
DEGREE PROJECT, IN , SECOND LEVELSECURITY AND MOBILE COMPUTING

STOCKHOLM, SWEDEN 2015

Secure Bitcoin Wallet

SEVIL GULER

KTH ROYAL INSTITUTE OF TECHNOLOGY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Acknowledgements This research work has been performed in the Department of Com-
munication Systems, Royal Institute of Technology, Stockholm, Sweden. This thesis work
spans five months of extensive research effort with the encouragement and appreciation
of numerous people. I wish to express my deep gratitude and thanks to all those people
in this acknowledgements.

I would like to express my very great appreciation to Prof. Sead Muftic for his valuable
and constructive suggestions during the planning and development of this research work.
His willingness to give his time so generously has been very much appreciated. Without
his assistance and encouragement, the thesis work could not be an easy task for me.
Thanks to Prof. I am profoundly thankful to Dr. Vitaly Skachek for agreeing to be my
examiner and his generous help and understanding. His support throughout the project
was outstanding and unconditional. I would like to also thank to Ms. Nazri Abdullah,
Dr. Ghafoor Abbasi and thanks to all SecLab colleagues.

Lastly, I pay my sincere regard to all my friends who supported me in any aspect
during my stay in Sweden.

2

Secure Bitcoin Wallet

Abstract:
Virtual currencies and mobile banking are technology advancements that are receiving
increased attention in the global community because of their accessibility, convenience
and speed. However, this popularity comes with growing security concerns, like increasing
frequency of identity theft, leading to bigger problems which put user anonymity at
risk. One possible solution for these problems is using cryptography to enhance security
of Bitcoin or other decentralised digital currency systems and to decrease frequency of
attacks on either communication channels or system storage. This report outlines various
methods and solutions targeting these issues and aims to understand their effectiveness.
It also describes Secure Bitcoin Wallet, standard Bitcoin transactions client, enhanced
with various security features and services.

Keywords:
Android, Security, Bitcoin, Mobile Payment, Java, Instant Messaging, Wallet, BTC,
Virtual Currency, Cryptography, Push Notification, PKI, Shared Preference, SQLite,
Security Architecture, Software Development, Mobile Development, Public Ledger, Miner

3

Contents
1 Introduction 7

1.1 Problem Statement . 7
1.2 Goals and Achieved Results . 7
1.3 Research Methodology . 8
1.4 Audience . 9
1.5 Limitation . 9
1.6 The Structure of The Thesis . 9

2 Background 10
2.1 Android Mobile OS . 10
2.2 SSL Protocol . 10
2.3 Openfire Server . 11

2.3.1 XMPP and Smack APIs . 11
2.3.2 User Service Plugin . 12

2.4 Bitcoin System . 13
2.5 How Bitcoin System Works [16, 12] . 13

2.5.1 Components . 14
2.5.2 Bitcoin Wallet . 15

2.6 Push Notifications . 17
2.7 PKI for Mobile Environments . 17

2.7.1 Symmetric Key Cryptography . 17
2.7.2 Asymmetric Key Cryptography 18
2.7.3 X.509 Certificates . 18
2.7.4 PKI . 19
2.7.5 PKI in Current Mobile Systems 19

3 Security Architecture for Bitcoin Transactions 20
3.1 System Components . 20

3.1.1 Crypto Service Provider (CSP) [18, 20, 21] 21
3.1.2 Client Application . 21
3.1.3 User . 21
3.1.4 Instant Messaging (IM) Server . 21
3.1.5 Payment Server . 22
3.1.6 Wallet Server . 22
3.1.7 Bitcoin Network . 22

4 Sytem Protocols and Operations 23
4.1 Local and Remote Registration Protocol 23
4.2 Local and Remote Authentication Protocol 25
4.3 The Certificates Protocol [22] . 26
4.4 Notification Messages Protocol . 27
4.5 Instant Messaging Protocol . 28
4.6 Listing Balance and Transactions Protocol 30
4.7 Requesting Payments Protocol . 31
4.8 Making Payments with Requests Protocol 33
4.9 Making Payments (without Request) Protocol 34

4

5 Design of the Demo 36
5.1 Launching . 36

5.1.1 Registration . 37
5.1.2 Registration Errors . 38
5.1.3 Login . 39

5.2 Main Page/Main Menu . 40
5.3 Secure IM System . 41
5.4 Secure Payments . 42

6 Evaluation of the System using Engineering Standards 44
6.1 Scope . 44
6.2 Economy . 44
6.3 Reliability . 44
6.4 Usability . 44
6.5 Performance . 44
6.6 Objectives and Success Criteria of the Project 44
6.7 Ethical . 44
6.8 Security . 45
6.9 Social and Political . 45

7 Conclusion 46

5

List of Figures
1 Overview of SSL Handshake Process . 11
2 System Components . 20
3 Components and Protocol for User Registration 23
4 Components and Protocol for Local and Remote Authentication 25
5 Protocol to Request/Receive Certificate 26
6 Notification Messages Protocol . 27
7 Instant Messaging Protocol . 28
8 Components and Protocol to List Balance and Transactions 30
9 Component and Protocol for Requesting Payments 31
10 Componential Protocol for Making Payments(with Request) 33
11 Components and Protocol for Making Payments(without Request) 34
12 Registration Panel . 37
13 Registration Error 1 . 38
14 Registration Error 2 . 38
15 Login Panel . 39
16 ID Card . 40
17 Main Menu . 40
18 Fetch Message Panel . 41
19 Send Message Panel . 41
20 Secure Payments Panel . 42
21 Request Payments Panel . 42
22 Send Payments Panel . 43
23 Balance and Transactions Panel . 43

6

1 Introduction
Virtual currencies have been defined in 2009 by an anonymous person named Satoshi
Nakamoto as a decentralized digital peer to peer payment system. Bitcoins, in particu-
lar, have increasing attention and two observations are attributed to its growing notice.
First, virtual currency has great potential to become the most widely used means for
transactions in the future. Second, it might become a tool used by criminals to trans-
fer and store illegal funds without any control from law enforcement agencies and other
authorities.

Instead of relying on central authorities virtual currency is based on the idea of using
cryptography to control its creation and transactions. It is implemented by a long string of
numbers and letters sent over the Internet without using a bank. Virtual currencies offer
a different approach from what governments do and the banking institutions controlling
the world play with rates, organized fraud, and bailouts that do nothing for the ordinary
person. Hence, virtual currencies can be used instead of a government-issued currency to
purchase goods and services in the real economy.

Virtual currencies also have a possibility to transfer money anywhere in a very easy
way and they allow users to be in control of their money. However, such great features
of flexibility and usability also come with increased security concerns.

Furthermore, nowadays with increasing popularity of mobile phones for communica-
tion, most people are equipped with mobile devices. While mobile phones were earlier
used mainly for telephone services, today they are used for other services including deliv-
ery of information. With increased usage of such improved services, mobile phones have
extended their scope making users’ life easier, like online-banking, mobile payments, etc.
Hence, mobile phones provide the best way for using virtual currencies in payment sys-
tems.

1.1 Problem Statement

Bitcoin is an emerging crypto-currency system with a potential to become a payment
system for modern day businesses. Currently, Bitcoins can be traded on Exchange Ser-
vices for traditional currencies, such as EUR, USD, GBP, etc. With the trending growth
of Bitcoins, there exists a strong requirement for combining Bitcoin wallets with mobile
payment gateways. However, there is a big gap bridging these two insecure systems.

