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Abstract 
Acronym disambiguation is the process of determining the correct expansion of an acronym in a 
given context.  We describe a novel approach for expanding acronyms, by identifying acronym / 
expansion pairs in a large training corpus of text from Wikipedia and using these as a training 
dataset to expand acronyms based on word frequencies.  On instances in which the correct 
acronym expansion has at least one instance in our training set (therefore making correct 
expansion possible), and in which the correct expansion is not the only expansion of an 
acronym seen in our training set (therefore making the expansion decision a non-trivial 
decision), we achieve an average accuracy of 88.6%. On a second set of experiments using 
user-submitted documents, we achieve an average accuracy of 81%.  
 
Introduction 
 
Within documents of various kinds, acronyms are often used to shorten complicated or oft-
repeated terms that possess such established shortened forms. Usually these acronyms will be 
conveniently defined at the point of first usage, but sometimes a document will omit the 
definition entirely, perhaps assuming the reader’s familiarity with the acronym. In cases where a 
reader does not have such prior knowledge, we posit that a program to scan a document for 
unknown acronyms and predict the correct expansion of these acronyms would be useful.  We 
endeavored to create such a program using machine learning techniques. 
 
From the point of view of a user, our system accepts a document containing an acronym with an 
unknown expanded form, and returns its best guess of the true expanded form by analyzing the 
words within the document. For example, a user may supply the system with a news article 
containing, in part, the following sentence: “... The U.S. Economy continued to expand in 
February but at a slower pace than in January, which saw a spurt of activity, the NAPM said in a 
report. ...”. It will then return its prediction of the true expanded form of “NAPM”; in this case it 
selects the correct one, “National Association of Purchasing Managers”. 
 
Given a document containing an unknown acronym, our system makes its prediction in two 
general phases. First, it creates a training data set of previously scraped expansions and the 
documents they were discovered in, corresponding to the relevant acronym.  In the example 
given, these expansions are “National Academy of Popular Music”, “National Association of 
Photographic Manufacturers”, “National Association of Presort Mailers”, “National Association of 
Purchasing Managers”, and “Noynoy Aquino for President Movement”. 
 
The documents in the training set, along with the user’s document, are then transformed into 
vectors of relative word frequencies.  The transformed vectors become inputs into a classifier, 
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where the various potential expansions of the acronym form the classes.  The classifier, a 
support vector machine, is trained on the transformed training set.  Finally, the user’s 
transformed document is used as input to the classifier; the expansion corresponding to the 
output class is our final prediction.  An example of this process is depicted in the diagram below. 
 

 
 
We have achieved satisfactory results with this method. In particular, our system obtained 
88.6% accuracy on a test set of Reuters news articles containing acronyms. This score 
excludes cases in which the correct expansion was never encountered during training, and 
would therefore be impossible for our classifier to predict, and also excludes cases in which the 
correct expansion is the only expansion encountered during training, and would therefore be 
impossible for our classifier to predict incorrectly.  The overall accuracy, including no-decision 
cases, is 75.5%.  The gap between these scores suggests that additional data sources would 
continue to improve the accuracy of this algorithm. These alternate scores are included for 
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reference below. The remainder of this report will primarily detail our learning method, explain 
why we chose it, and provide more detailed analysis and results regarding its performance. 
 
 
 
 
 
Problem Definition and Algorithm 
 
Task 
 
Our task is to identify and correctly expand acronyms in text documents.  The input to the 
program is a set of documents containing any number of unknown acronyms. The system will 
then predict the expanded forms of these acronyms by analyzing the surrounding texts, and 
output these predictions. 
 
Algorithm 
 
This section will describe our system’s behavior at test time, after preprocessing has been 
completed and the program therefore has as input a document containing an unknown acronym 
and the relevant Wikipedia articles containing the unknown acronym across all its possible 
expanded forms. (An input document can have multiple distinct unknown acronyms, but our 
system considers each individually so it is sufficient to describe the behavior in the case of one.) 
Because our training set has a maximum of only about 350 documents for a given unexpanded 
acronym (and frequently this number is in the tens to single digits), we do all training and 
classification “on-demand” at test time, so this section actually describes, from start to end, what 
happens at this point. 
 
As an explanatory example, we will examine the case of an input document containing “NAPM”, 
as described previously, but with more detail regarding learning and classification. The following 
table shows the number of training documents available for each possible expansion of 
“NAPM”: 
 

'noynoy aquino for president movement' 3 articles 
'national academy of popular music' 3 articles 
'national association of purchasing managers' 1 article 
'national association of photographic manufacturers' 1 article 
'national association of presort mailers' 1 article 

 
Clearly, our system must cope with cases where there is only a small amount of training data 
available. 
 
