node Attack [13] to get users’ IP, addresses clustering [14],
[15], [16] mostly based on two heuristics (common spending
and one-time change). In all these approaches tags are used
for results verification. There are also papers with behavior-
based Bitcoin analysis [17], [18] and the ones where tags are
used for address classification [19] or risk scoring [20], [21],
[22], [23].

We consider de-anonymization of Bitcoin addresses as a
clustering problem. Clustering is an important class of unsu-
pervised learning problems [24], which focuses on splitting
data into groups and has a variety of approaches to its
solution [25], [26]. However, Bitcoin address clustering is
fairly different from classical clustering problems as there is no
direct information about the objects’ (addresses) such as coor-
dinates or distances. The other peculiarity of the problem is the
vastness of the Bitcoin blockchain, which requires designing
computationally efficient algorithms for its’ clustering. In this
paper, we introduce the efficient automatic clustering approach
based on both the blockchain and the off-chain information.

II. BITCOIN BLOCKCHAIN INFORMATION

The Bitcoin blockchain provides information about all bit-
coins in use. This information, which presents the global
state of the Bitcoin network, is a set of records (unspent
transaction outputs, or UTXOs in Bitcoin terminology). Each
UTXO specifies the associated value in bitcoins and conditions
under which these bitcoins can be spent. In this work, we
do not consider such modern (actual since 1st August 2017)
advanced features of Bitcoin transactions as BIP141 [27] and
BIP091 [28], for simplicity.

Transfer of bitcoins is manifested through transactions. Each
transaction contains:



• One or more inputs, each referring to a valid UTXO
and containing authentication information, allowing one
to spend corresponding bitcoins.

• One or more outputs, each containing a specification of
a newly created UTXO.

After a completion of a transaction, UTXOs referenced
by its inputs are removed from the UTXO set maintained
by every Bitcoin node, and its outputs are added into the
UTXO set. To incentivize inclusion of transactions into the
Bitcoin blockchain, the cumulative value of transaction outputs
is usually slightly less than the cumulative value of its inputs.
The difference (transaction fee) is paid to the Bitcoin node that
included the transaction into the blockchain, see [1] and [29],
Chapter 8.

In order to spend bitcoins, the owner generally needs to
present to the network publicly verifiable authentication infor-
mation proving that the assets belong to him. For convenience,
conditions of spending a UTXO can be compressed with
a collision-resistant hash function, thus forming a (Bitcoin)
address. There are two main kinds of addresses used in Bitcoin
today, corresponding to two kinds of conditions under which
a UTXO may be spent:
• Knowledge of a single private key in the secp256k1

elliptic curve cryptosystem [30] may be required to spend
a UTXO. In this case, the address is the hash of the
corresponding public key

• Otherwise, spending a UTXO may require providing
proofs of knowledge of m out of n private keys (1 ≤
m ≤ n) in the same cryptosystem [31]. In this case, the
address is a hash digest depending on m, n, and n public
keys.

There may be multiple UTXOs associated with the same
address. We will assume that:
• Each Bitcoin address is controlled by a single real-

world entity. Thus, we will ignore those sufficiently
rare cases in which a multi-signature address is used
for joint ownership of bitcoins, and not for multi-factor
authentication [32].

• A single entity may control more than one address.

III. BLOCKCHAIN-BASED HEURISTICS

In this section, we present blockchain-based heuristics
which are helpful for linking groups of Bitcoin addresses
into one cluster. These heuristics, common spending and one
time change, are based on certain patterns which are common
for many transactions in the Bitcoin network. However, these
patterns are not necessarily satisfied for all the transactions
and thus, our heuristics are prone to error. The errors mean
that some addresses can be falsely linked together. This may
result in a creation of very large clusters, which in fact are not
controlled by a single user.

The following definitions will be useful for our analysis.
Definition 1: For the purpose of transaction analysis, a (Bit-

coin) transaction is viewed as an ordered triplet t = (A,B, c),
consisting of:

• The finite multiset of transaction inputs A, where each
input (ai, Ai) ∈ A is an ordered pair of the address Ai

and the value of the input ai > 0.
• The finite multiset of transaction outputs B, where each

output (bj , Bj) ∈ B is an ordered pair of the address Bj

and the value of the output bj ≥ 0.
• The transaction fee c =

∑
(ai,·)∈A

ai −
∑

(bj ,·)∈B
bj ≥ 0.