Current Bitcoin System lacks many attributes of a useful currency. First of all, in
current Bitcoin System transactions take at least 10 minutes to be completed which
makes usage of Bitcoin as a money in real life infeasible. For example, if user wants
to use Bitcoins in any store she/he can’t leave the store until the payment completed.
Furthermore, in current Bitcoin system there is no authorization. Consider the problem
of theft. Once stolen cash enters the system, little can be done to reclaim it.

1.2 Goals and Achieved Results

This thesis addresses security concerns when coupling Bitcoin wallet with the mobile
payment gateway by building an Android application that makes secure combination
of virtual currencies and mobile payments. The application targets lack of the Bitcoin
System and provides efficient solution to them. The application also provides secure
communication between mobile phones based on cryptographic protocols by using strong

7

encryption schemes. The work also aims to provide user-friendly interface to facilitate
easy usage of the new application implementation in the context. Android is the chosen
mobile operating system for two obvious reasons: to target more users and to increase
viability of testing of the implemented system in real time.

The application is called ’Secure Bitcoin Wallet’. It is designed to be simple to use, but
it is based on complicated background security architecture. It provides higher level of
security to users for virtual currency transactions. The application is ideal for situations
where anonymity and security is a major concern for personal and business purposes.
It aims to protect users from commercial espionage, governments, mobile phone com-
panies, or any other third parties who want to collects sensitive information or private
correspondence related to financial transactions.

As part of the implementation, an Application Programming Interface (API) called
"Mobile Crypto Services Provider" was also built which provides cryptographic services
for secure communications between mobile phone and its storage unit. To augment the
primary requirement of providing secure Bitcoin mobile wallet functionality, a Secure In-
stant Messaging application is also included using the underlying Mobile Crypto Services
Provider with the newly built Android application.

1.3 Research Methodology

In this research, an outcome based methodology called design science is used. Design
science involves application of various approaches, methods and techniques leading to
development of an innovative idea, knowledge or product. This is to be achieved through
design of novel artifacts and thereafter using and evaluating the artifacts to better un-
derstand the behavior of the system.

The process begins by defining the problem and branches into design suggestion,
development, evaluation and conclusion. In our project, the most evident security aug-
mentation service that can be a solution for Android devices is the storage of secure
credentials in internal memory. However, this solution leads to several other security is-
sues. According to Android documentation every application has its own internal storage
area and only the owner of this area can use this storage. Though, even the owner of
the phone cannot access data, meaning data can be saved securely, there are many secu-
rity vulnerabilities and violation of Android security. Therefore, we have chosen internal
memory of the mobile phone with security enhancement by using cryptography. The
motivation behind this is that even when the mobile device is lost or stolen or an eaves-
dropper entraps the traffic during transit from mobile device to the application service
provider, credentials will not be readable by others.

Furthermore, since in our system we have many parties that need to communicate
with each other, communication channels based on Crypto Service Provider are used for
security enhancement of the system. Everything, be it on air or on the mobile storage,
is encrypted.

The research work is done after understanding the previous work in this field, in-
dustry standards, and by broad exploration of KTH and Tartu University library, IEEE
publications, articles and journal papers, online websites, Google scholar, search engines
and web directories.

8

1.4 Audience

Owing to the increased competition in the mobile application development market, a
number of enterprise level financial sector applications lack comprehensive security solu-
tions in their deployed systems. This research work targets all those bodies (i.e. financial
institutions and organizations) who want to add Bitcoin option in their applications with
secure solutions that mitigate threats to their systems with ease and mobility features.
We expect that the proposed design and development results of this research play an
important contribution to this dynamic field and pave way to build secure solutions for
mobile payment applications. The chosen approach is scalable; can interlink with other
platforms and modular in the sense that it can easily be deployed or added on to any
application that require security services. We also expect the security solution will be
transparent to users and it will provide end-to-end application layer security.

1.5 Limitation

Like any time-bound, result-specific research work, this work also has few inherent limi-
tations. This work is primarily concerned with security services for mobile applications
based on Android platform. It aims to protect applications and the users’ authenticity,
confidentiality and integrity by utilizing cryptography. Due to time constraints, the scope
of this work was limited to applications developed for Android platform. Since wireless
data is passing through the air interface faces almost the same security threats as wired
data, security based development is the main concern in this research. However, the lim-
ited wireless bandwidth, battery, computational power and memory of wireless devices
introduce further limitations to the implementation of security mechanisms.

1.6 The Structure of The Thesis

Chapter 2 provides a brief overview of the Bitcoin and mobile technologies emphasizing
the underlying components, such as SSL, Openfire server, Public Key Infrastructure and
Bitcoin wallets. It provides background information needed for understanding of the
following sections.

Chapter 3 provides an insight into the security architecture of the APIs that have
been built for Bitcoin transactions, along with a description of every component that
has been built. Chapter 4 articulates different functionality of the Bitcoin Wallet based
on the APIs outlined in Chapter 3. Additionally, Chapter 5 describes various use-cases
of the system. Chapters 3,4 and 5 together highlight author’s contributions in terms of
system design and software implementation.

Chapter 6 provides an overview of design aspects (from a user interface point of
view) of the Bitcoin Wallet and the Secure Instant Messaging application, both using
crypto APIs. Chapter 7 contains evaluation of all three software modules (API, Bitcoin
Wallet and IM) built as a component of the applications in terms of software engineering
standards.

9

2 Background
In this chapter background concepts related to the Secure Bitcoin Wallet System are
discussed. In order to provide a robust and efficient system, we use all technologies
described in the subsequent sections of this chapter.

2.1 Android Mobile OS

Android is one of the most popular mobile platforms. It is Linux-based and represents
multi-processing and multi-threading operating system. Android has sand-boxed applica-
tions environment, which provides tightly controlled set of resources for programs to run
in, such as scratch space on disk and memory. Network access, the ability to inspect host
operating system or read from input devices are usually prohibited or heavily restricted.
The aim of sand-boxing is to provide security by isolating an application to prevent
dangerous parties like malware, intruders, etc. from interacting with the protected ap-
plication. All applications run separately without any interactions between them what
poses a problem in case when developers want applications to interact with each other.

Android generally uses permissions for applications security management. However,
this concept is being questioned by researchers, since security flaws are cropping up
currently. For example, the first SMS Trojan detected for smartphones running Android
was detected in 2010 which was a mobile application displaying pornographic content
to users. Once the user installs the said application, script files were generated and
enabled the application to modify its configuration settings. The application was also
able to randomly send messages, imposing charges to the user without their explicit
validation, thus violating Android security system permissions. Similarly, security flaws
were explained by other researchers also in violation of restriction permissions of Android.

There are typically no solutions to such problems, since these are caused by rudi-
mentary structure of the Android operating system. Though there are many anti-virus
applications created for Android, they are not efficient enough in curtailing security vio-
lations of Android systems.

2.2 SSL Protocol

SSL is a de-facto standard security platform for secure end-to-end communications which
provides confidentiality, integrity and authenticity. In today’s Internet, X.509[2] is a stan-
dard for public key infrastructure (PKI), where user has a preloaded list of root certificates
(top level PKI CAs) and any certificate issued by those authorities is accepted by the
user. In modern browsers it is implemented by having certificates of root CAs(Certificate
Authorities) embedded in the web browser. Some browsers, such as Google Chrome, also
use certificate pinning [3] for the same purpose.

When a software attempts to connect to a SSL secured server, it starts with a hand-
shake phase between the client and the server, which is called "SSL handshake"[5]. The
purpose of this process is to establish a symmetric session key between the client and the
server, which is consequently used to encrypt all of the transmitted data. The overview
of the SSL handshake process is shown in Figure 1.