A feature vector is first computed for each document using ‘term frequency–inverse document 
frequency’ (td-idf) weighting on contained words. td-idf weighting ensures that words which are 
frequently used across all documents to a similar degree are not as highly weighted as those 
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which appear frequently in only a subset of considered documents. The formula for calculating 
tf-idf is as follows: 
 

tf(word, document) = number of appearances of ‘word’ in ‘document’ / number of terms 
in ‘document’ 

 
idf(word, corpus) = log(number of documents in ‘corpus’ / number of documents in 

‘corpus’ which contain ‘word’) 
 
tf-idf(word, document, corpus) = tf(word, document) × idf(word, corpus) 
 

In our case, the corpus is the set of training documents corresponding to a given unexpanded 
acronym. Our implementation also limits the total vocabulary over the entire corpus to the 
10,000 terms with the highest term frequency (excluding common English “stop words” such as 
“the”, “between”, “another”, etc.). These feature vectors indicate the frequency of each of these 
10,000 terms for a given document, so location k in the feature vector of each document 
corresponds to the same term. The feature vectors, together with the labels given by the 
expanded forms of the acronyms corresponding to each feature vector, are then used to train a 
linear support vector machine.  
 
Our SVM utilizes a one-vs-all multiclass classification strategy, whereby a set of coefficients is 
learned for each possible class (which is a single acronym expansion in our case. Each 
coefficient set is used during classification to decide whether the test example is likely part of 
the corresponding class or not (and therefore must belong to some other class). A bias/intercept 
term is also computed.  
 
Formally, this support vector machine optimizes the following function for each possible class: 
 

   (1) 
 
In these functions, w represents the weight vector, xi represents an individual training sample 
vector, and yi is the binary “truth” value of the training sample’s class (-1 or 1). zeta represents 
the “slack” variable, which is 0 if the sample falls within the correct class, with a wide enough 
margin, but larger than 0 if the sample is classified incorrectly, or too close to the linear 
separator.  The hyperparameter C balances two penalties in the equation: (i) the penalty for 
incorrectly classifying samples and (ii) the overall size of the w vector.  A high C value 
will weigh correctly classifying all samples over maximizing margin, and a low C value will 
maximize margin and be more tolerant of training errors. Since each individual coefficient 
corresponds to the scaling factor assigned to an individual feature (one of the 10,000 terms) 
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during classification, and since each feature is simply a word frequency (after being transformed 
by td-idf), we can go back and examine these coefficients to determine which words have the 
largest impact on the classification decision for each possible expansion. The weight 
coefficients with the largest absolute values are shown for the possible expansions in the 
“NAPM” example: 
  

Expansion Associated Features / Coefficients 

national academy of popular music 'music'               0.67 
'richmond'   0.55 
'aquino'   -0.43 
'songwriters'   0.38 
'hall'    0.38 

national association of photographic manufacturers 'imaging'   0.51  
'photographic'   0.34  
'pima',    0.34  
'association'   0.30  
'manufacturers'  0.28 

national association of presort mailers 'mailers'   0.55  
'firmsexternal'  0.27  
'httppresortmailerorg'  0.27  
'mailing'   0.27  
'presort'   0.27 

national association of purchasing managers 'indicators'   0.49  
'economic'   0.40  
'index'    0.31  
'economy'   0.22  
'aquino'   -0.18 

noynoy aquino for president movement 'aquino'   0.90  
'president'   0.57  
'2010'    0.47  
'dybq'    0.40  
'music'              -0.31 

 
For example, for the first expansion, “national academy of popular music”, the most highly 
weighted feature is “music”.  This means that a document containing the acronym “NAPM” and 
containing a higher-than-average frequency of the word “music” is more likely to be assigned to 
this class.  The term “aquino”, on the other hand, will make a document much less likely to be 
assigned to the “national academy of popular music” class.  
This outcome in fact makes sense when we look closely: the National Academy of Popular 
Music was co-founded by Howie Richmond and administers the Songwriter’s Hall of Fame; the 
National Association of Photographic Manufacturers later changed its name to Photographic 
and Imaging Manufacturers Association, or PIMA; Benigno Aquino ran for president of the 
Philippines in 2010 and an associate of his campaign is rumored to be seeking to manage 
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DYBQ, a radio station in that country. (‘firmsexternal’ and 'httppresortmailerorg' are url/text 
fragments inadvertently included within the Wikipedia article.) 
 