Definition 2: For an arbitrary multiset of transaction inputs
or outputs A we denote the multiset of addresses in A as
Addr(A).
We start by describing the exact variants of heuristics we used
and their differences from ones introduced in [17], [33].

A. Common spending (CS)

The most obvious idea for clustering Bitcoin addresses is
linking together all the input addresses of one transaction,
which was explored in many papers, see for example [17],
[33].

Heuristic 1: If two or more addresses are inputs of the
same transaction with one output, then all these addresses are
controlled by the same user.
This heuristic is expected to be very accurate as common
spending by different users should be based on high degree of
trust between them. However, as opposed to the situation in
2013 [33], nowadays there exists multiple services for multi
input transactions.

Importantly, we attended to transactions with one output,
and likewise [33] do not consider multi-output transactions.
The reason is that many multi-output transactions are so-called
‘shared sends’ [6], [9], which are the transactions induced by
several users to obfuscate transaction history.

B. One-time change (OTC)

Our second heuristic is more involved. It is based on
the standard Bitcoin mechanism where the change from the
transaction is returned to a new address.

Definition 3: We say that the transaction t = (A,B, c)
satisfies the condition of a one-time change if the following
conditions hold.

1) #Addr(B) = 2, i.e. the transaction t has exactly two
outputs.

2) #Addr(A) 6= 2, i.e. the number of t inputs is not equal
to two. If #Addr(A) = #Addr(B) = 2 the transaction
is most likely shared send mixer.

3) Both outputs of transaction t, B1 and B2, are not self-
change addresses, i.e. B1, B2 /∈ Addr(A).

4) One output of the transaction B1 did not exist before
transaction t and decimal representation of the value b1
has more than 4 digits after the dot.

5) The other output of the transaction B2 was previously
part of the Bitcoin network and has not been OTC
addressed in previous transactions.

Heuristic 2: If the transaction satisfies the conditions of a
one-time change transaction, (see Definition 3), then the OTC



output and all the inputs of the transaction are controlled by
the same user.
We note that this heuristic is much more prone to errors.
Especially vulnerable is the condition on some digits in the
decimal representation of change. However, our definition of
OTC is more stricter than, for example, definition of [33],
which results in a less number of false positive OTC transac-
tions.

IV. OFF-CHAIN INFORMATION FOR CLUSTERING

The previous section made a deal with intrinsic blockchain
information. Despite the fact that address owners are not
required to disclose information about their selfs, much public
information can be found on the Internet (off-chain informa-
tion). If the Bitcoin address is mentioned in the same data
frame with the tag (key phrase-entity, for example, company
name or username), then it is said say that the address has
such a tag. This section is devoted to off-chain information
collection, types of tags and their relation to the clustering.

A. Tag Collection

Tags could be collected either passively or actively. The pas-
sive approach means web crawling of public forums and user
profiles (for example, Bitcointalk.com, Twitter and Reddit) and
Darknet markets (for example, Silkroad, The Hub Marketplace
and Alphabay). The active approach means manual analysis
of Bitcoin companies and data actualization procedures. The
most common Bitcoin businesses companies are exchanges,
marketplaces, mining pools and mixers. Some companies
mostly use addresses with specific prefixes. As an address is
a public key, for an unknown private key then to generate
a specific address, one has to try many private keys, i.e.,
make some extra computational work. For example, Satoshi
Bones casino uses 1change and 1bones prefixes and BTC-E
exchange uses 1eEUR and 1eUSD prefixes. Addresses starting
from 1MartinHafernikorn and 1Ninja are also computationally
demanding and can help to identify users.

We call the collected tags dirty as they are not standardized:
they are mostly informationless suffixes (for example, .com,
.co, @gmail), upper and lower letter cases are mostly unnec-
essary, misprints are included. The dirty tags are processed to
eliminate described drawbacks and in the process becoming
clean.

B. Negative pairs

We distinguish six categories of Bitcoin organizations: min-
ing pools (pools), exchanges, Darknet markets (dnm), mixers,
gambling and other services (services). The dictionary of clean
tag types is prepared: each of clean tags may correspond to
only one type (if any). An address can have tags from different
categories. It is assumed unlikely that any cluster has different
tags of the same type (it means, for example, that different
people control exchanges Bitfinex and HitBTC). Some pairs
of categories are also unlikely to be present in one cluster (for
example, exchange and dark market).