10

Figure 1: Overview of SSL Handshake Process

In the SSL handshake process the client first sends a hello request message to the
server, which includes some security parameters of the client. The server then processes
the client’s hello message and responds with a server hello message. The server’s hello
message also includes some security parameters which depend on the client security pa-
rameters, as well as its public-key certificate. The client then validates the certificate of
the server. If it trusts the certificate, it will create and send back a symmetric session
key to the server using the server’s public key. Consequently, the server uses its private
key to decrypt the symmetric session key and send back an acknowledgement encrypted
with the session key. Finally, the server and the client can exchange data securely with
the session key.

2.3 Openfire Server

Openfire is a real time collaboration (RTC) server licensed under the Open Source Apache
License. It is an instant messaging and group chat server that uses XMPP protocol
written in Java [6, 7]. In general, Openfire server has its own administration application
to control user’s registration and chatting. It doesn’t provide any functionality for the
developer to create their own registration module from their application. However, it has
a plugin interface that provides an alternative approach for the administrators to extend
the server by uploading any available Openfire plugin.

2.3.1 XMPP and Smack APIs

Extensible Messaging and Presence Protocol (XMPP) is a communication protocol for
message-oriented middleware based on XML (Extensible Markup Language)[9, 10]. Usage
of it might be a big challenge, because of complexity of XML parsing. However, there
are some good API’s, like Smack API, which makes developers’ work easier. Smack
API is an Open Source XMPP (Jabber) client library for instant messaging [8]. It is a

11

native Java library, which can be embedded into applications to create anything from
a full XMPP client to XMPP Server integration, such as sending notification messages
and presence-enabling devices. After version 4.1, Smack API does not work on Android
devices. Therefore, Smack API was repacked for Android devices called aSmack.

2.3.2 User Service Plugin

User Service Plugin provides the ability to manage users by sending an HTTP request
to the IM server[11]. It is intended to be used by applications which automate user
administration process. This plugin is used by applications that administers user without
using Openfire Admin console. In order to provide a standard way for accessing data,
REST protocol is used. All REST Endpoints are secured by Basic HTTP Authentication
or by using a shared secret key.

Basic HTTP Authentication : Basic HTTP Authentication protocol requires pro-
viding user-name and password for the Openfire Administrator’s account in a header
request in order to access the endpoints.

Shared Secret Key : Shared Secret Key technique requires sending secret key in the
header request to access the endpoints.

Vulnerabilities : Both techniques are not secure. Plugin uses HTTP Connection
which is not encrypted. Data on the communication channel is not encrypted and hence
confidentiality is not provided. Security of the entire instant messaging system relies
on the username and password of the Administrator, what make security very weak.
An attacker, if in possession of Administrator privileges which include full access to the
Server, can delete or update existing users by using their user name and email addresses
and also can add any number of users to the system.

12

2.4 Bitcoin System

Bitcoin is complex topic encompassing cryptography, software engineering and economics
and is believed to provide safe transactions and avoid double-spending through the clever
use of public-key cryptography. Bitcoin is the first decentralized virtual currency with sig-
nificant increase in usage and popularity. It was introduced in 2009 by Satoshi Nakamoto
and it received a lot of attention from the media and from many considerably big compa-
nies, such as WordPress, Paypal, Ebay. These companies are the first to accept Bitcoins
as a medium for currency payments. The number of companies realising the benefits
of Bitcoin and accepting it as a payment currency is increasing day by day and at the
time of writing these report 14.179.200 Bitcoins are in circulation [15] and each Bitcoin
is worth $ 234.10 USD [14].

In the Bitcoin system transactions are distributed to the whole network without en-
cryption and they are available to all nodes in the peer-to-peer network. This leads to
privacy concerns. Every transaction is publicly logged, i.e. anyone can see the trans-
actions between two users. Although addresses are random numbers, network analysis,
surveillance, or just searching the addresses over the Internet can disclose the actual iden-
tity of clients. This problem of anonymity in Bitcoin might have a simple solution. Using
a new address for every transaction is one of the officially encouraged methods to make
these attacks more difficult. Furthermore, TOR(The Onion Router), whose development
is in its inception, is one of the recommended solutions for this problem.

All in all, even though there are several benefits of using Bitcoins, just like any other
crypto-currency, it has been associated with lots of scams, hacks/thefts, defunct "stock
exchanges," and reported loss of wallets containing massive amounts. Although Bitcoin
currencies have many security issues as indicated before, it is still gaining popularity.
Therefore, further research has to be undertaken to make it better with enhanced security.

To understand the concept of Bitcoins we define how it works and examine the back-
ground of the system in the following section.

2.5 How Bitcoin System Works [16, 12]

Suppose user X has user Y’s account number. What prevents user X to access and use
money in Y’s account? In traditional banking services a pen and paper check ensures
this. A signature must be verified to prove that the sender’s signature is real. With
Bitcoins, this is ensured by using cryptographic keys rather than handwriting. Bitcoin
system uses Public Key Cryptography to solve this problem and whenever a new account
number is created, a private key will be mathematically associated with this account
number. Transaction then can be validated by Bitcoin community by using public key of
the signature’s owner. The mathematical signatures prove the identity of the transacting
user and also prevent non-repudiation if the sender tries to deny making the transaction in
the future. In traditional banking system, Bob writes two checks each amounting to total
balance in his bank account. In real time cases, the bank pays the first person attempting
to cash the check, but refuses the second because Bob’s account will be empty. In our
context the question is who will get paid in Bitcoin System? Unfortunately, tracking
orders is very hard in the Bitcoin system because network delays may cause transactions
to be requested in different times at different places what effectively allows Alice to spend
money twice.

13

2.5.1 Components

Transactions : All transactions can be performed by signing a hash of the previous
transaction and the public key is received and is to be validated by the receiver. Receiver
verifies the signatures to validate the chain of ownership. The drawback of this is the
inability of the receiver to identify double spending of coins. To ensure this, receiver
should verify that the sender did not sign any earlier transactions and should be aware of
all transactions from all possible sources and decide which transaction has arrived first.
To prevent double spending, all transactions are publicly published and timestamp server
(it is not in our scope) is used for participants to agree on a single history of the order
they have received. Majority of the nodes should be in agreement on which transaction
have arrived first and then only that transaction will proceed.

Public Ledger : Bitcoin system eliminates centralized control, so every participant
must maintain their own copy of the ledger. This results in the scenario where everyone
can see everyone else’s balances. The system uses account numbers called Bitcoin address
and not names; so there is some level of anonymity maintained. Since everyone maintains
their own ledger a mechanism should be in place to make sure that all ledgers are kept in
sync when the money is transferred. For this, when money is being transacted a message
is broadcasted with the user account number to all parties. Once the message is received
the entire world updates the ledger. The Bitcoin system uses a peer-to-peer payment
network and hence nodes can leave and later rejoin the network. Upon reconnection, a
node will download and verify new blocks from other nodes to complete its local copy of
the block chain.

Miner : Mining is the process of adding transaction records to Bitcoin’s public ledger
of past transactions called the blockchain. Individual blocks must contain a proof of
work to be considered valid. Proof-of-work cryptographic computational problems are
solved by these entities and miners are people who use software or hardware to achieve
this. This proof-of-work is verified by other Bitcoin nodes each time they receive a block.
Every such new block created by the miner is verified by the one who creates it. Each of
those blocks contains a reference to the previous block; thus they form a blockchain. By
extending the blockchain, the miner attests that he has accepted all previous blocks in the
chain. Miners also get rewarded in Bitcoins for solving the proof-of-work cryptographic
problems. The blockchain serves to confirm transactions to the rest of the network as
having taken place. Bitcoin nodes use the blockchain to distinguish legitimate Bitcoin
transactions from attempts to re-spend coins that have already been spent elsewhere.