The input test document is also converted to a tf-idf frequency vector. For each possible class, 
we compute the dot product of the class’s learned coefficient vector and the test document 
frequency vector (and add the class’s bias term). This results in a set of scalar values, one for 
each possible class.  
 
In the case of the “NAPM” example, the set of scalars is as follows: 
 

'noynoy aquino for president movement' -0.51938689 
'national academy of popular music' -0.53241556 
'national association of purchasing managers' -0.50180741 
'national association of photographic manufacturers' -0.82459512 
'national association of presort mailers' -0.83109989 

 
The scalar with the maximum value is chosen, and its corresponding class is returned as the 
overall prediction. In this case, -0.50180741 is the largest value, and 'national association of 
purchasing managers' is predicted. This is in fact the correct answer, as this was indeed the 
organization to which the test document referred.  
 
We utilized both the tf-idf vectorizer and the linear SVM implementation from the Python scikit-
learn library in our efforts. 
 
 
 
Experiments 
 
Data 
 
To build our system, the entirety of English Wikipedia in textual form was first obtained. All 
articles were then scanned for acronym/definition pairs using a series of regular expressions 
which matched various forms of such pairs. For example, “NBA (National Basketball 
Association)”, “National Basketball Association (NBA)”, and “National Basketball Association, or 
NBA” would all be matched, among other forms. The scanner also ensured that the acronym’s 
letters were all contained, in order, within the expanded form. 
 
Each of these documents (along with the expanded form of each acronym, for easy access) 
were then placed in a database, indexed by the shortened form of the acronym. In this way our 
system is able to efficiently pull up all the articles which contain a shortened form of an acronym  
(including documents for all of its expanded definitions) at test time. Additionally, as mentioned 
previously, we used these documents to generate word2vec word embeddings. 
 
The following graph shows the distribution of the number of distinct definitions per acronym 
within the Wikipedia data. For example, NAPM has 5 possible definitions as outlined above and 
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would contribute to the x=5 column. Clearly most encountered acronyms have a relatively small 
number of associated definitions, but there are some that have over a hundred. 

 
   Figure 1 
 
The next graph shows the distribution of the number of training instances seen per distinct 
definition. For example, 'national academy of popular music (NAPM)' (or a similar arrangement 
of text) appears in 3 Wikipedia documents, so it would contribute to the x=3 column. 
Unfortunately, this graph reveals that many acronym definitions within the training data appear 
in only a few documents; in fact, the largest proportion of them occur in only one article. 

 
   Figure 2 
However, this situation regarding lack of training data isn’t as dire as these graphs might 
suggest, since we actually test and intend our system to be proficient on news articles which 
tend to contain more commonly used acronyms.  
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Specifically, for traning and testing, we used a freely available set of 19,065 Reuters news 
articles. Each acronym and adjacent expansion pair together with the text in the surrounding 
article is considered to be a discrete example. Within each test example, the acronym 
expansion is the “true” label and the surrounding text (with the acronym expansion erased) is 
used to create the feature vector.  
 
The following two graphs are the same as the last two, except that we restrict them to acronyms 
actually encountered in the Reuters news dataset. 
 

 
   Figure 3 
 

 
   Figure 4 
 
There are still some acronyms encountered in the Reuters dataset for which we have not seen 
much training data, but this is less common than in the entire Wikipedia dataset.  
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Methodology 
 
We tested whether the above algorithm would identify the correct expansion of acronyms given 
the surrounding text. In particular, for cases in which our system has seen the correct expansion 
in training, we compared the algorithm against the naïve baseline of 1.0/(number of seen 
distinct expansions).  
 
To facilitate testing, the Reuters news articles were split into training and test sets of 9,705 and 
9,360 articles, respectively. The training set contained 825 discrete examples and the test set 
contained 744 discrete examples. 
 
We used the training set to explore various classification strategies and set parameters. 
Specifically, we examined various SVM kernel functions, one-vs-one and one-vs-rest strategies 
(resulting in n or n*(n-1)/2 binary classifiers, respectively, where n is the number of possible 
classes), penalty parameter C, and loss function (hinge vs squared hinge).  
 
We also tested on the alternate feature vector constructed from word embeddings. This led to 
our setting important parameters such as window size and vector size. The window size is the 
size of the window of words included to the left and to the right of the acronym being considered 
in a given text document.  The vector size is the dimension of the vectors used to represent 
each word in the word embeddings. 
 
 
Implementation Details  
 
Data: Training data, the full text from Wikipedia, can be downloaded as compressed files using 
the Wikipedia data dumps.  Other sources offer full text file downloads.  Testing and traning 
data, the well-known Reuters news dataset, can be downloaded from many sources. 
 