Let us call L = {{ai, aj}} the set of negative pairs, where
addresses ai and aj in each pair have either different tags from
the same category or tags from a forbidden pair of categories,
see details in Section VI.

V. THE ALGORITHM FOR AUTOMATIC BITCOIN NETWORK
CLUSTERING

In this section we are going to describe the algorithm
for Bitcoin address clustering which regulates to balance
information coming directly from Bitcoin blockchain (CS and
OTC heuristics) and the additional information gathered from
the Internet in the form of tags as described in Section IV.

A. Notations

Let us introduce the following notations. Let T = {tj}
be the set of all transactions in Bitcoin blockchain and A
be the set of all addresses present in transactions from T .
The clustering of Bitcoin addresses is a decomposition A =
A1∪A2∪· · ·∪AN into non-intersecting subsets Al

⋂
Aj = ∅

for l 6= j. We also denote by TH ⊂ T the set of all transactions
which satisfy either CS or OTC heuristics. For the transaction
t ∈ TH we denote by AddrH(t) the set of all addresses
which should be attributed to the single user according to one
of the heuristics. We note, that by construction only one of
the heuristics can be satisfied for a single transaction t. The
information about tags is represented as a set of negative pairs
L = {(ai, aj)}. The pair of addresses (ai, aj) ∈ L if we have
a piece of information that these addresses are not controlled
by the same user (see Section IV-B for details).

B. Probabilistic model

We note that both CS and OTC heuristics and the set
of negative pairs L may contain erroneous information. To
deal with this situation, we propose a probabilistic framework
which allows specifying our confidence to different sources of
data. We are going to consider different types of observations
(which we treat as an independent to make it computationally
solvable):
• In the event that all the addresses AddrH(t) for some

t ∈ TH indeed belong to the same user is true with
probability p.

• In the event that two addresses {ai, aj} ∈ L are con-
trolled by the same user is true with probability q. In other
words, the information about the negative association
between any pair of addresses in L is validated by the
probality 1− q.

Let the likelihood P (A, TH , L | p, q) be a function of the
clustering A, transactions TH and negative pairs L:

P (A, TH , L | p, q) =

=
∏
t∈TH

pI
(
AddrH(t)⊂Cl(A)

)
× (1− p)I

(
AddrH(t) 6⊂Cl(A)

)
×

∏
{a,a′}∈L

(1− q)I({a,a
′}6⊂Cl(A)) × qI({a,a

′}⊂Cl(A)),

where for some set of Bitcoin addresses S the notation S ⊂
Cl(A) means, that there exists a cluster Al such that S ⊆ Al.



Finally, the log-likelihood reads as

lnP (A, TH , L | p, q) =

=
∑
t∈TH

I
(
AddrH(t) ⊂ Cl(A)

)
ln(1− p)

+
∑
t∈TH

I
(
AddrH(t) 6⊂ Cl(A)

)
ln(p)

+
∑

{a,a′}∈L

I
(
{a, a′} 6⊂ Cl(A)

)
ln(1− q)

+
∑

{a,a′}∈L

I
(
{a, a′} ⊂ Cl(A)

)
ln(q).

(1)

We note that the proposed model is not intended to capture
the probabilistic structure of the real world, but more to give
an approach for systematical study of confidence trade-offs
between different sources of information. Moreover, it allows
efficient optimization of parameters as discussed in the next
section.

C. Maximization of likelihood

Maximization of log-likelihood (1) is a discrete optimization
problem which is in fact NP-hard. We suggest solving it by
using a greedy approach. We will go retrospectively through
all the transactions in the Bitcoin network, which satisfy one
of the heuristics. On each step, we decide whether to join
the clusters corresponding to the addresses AddrH(tj) for
the considered transaction tj based on the values of the log-
likelihood functional. Let Âj = Ak1

∪· · ·∪Akmj
be a union of

all the clusters which representatives belong to AddrH(tj). Let
us find the change in the number of negative pairs if we join
all the clusters corresponding to AddrH(tj) into one cluster
Âj :

∆tj

( ∑
{a,a′}∈L

I
(
{a, a′} ⊂ Cl(A)

))
=

∑
{a,a′}∈Âj

I ({a, a′} ∈ Al)

−
mj∑
i=1

∑
{a,a′}∈Aki

I ({ai, aj} ∈ Al) = ∆Âj
−

mj∑
i=1

∆Ai ,

where ∆Am is a number of negative pairs in cluster Am. Then,
if we merge all the clusters corresponding to AddrH(tj), the
change of the log-likelihood (1) is equal to

∆P(tj , A, L | p, q) =

= ln

(
p

1− p

)
+

(
∆Âj

−
mj∑
i=1

∆Aki

)
ln

(
q

1− q

)
.