Blocks and BlockChain : In a Bitcoin system, block constitutes the list of all executed
transactions and the complete record of transactions in the shared public ledger obtained
by appending all the blocks forms the blockchain. This structural organization aids in
removing the necessity of a centralized trusted authority. All transactions recorded by
the blocks have to be approved by the Bitcoin network once it is added to transaction
pool. Every block includes the hash value of the previous block and thus link the current
block with the previous one. Recent transactions and a random number known as nonce
are used to produce the next block that is used for proof-of-work system.

14

TimeStamp Server : TimeStamp Server is used for proving that data existed at a
particular time. It takes hash of a block of items to be timestamped and publish the
hash. Each timestamp also includes the previous timestamp in its hash.

Proof-of-Work : The Bitcoins network has to prevent miners from hashing unautho-
rized transaction blocks or all the Bitcoins would be mined in minutes. The Bitcoin
protocol makes this possible by using Proof-of-work. The proof-of-work system is used to
implement timestamp server based on cryptographic hashing. System relies on double-
hashing fixed size block header by using SHA-256 algorithm and specific target number
which needs to be bigger than 256 bits. Only such hashes will be accepted by the system.
The miner has to append a random number to the new block and make sure the hash
value of the new block begins with a series of zeros which can not be created by brute-
force. During the process of block chaining, verification is done using previous user’s
public key and the miners use their private key for signing the block which they create
or mine.

2.5.2 Bitcoin Wallet

Bitcoin Wallet is a digital wallet that uses digital currency as a value. It enables users to
have their Bitcoins always in their possession. Bitcoin Wallet is a software that provides
services to users making it possible to transact worldwide payments for free. As in real-
life, Bitcoin Wallet must also be secured and not be used by unauthorized people. There
are many aspects that should be taken into consideration:

Access Management : Users’ Bitcoin Wallet should be protected and should not be
accessible without authorization. In general, the most common and popular method for
authentication is using passwords. Security vulnerabilities that are the results of users’
wrong and weak choices of passwords are not in this thesis’s scope. Though this is not the
best solution for providing the highest level of security, it is the cheapest and easiest way
for providing security; assuming that the users will be careful enough to choose passwords
which are difficult to guess or hacked.

Management and Protection of User Security Profiles : [17] User profile should
be stored at the server and at the same time either on device storage system or in the
network. In general, Android system offers five types of storage options:

Shared Preferences :
Store private primitive data in key-value pairs.

Internal Storages :
Store private data on the device memory.

External Storage :
Store public data on the shared external storage.

SQLite Databases :
Store structured data in a private database.

Network Connection :
Store data on the web with your own network server.

15

Saving and retrieving data from these security profiles should be carefully considered.
In Bitcoin wallet system, data must be saved securely. External storages are world-
readable and can be modified by the user by using USB mass storage to transfer files on
to a computer. Network storage can be used to store and retrieve data on application’s
own web-based services. Hence, Shared Preferences options can be used to save and
retrieve persistent key-value pairs of primitive data types such as booleans, floats, ints,
longs, and strings. SQLite is lightweight database for which Android provides full support.
It can be used for saving objects such as user, user-contacts, notifications etc. As default,
it uses external storage which we have already discussed as not being secure enough.
The best option to store our SQLite database is by using internal storage. According to
Android documentation every application has its own internal storage area and only the
owner of this area can use this storage; even owner of the phone cannot access it which
means data can be saved securely. However, as we discussed before, there are already
many existing violations of security system of Android. Therefore, trusting the system
completely without taking any consideration is not feasible. However, keeping SQLite
database in internal storage combined with some cryptographic functions would be the
perfect solution to our problems. In user-profile, password is sensitive and it needs to
be saved securely. Usually password is a long string that can contain different types of
letters like integers, characters, etc. what makes it difficult for the user to remember it.
The best approach to solve this problem is to use one more security layer which protects
user password and is easy to remember: PIN. In general four digits long PIN is sufficient
to achieve the required level of protection with some added limitations, like blocking of
account after more than two times of entering the wrong PIN, to reduce the cases of
offline/online attacks. Password will be used for registering the user with IM server and
is needed during the login. It doesn’t have to be user-dependent, since system requires
it just one time and retrieves it from database every time when user wants to authorize
himself by using PIN. Therefore, password can be generated randomly and it can be
protected by using PIN provided by a user.

Verifying transactions and double-spending : Double-spending means successfully
spending money more than once using the same means of transaction. While physical
currencies don’t have this problem, with digital currency there is a risk that the holder
could make a copy of the digital money and send it to a merchant or another party while
retaining the original. However, Bitcoin has a mechanism based on transaction logs which
verify the authenticity of each transaction and prevent double-spending.

16

2.6 Push Notifications

Push notifications notify users about new messages or events even when users are not
actively using the application. Notifications can be broadcast to only one, to several or
only to registered users.

There are many comparisons between usages of Emails or SMS versus push notifica-
tions. Push notification approach is cheaper although it is more complicated. It is faster
and spam rate is lower than Email and SMS systems. All in all, there are many benefits
of using push notifications instead of Email or SMS.

With smart phones increasingly becoming ubiquitous, there is an increasing demand
for feasible ways to notify users about new messages. Operating systems, such as IOS
and Android, provide their own cloud-based push notification services. If we consider our
selected platform, Android’s push platform is still technically considered "beta" version,
which means interfaces are evolving and they continue to change. This evolving nature
makes direct integration of push notification platforms with user applications very com-
plicated, since all changes have their own obstacles. There is no standardized usage.
Furthermore, this dependence on other parties’ services can make flexibility and control
of the system harder.

Taking full advantage of supported and maintained platforms is a better approach.
However, bugs and problems that come with every release of platforms might cause
problems to maintainability across many systems. Current solution for that is building
applications’ own platform that provides notification services. However, building it with
all specifications that Android Push platform provides might be extremely expensive.

2.7 PKI for Mobile Environments

In current mobile systems many applications provide end-to-end security by using public
key techniques and an underlying public key infrastructure (PKI). This section examines
and explains the basics of PKI and describes how they are used in current mobile systems.

All security mechanisms rely on either symmetric or public key cryptography. The
combination of these two is being used in this project and provides both efficiency and
security to the system. In order to understand the concept of PKI, we should first explain
and compare these two cryptographic techniques.

2.7.1 Symmetric Key Cryptography

It is also known as Secret Key Cryptography. In this technique parties share a key that
is used for encryption, decryption and also authentication. Security of this technique
depends on keeping the symmetric key private. If an attacker steals shared symmetric
key, he/she can read encrypted text and can have all rights of the real owner. Therefore,
exchanging this shared key in secure way prior to the intended communication com-
plicates the provision of security for transactions between entities that do not have a
pre-established relationship.

Challenge-and-response method is one of the well-known methods that are used for
authentication of parties. By using challenge-and-response one party presents a question
("challenge") and another party must provide a valid answer ("response") using the
challenge and the secret key is the input for the algorithm. Challenger performs the same
operation and compares the result with the received response. If the result and response
are equivalent, only then the authentication succeeds.

17

2.7.2 Asymmetric Key Cryptography

It is also known as Public Key Cryptography and in contrast to Symmetric Key Cryp-
tography, it uses different keys for encryption and decryption. In this technique each
party has a pair of private and public keys and it is not possible to derive one from the
other. As evident from their name, public key is publicly available while private key is
private. There is no need to build a secure out-of-band key exchange since one of the
keys is publicly available. However, distributing authentic public keys is an issue that
needs an infrastructure. Digital Signature that is created by using private key and veri-
fied by public key is the way of authentication that proves possession of the private key.
Unlike Symmetric Key Cryptography that encrypts, decrypts and authenticates with the
same key, Asymmetric Key Cryptography uses different keys for encryption-decryption,
signature-validation. Data is encrypted and validated with a public key and decrypted
and signed with a private key.