Scraping Acronym Pairs:  Iterate over each Wikipedia article, filtering out articles with little or no 
content (such as disambiguation or file pages).  Search each article using regular expressions 
for acronyms, and then for acronym / definition pairs based on the found acronyms.  For 
example, if “NLP” is found, then create  regular expression patterns such as “Natural Language 
Processing (NLP)” and “NLP (Natural Language Processing)”.  These regular expression 
patterns were developed through a combination of empirical observation and testing by 
collecting samples and finding the regular expressions that covered the most samples while 
also returning the least mistakes. Each time a pair is found, store the definition and article text 
(removing punctuation, newline chars, etc) in a dictionary-like structure using the acronym as 
the key (we used python’s shelf structure, but a database would work for this as well).  
Normalize the definitions by lowercasing all words, replacing dashes with spaces, and grouping 
extremely similar definitions together (we do this using the same_exp function, shown in the 
appendix). Sample code for scraping acronym pairs can be found in the appendix. 
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Testing Model:  Create a tf-idf vectorizer by randomly sampling Wikipedia articles.  For each 
document (from Reuters news dump) to be tested, create a list of acronyms found in the 
document.  For each unique acronym found, check to see if the acronym is defined in the 
article.  If it is, remove that definition from the article, and save the definition as your target 
value.  Train a multiclass linear SVM using all definition / vectorized Wikipedia article 
combinations stored in your training data dictionary under the key of the relevant acronym.  
Vectorize the test Reuters article, and predict a definition using the linear SVM.  Sample code 
for running the test can be found in the appendix. 
 
Results 
First we report the various results on the training data which were used to tune our algorithm. 
We start with the error rate for various SVM kernel functions and classification strategies. 
 

 
   Figure 5 

 
Using a simple linear kernel function gave us good results, and specifically employing a one-vs-
rest classification strategy performed the best on our training set. 

 
   Figure 6 
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Hinge Loss (L1) outperformed Squared Hinge Loss (L2) during training despite having larger 
training error. This indicates that L2 loss overfits compared to L1 loss. To maximize our 
classifier’s ability to generalize to unseen data, we thus chose to use L1 loss going forward. 
 
We generated three graphs when testing on the C parameter. The first shows our accuracy 
when including all training acronyms (acronym instances in the training set used for tuning the 
algorithm, and held separate from the testing set)  

 
    Figure 7(a) 
The second graph shows accuracy when acronym expansions we could not have predicted 
(due to their not appearing in any training documents) are excluded. 

 
    Figure 7(b) 
The third graph shows accuracy when (as before) expansions we could not have predicted are 
excluded, and also cases in which we are guaranteed to get the correct answer (due to having 
seen only one correct expansion during training) are excluded.  
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    Figure 7(c) 
 
The ideal C value is not affected by simply throwing out results when we are guaranteed to get 
them right or wrong, but showing these three graphs separately gives a sense of the extent to 
which factors beyond our machine learning algorithm could affect our system’s overall success 
in making correct predictions.  
 
The results show that the ideal C parameter is close to 1.0, so this value was chosen when 
scoring the test set. 
 
We considered the idea of varying the C parameter across test examples rather than using a 
single value for all of them. However, we deemed performing cross validation to determine a 
unique C value for each test example at test time to be too computationally intensive. We also 
considered the idea of varying C based on some heuristic involving the number of training 
examples seen per acronym to be somewhat intractable since these training examples are often 
distributed among the various distinct expansions in very different ways (sometimes there is an 
even distribution, sometimes most examples correspond to a single expansion, etc.). 
 
However, we did perform some initial testing to see if the ideal C parameter would vary based 
on the number of distinct possible acronym expansions. We created graphs of accuracy rates 
against the number of acronym expansions; for each graph a different C value is used. In 
general, if a change in C value were to disproportionately impact one part of the graph, that 
would suggest that varying C based on the number of acronym expansions could be useful. 
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    Figure 8 (a) 
 

 
    Figure 8(b) 
 

 
    Figure 8(c) 
Our next step would have been to devise a heuristic to vary the C parameter at test time as a 
function of the number of expansions, and to run against the traning and test sets while 
incorporating this heuristic. However, the generated graphs do not seem to give clear evidence 
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that varying C in this way would be useful, at least in terms of the Reuters news articles that we 
test against, so we stopped pursuing this approach. 
 
This last set of graphs gives insight into our performance as a function of the number of possible 
expansions. Specifically, it is clear that we do indeed do better when there are fewer expansions 
to pick from. However, we usually do better than 50% even when the number of possibilities 
reaches from the tens to one hundred.  
 