Thus, if ∆P(tj , A, L | p, q) is positive, then we merge all the
clusters corresponding to AddrH(tj), otherwise need to we
continue with the next transaction.

D. Refinements of the algorithm

We note that due to the greedy (historical) approach the
change of parameters p and q can lead to very non-monotone
changes in the clustering. For example, we can decrease
parameter q, which in principle should lead to smaller clusters,
but find out that the largest cluster becomes even larger.
To overcome this we propose, on the first step, to perform

clustering with q → 0, where the clusters are not allowed
to contain any negative pairs. In the second step, we once
again go through Bitcoin transactions historically and optimize
likelihoods as discussed in the previous section. We call this
approach the greedy additive clustering (add) as opposed to
the pure historical approach discussed previously.

VI. EXPERIMENTS

A. Data

In our experiments we considered the blockchain data
that contained transactions from Bitcoin blockchain from 3d

January of 2009 to 9th March of 2017. During this period
there were 211,789,876 transactions which cover 244,030,115
unique addresses.

The important question is what part of Bitcoin addresses can
be covered by CS and OTC heuristics (see Section III). For
the considered data, the CS heuristic condition is satisfied for
8,161,086 transactions with 28,416,034 addresses while the
OTC heuristic condition holds for 35,844,487 OTC transac-
tions with 69,520,194 unique addresses. Both conditions give
a total of 44,005,573 covered transactions with 95.250.167
unique addresses (the overlap is 2,686,061 addresses). It means
that with this information we can cluster only slightly more
than 1/6 of the whole Bitcoin blockchain.

services 57
gambling 80

mixer 3
dnm 16

exchange 98
pool 52

TABLE I:
Unique clean
tags per category.

Off-chain information was collected
from 97 sources (twitter.com, walletex-
plorer.com, etc.). It contains more than 20
million clean tags with 305 unique values
(Bitstamp.net, Eligius mining pool, etc.).
Clean tags are distributed between six
categories, see the number of unique tags
per category in Table I. There exists only
one tag (BTCChina) which belongs to two
categories simultaneously: exchange and
pool. Our preprocessing left 335,000 dirty
tags with approximately 105,000 unique

values (mrdeposit, crypto bot, etc.). We note that in principle
this information can be still useful, although but we do not
use it in this study.

Looking throughout off-chain information we discovered
out that some addresses have multiple distinct clean tags, see
Table II. For example, some addresses may have 2-3 categories
with one tag in each one or they may have more than one
tag in one category. Such situations can either indicate that
different types of resources are owned by the same user, or
can be artifacts of data collection. The first situation can be
illustrated by the following example: there exist addresses with
tags CoinChimp.com (exchange) and BitLaunder.com (mixer).
The search over the Internet reveals that both services are
owned by the same person [34]. However, tags from some
categories are unlikely to be present for the assets of one
person. For example, well-known exchanges are impossible to
be affiliated with some Darkmarket addresses. We collected
the information about appearances of different clean tags, see
Table II. We use this information as guidance for further
clustering, i.e. we consider any pair of different clean tags from



services gambling mixer dnm exchange pool
services 165,970 66,387 0 0 441 186

gambling 66,387 11,9857 0 0 0 9
mixer 0 0 0 0 1,703 1
dnm 0 0 0 0 13 18

exchange 441 0 1,703 13 606,357 198,551
pool 186 9 1 18 198,551 1,561

TABLE II: The number of addresses with distinct clean tags
in respective pairs of categories.

one category as a negative pair and also consider two addresses
with different clean tags as a negative pair if tags from these
categories never mark the same address in the Bitcoin network.
Moreover, we call a negative pair of any combination of tags
where one of the tags corresponds to Darkmarket as well as
a combinations service – exchange, mixer – exchange and
gambling – pool. The appearance of such pairs in our tags
is most likely due to the flaws in tagging procedure. All this
information is present in Table III.

services gambling mixer dnm exchange pool
services F A F F F A

gambling A F F F F A
mixer F F F F F F
dnm F F F F F F

exchange F F F F F A
pool A A F F A F

TABLE III: Table shows if the appearance of addresses having
two distinct clean tags in the same cluster should be forbidden.
“F” stays for forbidden and “A” is for allowed.