While Asymmetric Key Cryptography has slow computation, Symmetric Key Cryp-
tography has high speed computation for bulk data. Therefore it is impractical to use
Asymmetric Key Cryptography to encrypt large amounts of data instead of Symmetric
Key Cryptography. However, before the execution of symmetric algorithm, key exchange
should be performed in a secure way. In practice they are often used together, so that
Asymmetric Key Cryptography is used to encrypt a randomly generated encryption key
and this random key is used to encrypt actual data using symmetric algorithm. This is
sometimes called hybrid encryption.

Public Key Cryptography reduces the complexity of exchanging secret keys between
parties. One party can create shared-key and encrypt it by using the other party’s
public key when (s)he wants to initiate a secure communication and sign it by using
his/her own private key. Receiver then first obtains the secret key by validating and
extracting the signature with sender’s public key and then decrypts that information
with his/her private key. However, it needs more sophisticated logic and additional
organization for distribution of public keys when user-interactions increase like in case of
handling certificates.

2.7.3 X.509 Certificates

Certificates are electronic documents that can be used as a proof of ownership of public
keys. They include information about owner’s identity, the key and digital signature of
the entity known as Certification Authority and also includes information on who has
verified the certificate’s contents as correct. If the signature is valid, and the person
examining the certificate trusts the signer, then that person knows (s)he can use that
key to communicate with its owner. The certificate guarantees that the public key is
bound to the entity whose Distinguished Name is included in the certificate. Certificate
includes:

• a serial number that is unique number relative to the certificate issuer

• issuer name

• certificate owner’s name

• public key of the owner

• algorithm used to calculate the signature

18

• expiration date that specifies the period for which the certificate is valid. Less
validity signifies more security

• extensions which are optional and indicating how the certificate should be used.

2.7.4 PKI

Public key infrastructure is essential to manage certificates during their life-cycle and it
has trusted third parties called Certificate Authority (CA) responsible for issuing and
managing the status (expired, valid, invalid etc.) of certificates. According to article [1]
there are six steps to manage the life cycle of the certificates:

1. Registration and key pair generation

2. Certificate generation and distribution

3. Certificate expiration

4. Certificate revocation

5. Certificate retrieval

6. Certificate validation

2.7.5 PKI in Current Mobile Systems

In general, security is achieved by using some service providers of second or third gener-
ation mobile networks, such as delivering smartcards with pre-installed symmetric keys
that can be used to authenticate mobile devices. Trust relationship plays the main role
when accessing network provider and the service provider for authentication, by taking
a roaming agreement into the consideration. In case of providing confidentiality and
integrity of data, symmetric session key is sent over the air. However, confidentiality
and integrity across the entire path between two parties, i.e. end-to-end security, is not
provided by these systems, and therefore has to be provided at application level.

There arises the need to have some assumptions for future usage of PKI in mobile
systems, since currently there is no usage of PKI in mobile systems.

1. symmetric key provides more efficient computation; it consumes less energy and
memory of mobiles;

2. non-repudiation is not a strict requirement for network access;

3. preshared secret key between the mobile node and the service provider can be
installed in a relatively easy manner by implementing subscriber subscription pro-
cedure.

However, since there is still need for confidentiality and integrity of the symmetric
key, applications should follow standard PKI mechanism explained above.

19

3 Security Architecture for Bitcoin Transactions

3.1 System Components

In this section we examine all system components shown in Figure 2 with their relations
and access points.

Figure 2: System Components

20

3.1.1 Crypto Service Provider (CSP) [18, 20, 21]

Crypto Service Provider is a unified software library which has full crypto functionalities,
supports all standard crypto algorithms, provides crypto packaging formats and uses al-
ternative crypto engines. CSP represents the lowest level of our system. CSP is available
for multiple platforms, such as PC/Windows environments and for mobile platforms.
Whichever alternative software library it uses, all its functions have the same function
signature which makes it standardized. Changing upper layer platform (switching from
PC to mobile platform) will not require modification of the application code.

In this project CSP uses Spongy Castle API for Android client applications and
OpenSSL for Windows based Payment Servers as alternative crypto libraries.

OpenSSL : OpenSSL is an open-source implementation of the SSL and TLS protocols.
It is written in C programming language and implements basic cryptographic functions
and provides various utility functions. It supports most Unix-like platforms including
Solaris, Linux, Mac OS X, Microsoft Windows and Android.

Bouncy Castle : Bouncy Castle is a collection of APIs used in cryptography. It
contains almost all well-known APIs including OpenSSL API. It is written in Java and also
in C#. Its architecture comprises two main components that support basic cryptographic
capabilities: light-weight API and JCE (Java Cryptography Extension) provider. Its
flexibility and powerful architecture used by many different APIs were the main reason
to use it in our Android System. Compatibility issue was also considered for this choice.

Spongy Castle : Spongy Castle API is the repacked version of Bouncy Castle API
for Android applications. Because of its size, Android platform includes Bouncy Castle
in a crippled state. Only part of its initial functionality is included because of size
constraints. It also makes installing an updated version of the libraries difficult due to
classloader conflicts. Therefore, Spongy Castle is the collection of Bouncy Castle libraries
with a couple of small changes to make it work on Android without any conflicts with
the embedded Bouncy Castle API in Android.

3.1.2 Client Application

Application represents the second layer of the system. It can communicate interchange-
ably with User, CSP, Payment Server, Instant Messaging Server and CA Server. It is an
Android based client application written in native language of Android: Java.

3.1.3 User

User is a person who wants to use Bitcoin Wallet to receive and to make payments.
For that, they need to use the Client Application to create their accounts and addresses
associated with those accounts.

3.1.4 Instant Messaging (IM) Server

IM Server is one of the main components of the Secure Bitcoin Wallet system installed
on either Microsoft Windows or Linux based computers. It uses Openfire (Section 2.3)

21

server as an underlying system. It provides instant messaging service to the user and
also it is used as a notification server in our system for informing payee and payers about
incoming and outgoing transactions.

3.1.5 Payment Server

Payment Server is one of the main components of the Secure Bitcoin Wallet system in-
stalled on Microsoft Windows computers. It is responsible for all Bitcoin transactions,
such as "Request Payment", "Send Payment", "List Balance and Transactions", "Regis-
tration", which will be explained later. It can communicate interchangeably with Client
Application, IM Server, and Wallet Server. It uses batch files to execute pre-defined Bit-
coin transactions and sends these batch files to Wallet Server to complete transactions.
It also informs parties (payer and payee) accordingly about the reply from the Wallet
Server.

3.1.6 Wallet Server

Wallet Server is a daemon that executes all transactions. This software is open-source
and can be run on PC. It takes batch files created by Payment Server, processes the
request and execute the command related to the transaction. It maintains of all user’s
accounts and contents of user wallet. Basically, wallet is just a digital file ledger that
contains user account info, such as Bitcoin addresses, balance transactions etc. for each
user. Whenever user wants to perform payment, the Wallet checks balance of the sender
and if balance is greater than the transaction, it completes transaction and sends dig-
itally signed messages to the network BTC Network by using broadcasting. Messages
are broadcast on a best effort basis. Transactions are recorded in a distributed public
database known as blockchain, with consensus achieved by a proof-of-work system called
"mining". Blockchain is distributed internationally using distributed broadcast protocol.

3.1.7 Bitcoin Network

Please check Section 2.4.