Significance testing was accomplished using another subset of the Reuters article dataset, with 
one article for each of 368 unique acronyms.  It’s important to note that this test set differs 
significantly from the previous test set, as each acronym was limited to one instance.  The 
algorithm described above was run against a control method of selecting the top definition for 
each acronym on allacronyms.com, regardless of context, which is typically the most common 
expansion. On this test set, the algorithm scored with a mean accuracy of 83%, while the control 
method scored with a mean accuracy of 41%, giving us an observed difference between the two 
means of 42%.  The shuffle test was run first 10,000 times, and then 1,000,000 times, without a 
single random shuffling obtaining a difference as large as 42%.  This suggests that our p value 
is p < .000001. 
 
 
 
Alternate Method:  Word Embedding Models using Word2Vec 
 
One problem we faced in our acronym expansion task is that many acronym definitions have 
very few training samples. Preprocessing, and stemming in particular, allow us to identify similar 
forms of the same word, but don't give us any intuition as for similar words. This seems to be an 
inherent limitation of the tf-idf vector model.  We tried to tackle this problem using deep word 
embeddings, using the word2vec package. 
 
Our word2vec embeddings were trained on the same Wikipedia data that we used for extracting 
acronym definitions. The input is a list of documents, each tokenized into a sequence of words. 
Essentially, word2vec uses this to create word "embeddings" where two words that are often 
used in a similar context will have similar locations in vector space, so that the distance between 
the two vectors is smaller than the distance between two unrelated words.  Generating vector 
representations for individual words can provide useful context regarding how words relate to 
each other. For example, although the words “school” and “university” are close in meaning, 
they are obviously spelled nothing alike and tf-idf approaches would simply consider them to be 
two entirely different. However, more recent machine learning approaches such as the vector 
word representation method developed by Tomas Mikolov et al. can be used to generate 
vectors for words, such that words close in meaning tend to have vector representations that 
are also close together (in a mathematical sense). 
 
Mikolov’s technique involves training a multilayer neural network using a corpus of text 
documents as inputs. Each word encountered during training (together with a “window” of words 
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to its right and left) is used as a discrete training example. The network’s inputs are sent to a 
projection layer, a hidden layer, and finally the output layer. The objective is to minimize the 
following: 
 

        (2) 
 
In this formulation we are training on words w0, w1, … wT. c is the window size and W is the 
number of words in the vocabulary. vx is the word embedding vector for word x. The assumption 
as stated in the literature is that minimizing this objective will tend to produce embedding 
vectors which are nearby when their associated words frequently appear together in the corpus. 
The provided word2vec tool from Google permits a useful starting point in investigating this 
model. 
 
 
Using word vectors, we attempted a similar classification methodology as we did with tf-idf 
vectors. For each training sample, we collect a window of words to the right and left or each 
instance of the acronym. We combine the word vectors for each word in these windows, and 
use the resulting vector as our training input. The same process is used to create the input 
feature vector in our test set. (The idea of summing adjacent word vectors is the recommended 
methodology for creating "phrase vectors" according to the word2vec instructional website.) 
 
We generated multiple sets of word embeddings by varying the parameters for vector length 
and the context window size.  In addition, we used a downloaded word embedding trained on 1 
billion words from the Google News dataset, created by Mikilov’s team at Google, for 
comparison.  
 
For any acronym found in an input document, we create a combined vector using word 
embeddings from the words within a specific text window near that acronym. For example, we’ll 
examine the case of an input document containing the acronym “NLP”, which begins as follows: 
 
“Automated, deep NLP technology may hold a solution for more efficiently processing text 
information and enabling understanding connections in text that might not be readily apparent to 
humans. DARPA created the Deep Exploration and Filtering of Text (DEFT) program to harness 
the power of NLP. Sophisticated artificial intelligence of this nature has the potential to enable 
defense analysts to efficiently investigate orders of magnitude more documents, which would 
enable discovery of implicitly expressed, actionable information within those documents.”  
 
In this case, the following words were selected as “window words” -- words nearby the 
acronyms and which have been previously seen in training: 
 
DEFT, Filtering, Sophisticated, Text, artificial, efficiently, for, harness, has, hold, intelligence, 
may, more, nature, potential, power, processing, program, solution, technology, the, this 
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For each of these words, we look up the previously calculated word embedding vector and then 
combine them together by one of three methods: adding, averaging, or taking the maximum at 
each column. Adding is said to provide an approximation for the representation of phrases or 
short sentences, but we also wanted to see whether other methods would be better suited to 
our task. 
 