B. Clustering

We started our experiments by considering clustering based
solely on CS and UTC heuristics. As a result, we obtained
clustering that covers 95,250,167 addresses and contains
14,117,435 clusters. It appears that the biggest cluster in
this clustering has a size of 26,694,671 addresses containing
addresses with clean tags from all six categories, see Table IV.
Moreover, this clustering has 249 clusters with negative pairs
of addresses totaling more than 2.3 · 1013 negative pairs with
the majority being in the largest cluster. It means that we
can use the off-chain information to get more (fine-grained)
clustering information.

Category
Number Number of

Examples of common tagsof common tags
tags (size)

services 33 5 (> 100K) Bitpay.com, Xapo.com
gambling 34 6 (> 50K) 999Dice.com, primedice.com

mixer 3 1 (> 100K) BitcoinFog
dnm 14 5 (> 100K) SilkRoad Marketplace

exchange 64 12 (> 100K) BTC-e.com, Bittrex.com
pool 15 2 (> 50K) BTCChina, Hashnest.com

TABLE IV: Tags of the biggest cluster in case of clustering
without constraints.

The opposite case is to completely forbid the appearance
of a negative pair of addresses in one cluster. It means that
we skip all CS and OTC transactions that can lead to the

formation of a cluster with a negative pair inside it. We note
that this leads to a certain number of addresses to be omitted
from clustering. This is due to the fact that some addresses
from AddrH(t) may form a negative pair for some OTC/CS
transactions t. Such clustering covers 94,851,585 addresses
and contains 14,133,381 clusters. We note, that 50,666 CS
and 27,877 OTC transactions are skipped. The biggest cluster
has a size of 2,475,769 addresses. Importantly, large clusters
have fewer distinct categories of tags than before:

1) The largest cluster has a size of 2.48M addresses and
contains
• 8,809 addresses with tag BitReserve.com (services);
• 83,732 addresses with tag NitrogenSports.eu (gam-

bling);
• 8 addresses with tag Eligius mining pool (pool).

2) Second largest cluster has a size of 2.26M addresses and
contains
• 23,202 addresses with tag Circle pay app (services);
• Six addresses with tag 999Dice.com (gambling);
• Ten addresses with tag Eligius mining pool (pool).

We note that we can create more fine grained and possibly
more accurate clustering if we have more off-chain informa-
tion or use more of available one (i.e. “dirty” tags).

However, it is interesting to explore the intermediate cases
via probabilistic algorithm introduced in Section V. We use
a historical (chronological) order for treating transactions (see
Section V-C) and greedy additive clustering (add), see Sec-
tion V-D. We study, how the parameters p and q influence the
resultant clustering. As only relative values of these parameters
matter, we fix p = 3

4 and vary q in such a way, that a certain
number of negative pairs (denoted by ∆step) is allowed to
appear in clustering on one iteration. In other words, ∆step

is the maximum allowed increase in the number of negative
pairs on one step of the algorithm. We obtain the following
dependencies of the largest cluster size (Figure 1) and the
number of negative pairs (Figure 2) depending on ∆step.
These graphs show that the greedy additive approach yields
monotonic dependence and results in smaller clusters with less
negative pairs.

VII. CONCLUSIONS

In this work, a new Bitcoin address clustering algorithm is
proposed. Its difference from the existing ones is two-fold.
Firstly, it uses for clustering not only blockchain information
but also off-chain information from the Internet. Secondly,
we treat certain off-chain data types as votes against address
union in clustering process. Such approach allows to avoid
significant part of erroneous cluster merges suggested by
blockchain based heuristics. Numerical experiments show that
the proposed approach provides reasonable clustering results
outperforming approaches based solely on blockchain data in
terms of cluster homogeneity.
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Fig. 1: The size of the biggest cluster, where ∆step is allowed
to increase the number of negative pairs per transaction.

Fig. 2: Number of negative pairs in whole clustering and the
maximum in one cluster, where ∆step is allowed to increase
the number of negative pairs per transaction.
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