22

4 Sytem Protocols and Operations

4.1 Local and Remote Registration Protocol

One of the most important aspects of "Registration" operation is to solve the security
vulnerability of "User Service" plugin explained in Section 2.3. One solution to that
problem could be modifying plugin and enabling https authentication. However, since it
is open source and there is opportunity to modify it, isolating either secret key or ad-
ministrator’s password and name the outside access is deemed to be the best and fastest
solution. Therefore, IM Server and Payment Server run on the same machine and Pay-
ment Server is responsible for registration. Connection security between all components
relies on the security of SSL at this point.

Figure 3 explains steps and flow of messages in system during registration.

Figure 3: Components and Protocol for User Registration

Protocol follows the following steps. All parties perform their tasks successfully or
produce an error message. Hence, the protocol always completes.

1. User installs the application into her/his Android mobile phone.

2. During the first activation, he/she is prompted to enter her/his mobile phone num-
ber, email, password, photo, country code, mobile number and PIN. User only has
to do this process once. Each subsequent time when the user uses the application,
he/she will only need to enter her/his PIN.

23

3. Client application will create user’s name automatically by using user email ad-
dress which is unique and which will provide unique name for the user. System
then creates two RSA keys by using CSP module and creates certification request
by using its public keys. At the end, user will be registered to Payment Server by
using encryption of user details such as user name, password and user email ad-
dress, county code, mobile number and certification requests. Connection between
Payment Server and Client Application is based on SSL security.

4. Payment Server first decrypts the user data by using Crypto Service provider and
adds the user to the database server which actually run on the same machine as
the Payment Server. Then Payment Server sends user’s certificate requests to the
CA server and receives two certificates as a response if authenticated.

5. Payment Server then connects to Wallet Server which run also on the same computer
and makes BTC Account Request and gets BTC Account as a response.

6. For the last step Payment Server connects to IM server through SSL connection and
registers user with the IM Server by using user name, password and email address.

7. If everything goes well and the Payment Server completes its tasks described above,
it responds to the user about registration with two certificates.

8. After user registers successfully into the system, for local authentication hash of
user’s PIN will be encrypted by using user password. User password will be en-
crypted by using the PIN provided by user. BIX ID card consisting of user name,
email, encrypted password, photo, first and last name and encryption of PIN’s
hash will be created and stored into the SQLite database on internal storage of user
mobile phone.

24

4.2 Local and Remote Authentication Protocol

After user completes registration user is granted permission to access the system by using
his PIN defined in the registration step. Login credentials are transmitted by using SSL
connection between Payment Server and Client.

Figure 4 explains flow of message in the system during the registration process.

Figure 4: Components and Protocol for Local and Remote Authentication

The protocol follows the following steps. All components perform their tasks success-
fully or produce an error message. Hence, the protocol always completes.

1. Client application gets user’s PIN and accesses database stored on internal storage
to decrypt the encrypted password. System first decrypts user password by using
given PIN and uses decrypted password to decrypt hash of user’s PIN. Then it
hashes the given PIN and compares it with the decrypted hash stored on the internal
storage of user mobile phone. If both are validated to be the same, user will have
access to the consecutive processes.

2. Application accesses Payment Server by using user’s name, decrypted password and
its certificate through SSL connection.

3. Payment Server will verify the user by using received certificate and also password
of the user. If PIN is correct, decryption of encrypted password will give the actual
password which means that login attempt is successful. Otherwise, attempt of user
to login will fail.

4. If the user is the same person that he is claiming to be, Payment Server will send
user Single Sign on ticket.

25

4.3 The Certificates Protocol [22]

After securely generating public/private key pair, the client creates certificate request and
connect with Payment Server. Payment Server makes X.509 Certificate request to the
CA. The request contains unique identity which is transferred in the form of certificate
for user. Explanation about how to make a request for X.509 certificate from the CA can
be found in RFC 4211 in detail. Typically the request includes public key and entity’s
distinguished name and other required information. RFC 4211 recommends some steps
to generate certification request:

1. A CertRequest object should include the public key, subject name and other re-
quested certificate fields related to the registration process depending on the chosen
CA’s Certificate Request Policy (CRP).

2. If required, private key’s (corresponding to the public key for which a certificate
is being requested) proof-of-possession value is to be calculated and it should be
attached in advance with certificate request message subject.

3. Entity should sent certificate request message securely to CA. Base64 encoded for-
mat should be used as the message format, so that CA can easily understand it.

POP means that the CA is adequately convinced that the private key that entity
keeps is associated with the respective public key. POP aims to prevent common attacks
such as non-repudiation of transactions and to allow CA to properly check the validity
of the binding between the subject and the key pair. CA’s Certificate Request Policy
is defined in POP according to usage of the certificate i.e. signature, encryption or key
agreement key pairs.

CA responds to the Certificate request by digitally signing the public key certificate
with its private key and then CA publishes and sends the generated certificate which is
signed to the requested entity.

Figure 5: Protocol to Request/Receive Certificate

26

4.4 Notification Messages Protocol

This functionality is not available to user if he/she does not have a certificate. Further-
more, in the login step user is getting login to the system through the Payment Server
and he/she is offline at the IM Server until he/she enables notifications. Others can send
messages to him/her, but he/she will not be able to view these messages until the user
enables notifications. Figure 6 explains flow of messages in system during the process of
enabling notifications.

Figure 6: Notification Messages Protocol

In order not to bother users with notifications, system’s notification feature is disabled as
default. Therefore, whenever user wants to enable the notifications he/she should follow
these steps:

1. User should click "Enable Notification" button and client application asks PIN of
the user and decrypts user password by using CSP.

2. System accesses IM server by using user’s name and decrypted password through
SSL connection based on XMPP.

27

3. If PIN is correct, decryption of encrypted password will give the actual password
which means that login progress is successful. Otherwise, attempt of user to login
fails.

4. Lastly, user will be connected to the IM server until he kills the application.

4.5 Instant Messaging Protocol

This functionality is not available to the user if he/she haven’t had a certificate and if
he/she hasn’t enabled notifications. All communications going through IM Server and
security of the communication relies on security of CSP and SSL is provided by IM
Server. Figure 7 explains flows of messages in the system while sending and receiving
instant messaging services. Protocol follows the following steps. All components perform
their tasks successfully or give some error. Hence, the protocol always completes.

Figure 7: Instant Messaging Protocol

1. The client application enables user to send and receive instant messages in a secure
way.

28

2. User should click "Secure IM" and choose "Send Message" option.

3. User should enter receiver’s email address and message text.

4. System checks if the receiver’s email has correct email format or not and then checks
whether it has a receiver certificate in the local database.

5. If the system cannot find certificate for the intended receiver in the database, it
creates one message and sign it with the private key and attach its certificate to
the end of the message.

6. If it has receiver’s certificate, it uses that certificate to encrypt and sign the message.

7. In both above cases, system sends message to the IM Server and IM server transfers
that message directly to the receiver.

8. Whenever a sender gets message, the system check for the message tag. If it starts
with <certificate> and ends with </certificate>: The certificate of the sender is
given and the message is validated. If the message is authenticated to be send
by the sender system, sender’s certificate is added to the database and receiver’s
certificate is sent to sender. When the sender receives the certificate of the receiver,
they can start to use secure instant messaging service. If it doesn’t start with
indicated certificate, system pulls out sender details from database to validate and
decrypt this message.

9. If users don’t have certificates of each other, they cannot communicate and they
cannot also do any payment transactions. This approach solves non-repudiation
and security problems.

29

4.6 Listing Balance and Transactions Protocol

This functionality can not be used by user if he/she does not have a certificate. Security
of this step relies on SSL connection. Figure 8 explains flow of messages in the system
during the requesting and receiving BTC balance and transactions.