We provide results for selected window and vector sizes on our Wikipedia training data 
(approximately 400,000 articles), and for the pretrained Google News dictionary (100 billion 
words, window size 5, vector size 300), and for each of the three describe ways of combining 
the word embeddings when training and testing with the SVM. Our traning set included 9,705 
Reuters news articles which contained 825 discrete examples of acronyms with adjacent 
expansions. (The expansions are erased during testing but used later to compute accuracy.) 
  

 
 Figure 9(a) 

 

 
Figure 9(b) 
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Figure 9(c) 

 
 
The graphs show that Google’s pretrained dictionary performed best, but it also shows that we 
approached their level of accuracy simply by expanding our window and vector sizes on our 
own Wikipedia training data. Given more training data (such as all of English Wikipedia rather 
than only articles containing acronyms) and perhaps even larger window and vector sizes (and 
the computation time this would require) we think we could come arbitrarily close or even 
surpass the provided pretrained dictionary. Another area to explore would be topic modeling, 
because that would offer some generalization among words, but still provide document-level 
vectors, instead of word-level embeddings] 
 
We also found that using averaging when combining the embedding vectors provided the best 
accuracy. Although addition is the recommended method for approximating phrase or short 
sentences representation vectors, perhaps the fact that we are combining the vectors from so 
many words means averaging leads to a more plausible final form. 
 
After opting to use the Google News pretrained dictionary with averaging for combining the 
vector representations, we ran our system on an unseen test set of 9,360 Reuters articles 
containing 744 discrete examples of acronyms with adjacent expansions. We also relaxed the 
algorithm for determining the acronyms for which we combine surrounding word vector 
representations. Previously we used a subset of a given acronym’s unexpanded forms within an 
article as anchor points for finding and combining word vector representations; for the final test 
we use all of them (at greater computational cost). 
 
Our final accuracy score on this test set was 84.8%. This definitely gives strong evidence that 
word vector representations generated using a deep learning architecture are useful in real 
applications. This score certainly beats the baseline of 1/(number of possible acronym 
expansions), which is at the highest 50% in the case where we always choose from two 
possible expansions (but which in practice would be considerably lower since we usually 
choose from among more than two expansions).  However, we did not achieve the same level 
of accuracy with this method as we did with the standard tf-idf method (88.6%). 
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This effort demonstrates that a relatively large number of word vector representations can be 
combined (ideally by averaging) to provide a useful representation of an entire sentence or even 
paragraph of text. We also found the method of attaching an SVM classifier to the end of a 
pretrained network (in our case, converted to a lookup dictionary, but providing the same 
outputs as if the network were used in real time) could work.  
 
We are excited to see further results of research in this field, as we feel that word vector 
representations as generated by deep architectures hold promise for extracting useful 
knowledge from large datasets, even in an unsupervised setting. 
 
 
 
Discussion 
 
Our results supported our hypothesis. We perform 42% better than the baseline with a p-value < 
.000001, and we believe that our approach could be good starting point for building a useful 
acronym disambiguation program for general use. 
 
Specifically, our tests have shown that a linear SVM training using L1 loss on tf-idf word 
frequency vectors performs well for this task. These results are supported by previous research. 
(i) Linear support vector machines are often used in the related problem of word sense 
disambiguation.. (ii)  L1 loss typically outperforms L2 loss in cases where there are many more 
features than examples (as in our project). 
 
It is worth noting that our results are actually understated, at least slightly. When examining the 
results case-by-case we found some instances where our system actually chose what would be 
considered the correct expansion, but which was written in a slightly different way and was 
therefore counted as incorrect. For example, our accuracy computation would not consider 
“Industrial Equity Ltd” to be the same as “Industrial Equity Limited”, although it references the 
same entity. We took some steps to account for this effect, such as comparing only on the first 
four letters of each word, but some “correct” cases were still reported as incorrect. (Relaxing this 
equality comparison too much runs the risk of counting some incorrect results as correct.) 
 
User Testing and Feedback 
As a second experiment, using the SVM with L1 loss with tf-idf word frequency vectors, a web 
application was made to collect user feedback.  Over a period of 2 weeks 14 users submitted 
feedback on a total of 23 documents, mostly academic papers over a wide variety of subjects.  
This provided a total of 622 acronym instances, with user feedback on both algorithm accuracy 
and application function. 
 
The median number of unique acronyms (where singular and plural acronyms would be 
considered different) per document was 17, but this showed lots of variation, with some 
documents getting up to 100 (the maximum allowed in our system).  The overall average was 
27 acronyms per document, with a standard deviation of 24.5.  The distribution of acronyms per 
document is shown below. 
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Scores also showed lots of variation. First, we will go over scores including no-decision cases 
(cases where the algorithm has not seen the acronym before), and then we will do the same for 
scores without.  The median accuracy including no decision cases was 76%, and the average 
was 72%, with a standard deviation of 15%.  The median accuracy without no-decision cases 
was 82%, and the average was 81%, with a standard deviation of 15%.  These can be seen in 
the histograms below. 
 
 

 
 
It’s interesting to note that the document score distribution does not appear to be normal.  Since 
the acronym expansions are selected based on the tf-idf vector of the entire document, one 
possible explanation is that the vector is either close to a number of training samples the 
algorithm has encountered before (i.e. there are Wikipedia pages similar to the document’s 
topic), in which case the algorithm is likely to do well on most acronyms in the document, or the 
topic is “new territory”, and the algorithm is likely to fail on most acronyms in the document.  
 
The total score, across all 622 acronym instances in aggregate, was 74% with no-decision and 
86% without.  This is significantly higher than the score when averaging the scores per 
document.  This suggests that the algorithm improves when there are more acronyms in the 
document, which makes intuitive sense, as this is probably a decent proxy for the size of the 
document overall.  A larger document has more context, which may possibly make it easier for 
the algorithm to accurately decide upon the correct expansion.  
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It’s also interesting to consider the difference in scores between user-submitted documents and 
the Reuters test set.  The Reuters test set average was much higher - 88.6% accuracy with no-
decision compared to 81% on user-submitted documents.  This also makes somewhat intuitive 
sense, as the acronyms found in news articles are likely to be much more common than those 
found in research papers. 
 
We also investigate how often the algorithm encountered an acronym it had not encountered 
before.  On average, the algorithm would not recognize 12% of the acronyms in a given 
document, with a standard deviation of 8%.  Its important to note that this value only 
demonstrates how often it is that the algorithm had never encountered the acronym before, for 
any context or definition, but it’s probably much more common that the algorithm encounters an 
acronym it has seen before, but has possibly not seen the acronym in the same context, with 
the same correct expansion.  This suggests that the algorithm could improve substantially by 
being trained on a larger dataset, and perhaps from a wider variety of sources (as opposed to 
just Wikipedia).  The percentages of acronyms encountered with no definitions found per article 
are shown in the histogram below. 
 

 
 
Finally, some of the user feedback was more general in nature.  There were instances where 
the algorithm incorrectly extracted a capitalized word or last name as an acronym.  The 
algorithm skips acronyms shorter than 3 or longer than 8 letters, as these are often not actually 
acronyms.  Roman numerals often trick the algorithm and result in nonsensical expansions.  
Overall, however, user feedback was positive, and many users noted that the algorithms failed 
only on very topic specific acronyms.   
 
 
 
Discussion 
 
Although our accuracy is somewhat lower on user-submitted documents than on news articles, 
we still achieve an 81% accuracy on excluding no decision cases.  This demonstrates that our 



 21 

algorithm adapts relatively well to new domains, including obscure and jargon-heavy research 
material. In addition, the high rate of unrecognized acronyms suggests that the algorithm could 
improve substantially with additional sources of training data. 
 
 
Conclusion 
 
The results we obtained (88.6% accuracy on the Reuters test set when “no-decision” cases are 
thrown out) show that a linear SVM operating on tf-idf word frequency vectors is a useful 
technique for disambiguating acronyms. Feedback from user testing was generally positive, and 
we believe this shows the utility of an acronym expanding tool. We believe this shows the utility 
of our tool. 
 
 
As for future work, we believe there is promise in utilizing word embeddings for improved 
generalization, especially in cases where we don’t have much training data for a given set of 
acronym expansions. Likely, a more sophisticated utilization of them, rather than simply 
summing/averaging  surrounding embeddings and using the result as a feature vector (as we 
attempted), would give improved results. 
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Appendix (sample code for test time procedure) 
 
The following pieces of code are provided as examples, from some of our own code, to make 
replicating the above easier.  This code is not fully comprehensive, nor intended to be used as-
is, it will need to be adjusted based on file / data types and adjusted to run the different tests 
involved.   
 
 
import	  os 
import	  numpy	  as	  np 
import	  re 
import	  time 
from	  sklearn.feature_extraction.text	  import	  TfidfVectorizer,	  ENGLISH_STOP_WORDS 
from	  sklearn.metrics.pairwise	  import	  pairwise_distances 
from	  sklearn.svm	  import	  LinearSVC,	  SVC 
from	  nltk	  import	  distance 
from	  nltk	  import	  word_tokenize,	  regexp_tokenize,	  clean_html 
from	  nltk.stem	  import	  WordNetLemmatizer 
import	  shelve 
import	  glob 
import	  pandas	  as	  pd 
import	  string 
 