Figure 8: Components and Protocol to List Balance and Transactions

Whenever user wants to list balance and transactions he/she should follow these steps:

1. The client application includes functionality to check users’ balance and previous
transactions.

2. The application connects to the Payment Server to retrieve balance and previous
transactions through SSL connection.

3. Payment Server sends the required information data back to the client.

4. The application shows balance and previous transactions.

30

4.7 Requesting Payments Protocol

This functionality can not be used by user if he/she doesn’t have a certificate. This step
is not much different from instant messaging. All steps are the same. All communications
go through Payment Server and security of the communication relies on security of CSP
and also SSL is provided by IM Server.

Figure 9: Component and Protocol for Requesting Payments

Figure 9 shows flow of messages in the system during requesting payments. The
protocol follows the following steps:

1. User can request payment by using QR code or send the request directly to anyone
by using receiver’s email

2. User enters email address of the merchant manually or use QR code to take em-
bedded email address of the merchant.

3. System checks if the receiver email is in the appropriate format and further checks
to make sure the receiver certificate is present in the local database.

4. If the system cannot find the certificate for the indicated receiver in the database,
it creates one message and sign it with its private key and attaches its certificate
to the end of the message.

5. System sends that message to the IM Server and IM Server transfers that message
directly to the receiver.

31

6. When the payer receives a message, it checks message tag. If it starts with <certifi-
cate> and ends with </certificate>: it gets certificate of the payee and validates
the message. If the message is sent by the payee, the system adds payee’s certificate
to the database and sends receiver’s certificate to the payee. Whenever payee gets
certificate of the receiver, payee can do Payment Request.

7. Client encrypts user’s request by using receiver’s public key embedded in receiver’s
certificate and signs it by using his private key.

8. The application sends securely packed requires of the user to the IM server.

9. IM server sends this request to the payer.

10. When the payer gets this request, his/her system validates and decrypts the request
by using CSP.

32

4.8 Making Payments with Requests Protocol

This functionality can not be used by the user if he/she doesn’t have a certificate. It is
complementary to the request payment.

Figure 10: Componential Protocol for Making Payments(with Request)

Figure 10 shows flow of messages in the system for making payments with request and
protocol follows the following steps:

1. The application notifies the user whenever he/she gets new payment request. User
also can retrieve all requests later by using "Listing Balance and Transactions"
functionality.

2. User clicks the notification or required item in transactions section.

3. System shows the details about request including payee identity and amount.

4. User confirms the payment and clicks "Send".

5. The application gets entries of user and sends it to the Payment Server which takes
instructions from the client application and executes the batch files of Bitcoin CCL.

6. Payment Server creates instructions and changes it to the executable batch file.
Batch file has userID of the receiver and sender with payment amount.

7. Payment Server sends this batch file to the Wallet Server.

8. Wallet Server processes this batch file and retrieves receiver’s and sender’s userID.

33

9. It retrieves Bitcoin addresses associated with those userIDs from its database.

10. Wallet server checks the balance of sender’s account. If sender has enough Bitcoins,
it completes the payment and updates sender’s and receiver’s accounts.

11. When the Wallet Server completes the required action, it sends a feedback to the
Payment Server to inform the BTC networks to prevent double-spending.

12. Payment Server gets feedback from Wallet Server and connects to IM server to
inform both parties about the outcome of the transaction.

13. IM server sends confirmation messages to both parties.

4.9 Making Payments (without Request) Protocol

This functionality can not be used by user if he/she doesn’t have a certificate.

Figure 11: Components and Protocol for Making Payments(without Request)

Figure 11 shows flow of messages in the system during making payments without requests.
The system follows the following steps:

1. The application also offers service to the user to send payments by using receiver’s
email with indicated Bitcoin amount

2. User enters email address of the receiver and the amount of BTC that he/she wants
to send.

34

3. The application gets entries of user and sends it to the Payment Server which takes
instructions from the client application and executes batch file of Bitcoin CCL.

4. Payment Server creates instructions and changes it to the executable batch file.
Batch file has userID of the receiver and sender with also the payment amount.

5. Payment Server sends this batch file to the Wallet Server.

6. Wallet Server processes this batch file and retrieves receiver’s and sender’s userID.

7. It retrieves Bitcoin addresses associated with those userIDs from its database.

8. Wallet Server checks the balance of sender’s account. If sender has enough Bitcoins,
it completes the payment and updates sender’s and receiver’s accounts.

9. When the Wallet Server completes the required action, it sends a feedback to the
Payment Server to inform the BTC networks to prevent double-spending.

10. Payment Server gets feedback from the Wallet Server and connects to the IM server
to inform either both the parties or just the sender on the outcome of the transac-
tion. If transaction is successful Payment Server inform both parties, otherwise it
informs just sender with error.

11. IM Server sends message either to both parties or just to sender depending on the
message that it received from the Payment Server.

35

5 Design of the Demo
Only Symmetric Key Cryptography was used for this demo.

5.1 Launching

The client application is unique for each user. In one mobile phone, only one user profile
can be stored. Therefore, whenever user launches the client application, the system checks
if user’s profile exists or not in local storage of user’s phone. In technical perspective,
system checks whether a SQLite database exists on local storage or not. If the user still
hasn’t signed up, the system will not be able to find database and user will start by
registration; otherwise he/she will continue with the login step.

36

5.1.1 Registration

With the first activation user should register himself/herself to the system. If user doesn’t
have account defined in its current phone system, Figure 12 is shown :

Figure 12: Registration Panel

37

5.1.2 Registration Errors

In order to complete registration user should fill out all fields that application requires.
Otherwise, the system produces an error message, shown in Figures 13, 14 and user can
not continue:

Figure 13: Registration Error 1 Figure 14: Registration Error 2

38

5.1.3 Login

Figure 15 shows "Login" page of the system. After user registers himself/herself once on
his/her current phone he needs to login to the system whenever he/she wants to access
the system.

Figure 15: Login Panel

39

5.2 Main Page/Main Menu

After user attempts to login just by using PIN that he/she had defined during the Signup
step, system decrypts password of the user by using that PIN and connects to the IM
server to try login. If PIN is correct, remote authentication will be successful and also
local authentication. If authentication is successful, system will show main page with
ID card as default (Figure 16) option with navigation drawer layout containing left side
menu (Figure 17).

Figure 16: ID Card Figure 17: Main Menu

40

5.3 Secure IM System

The client application offers also secure instant messaging service. User can fetch his/her
previous or current messages (Figure 18) or he/she can send and receive messages by
entering receiver’s E-mail address (Figure 19). System will trigger the receiver for either
offline or online messages whenever he/she is online.

Figure 18: Fetch Message Panel Figure 19: Send Message Panel

41

5.4 Secure Payments

Figure 20: Secure Payments Panel Figure 21: Request Payments Panel

This is the main aspect of the project: Secure Payments. You can find workflow in
Chapter 3. By default, user will see menu (Figure 20) and click on "Request Payment"
(Figure 21), on "Send Payment" (Figure 22) and on "Balance and Transactions" (Figure
23) will be shown.

42

Figure 22: Send Payments Panel Figure 23: Balance and Transactions
Panel

43

6 Evaluation of the System using Engineering Stan-
dards

In this section "Secure Bitcoin Wallet" is evaluated by using some engineering standards.
Risk and cost management and analyzing the quality of the Wallet were one of our main
aims of the project.

6.1 Scope

Scope of the "Secure Bitcoin Wallet" is for all users of Android mobile phones who want
to use Bitcoins as a mobile payment in a secure way with high reliability and usability.

6.2 Economy

This project is written by using Java and with an open source approach. It is free and
it can be used and modified by another Android developers. From the user perspective,
users are connected to the system through the Internet which is quite cheap compared
to other means of communication.

6.3 Reliability

Application guarantees security and privacy of users. The system was thoroughly tested
and found reliable.

6.4 Usability

Application is easy to use. It targets not only people with a computer science background
but also general users.

6.5 Performance

Performance of the application strictly depends on speed of the internet connection.
Application is responsive and fast. All of the time consuming operations are executed
via threads instead of UI thread.

6.6 Objectives and Success Criteria of the Project

Application achieves encrypting/decrypting/signing all sensitive data and guarantees se-
crecy and security of the user.

6.7 Ethical

As a business end user, it is our responsibility to promote ethical uses of information
technology in the workplace. Therefore, any information provided by user is not being
used for any purposes. Privacy is a right of everybody. Project gives a great chance to
all users to protect privacy of their transactions.

44

6.8 Security

One of the main goals of this project was providing security to all users. User authen-
tication should not fail and digital currency should not be forged, or reused illegally.
However, 100% security can never be promised by any technology.

6.9 Social and Political

In this project there is a conflict between two standards. Information is always important
for the entity not just for individual, but also for organizations and societies. Politically,
preventing government from checking and controlling peoples’ information is not feasible
and this is a very looming security concern. The most important things to be considered
are privacy of any person and security of society. This project inhibits any third person
to involve in communication with others. This is logical and the best thing for privacy,
if we look from the social point of view.

45

7 Conclusion
In this thesis a precise overview of Android mobile operating system, mobile payment
gateways and Bitcoin systems is provided. First we implemented Cryptography Service
Provider library to enhance security of mobile payment gateways, which provides easy to
use API and hence reduces any developer’s burden of security implementation. Further-
more, an instant messaging module with push notification system was also implemented.
All secure connections adhere to concrete cryptographic standards. The developed so-
lution provides strong authentication mechanism, confidentiality of exchanged messages
with integrity, and protection by using digital signatures. Alongside the transaction,
transparency of the implementation to end user is outlined. An evaluation of the im-
plemented system in terms of engineering standards is also discussed. Additionally, the
implication of implementation in the context of mobile applications, especially mobile
financial sector is also articulated. All in all, anonymity of Bitcoin, one of the biggest
problems so far, is left as a future work. Suggestions for this solution are using TOR
which is in the early stages of adoption and development or using a new address for every
transaction which is one of the officially encouraged ways to make attacks of disclosing
identity of users more difficult.

46

References
[1] J. Dankers, T. Garefalakis, R. Schaffelhofer and T. Wright, "Public key infrastruc-

ture in mobile systems,"Supported by European Commission through the IST Pro-
gramme under Contract IST-2000-25350, October 2002

[2] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley and W. Polk, "Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile","Internet Request for Comments, vol. RFC 5280 (Proposed Standard), May
2008. Available at: http://www.rfc-editor.org/rfc/rfc5280.txt

[3] "Certificate and Public Key Pinning", [Online]. Available at:
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

[4] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh and V.
Shmatikov, "The Most Dangerous Code in the World: Validating
SSL Certificates in Non-Browser Software","CS’12, 2012 Available at:
http://www.cs.utexas.edu/ shmat/shmat_ccs12.pdf

[5] T. Dierks, E. Rescorl, "The Transport Layer Security (TLS) Protocol Version 1.2","
Internet Official Protocol Standards, vol. FRC 5246 , August 2008. Available at:
http://tools.ietf.org/html/rfc5246

[6] Jive Software Open Source community, "About Open-fire", [Online]. Available at:
http://www.igniterealtime.org/about/index.jsp

[7] Wikipedia, "Openfire",[Online].
Available at: http://en.wikipedia.org/wiki/Openfire

[8] Jive Software Open Source community, "Openfire Projects: Smack API", [Online].
Available at: https://www.igniterealtime.org/projects/smack/

[9] XMPP Standards Foundation, "XMPP About", [Online]. Available at:
http://xmpp.org/about-xmpp/

[10] Saint-Andre, P, "Extensible Messaging and Presence Protocol (XMPP):
Core","IETF. RFC 6120, [Online], May 4, 2014. Available at:
https://tools.ietf.org/html/rfc6120

[11] Jive Software Open Source community, "User Ser-
vice Plugin Read Me", [Online]. Available at:
http://www.igniterealtime.org/projects/openfire/plugins/userservice/readme.html

[12] Brito Jerry, Castillo Andrea, "BITCOIN A Primer for Policymakers". Available at:
http://mercatus.org/sites/default/files/Brito_BitcoinPrimer.pdf

[13] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system". Available at:
https://bitcoin.org/bitcoin.pdf

[14] Google Finance, "1 BTC to USD". Available at:
http://www.google.se/intl/en/googlefinance/disclaimer/

47

[15] Block Chain Info, "Total Bitcoins in circulation". Available at:
https://markets.blockchain.info/

[16] Franco Pedro, Understanding Bitcoin, Wiley Finance Series, 2015.
ISBN:9781119019152

[17] Android Developer,"Storage Options". Available at:
http://developer.android.com/guide/topics/data/data-storage.html

[18] OpenSSL, "About the OpenSSL Project". Available at:
https://www.openssl.org/about/

[19] BouncyCastle Organisation,"About BouncyCastle". Available at:
http://www.bouncycastle.org/releasenotes.html

[20] BouncyCastle Organisation,"About SpongyCastle". Available at:
http://rtyley.github.io/spongycastle/

[21] Wikipedia, "Bouncy Castle", [Online].Available at:
en.wikipedia.org/wiki/BouncyCastle/

[22] RFC 4211, "PKCS#10: Certification Request Syntax Specification",RSA Secu-
rity,2005.Available at: https://www.ietf.org/rfc/rfc4211.txt

Non-exclusive licence to reproduce thesis and make thesis public

I, Sevil GULER (date of birth: 28th of April 1989),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Secure Bitcoin Wallet

supervised by Sead Muftic and Vitaly Skachek

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu/Stockholm, 15.06.2015

48

	Introduction
	Problem Statement
	Goals and Achieved Results
	Research Methodology
	Audience
	Limitation
	The Structure of The Thesis

	Background
	Android Mobile OS
	SSL Protocol
	Openfire Server
	XMPP and Smack APIs
	User Service Plugin

	Bitcoin System
	How Bitcoin System Works book,bitcoinbook
	Components
	Bitcoin Wallet

	Push Notifications
	PKI for Mobile Environments
	Symmetric Key Cryptography
	Asymmetric Key Cryptography
	X.509 Certificates
	PKI
	PKI in Current Mobile Systems

	Security Architecture for Bitcoin Transactions
	System Components
	Crypto Service Provider (CSP) openssl,bouncy,wikib
	Client Application
	User
	Instant Messaging (IM) Server
	Payment Server
	Wallet Server
	Bitcoin Network

	Sytem Protocols and Operations
	Local and Remote Registration Protocol
	Local and Remote Authentication Protocol
	The Certificates Protocol rfc
	Notification Messages Protocol
	Instant Messaging Protocol
	Listing Balance and Transactions Protocol
	Requesting Payments Protocol
	Making Payments with Requests Protocol
	Making Payments (without Request) Protocol

	Design of the Demo
	Launching
	Registration
	Registration Errors
	Login

	Main Page/Main Menu
	Secure IM System
	Secure Payments

	Evaluation of the System using Engineering Standards
	Scope
	Economy
	Reliability
	Usability
	Performance
	Objectives and Success Criteria of the Project
	Ethical
	Security
	Social and Political

	Conclusion