 

#	  Sample	  code	  for	  building	  necessary	  functions	  
 

def	  get_acronyms(text):	  #	  Find	  Acronyms	  in	  text 
	  	  	  all_english_words	  =	  set(word.strip().lower()	  for	  word	  in	  open(data_path+"wordsEn.txt")) 
	  	  	  english_words	  =	  ENGLISH_STOP_WORDS 
	  	  	  pattern	  =	  r'\b[A-‐Z]{3,8}s{0,1}\b'	  	  	  #	  Limit	  length	  8 
	  	  	  found_acronyms	  =	  re.findall(pattern,	  text) 
	  	  	  found_acronyms	  =	  [acronym	  for	  acronym	  in	  found_acronyms	  if	  acronym.lower()	  not	  in	  english_words] 
	  	  	  found_acronyms	  =	  [acronym	  for	  acronym	  in	  found_acronyms	  if	  len(acronym)<4	  or	  acronym.lower()	  not	  
in	  all_english_words] 
	  	  	  return	  set(found_acronyms) 
 

def	  definition_patterns(acronym):	  	  	  #	  Create	  definition	  regex	  patterns	  from	  acronym 
	  	  	  def_pattern1,def_pattern2	  =	  r'',r'' 
	  	  	  between_chars1	  =	  r'\w{3,}[-‐\s](?:\w{2,5}[-‐\s]){0,1}' 
	  	  	  between_chars2	  =	  r'\w+[-‐\s]{0,1}(?:\w{2,5}[-‐\s]{0,1}){0,1}' 
	  	  	  for	  i,c	  in	  enumerate(acronym): 
	  	  	  	  	  	  	  c	  =	  "["+c+c.lower()+"]" 
	  	  	  	  	  	  	  if	  i==0: 
	  	  	  	  	  	  	  	  	  	  	  def_pattern1	  +=	  r'\b'+c+between_chars1 
	  	  	  	  	  	  	  	  	  	  	  def_pattern2	  +=	  r'\b'+c+between_chars2 
	  	  	  	  	  	  	  elif	  i<len(acronym)-‐1: 
	  	  	  	  	  	  	  	  	  	  	  def_pattern1	  +=	  c+between_chars1	  	  	  #	  acronym	  letter,	  chars,	  periods,	  space 
	  	  	  	  	  	  	  	  	  	  	  def_pattern2	  +=	  c+between_chars2 
	  	  	  	  	  	  	  else: 
	  	  	  	  	  	  	  	  	  	  	  def_pattern1	  +=	  c+r'\w+\b' 
	  	  	  	  	  	  	  	  	  	  	  def_pattern2	  +=	  c+r'\w+\b' 
	  	  	  acronym	  =	  r''+acronym+r'\b' 
	  	  	  patterns=[] 
	  	  	  for	  def_pattern	  in	  [def_pattern1,	  def_pattern2]: 
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	  	  	  	  	  	  	  patterns=patterns+[def_pattern+r'(?=\sor\s{0,1}(?:the\s){0,1}(?:a\s){0,1}'+acronym+r')', 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  def_pattern+r'(?=["(\s,]{2,}(?:or\s){0,1}(?:the\s){0,1}["]{0,1}'+acronym+r
')', 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  r'(?<='+acronym+r'\s\W)'+def_pattern] 
	  	  	  patterns	  =	  [re.compile(pattern)	  for	  pattern	  in	  patterns] 
	  	  	  return	  patterns 
	  
	  
def	  text_expand(acronym,	  text,	  patterns,	  cut_text=False):	  	  	  #	  Search	  original	  text	  for	  acronyms	  
	  	  	  	  for	  pattern	  in	  patterns:	  
	  	  	  	  	  	  	  	  pattern_result	  =	  re.findall(pattern,	  text)	  
	  	  	  	  	  	  	  	  if	  pattern_result:	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  cut_text:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  text	  =	  re.sub(pattern,'	  ',	  text)	  
	  	  	  	  	  	  	  	  	  	  	  	  return	  pattern_result[0],	  text	  
	  	  	  	  return	  None,	  text	  
	  
	  
def	  same_exp(true_exp,	  pred_exp):	   #	  Determine	  if	  two	  acronym	  expansions	  are	  the	  same	  
	  	  	  	  true_exp	  =	  true_exp.strip().lower().replace('-‐','	  ')	  
	  	  	  	  pred_exp='	  '.join([w[:4]	  for	  w	  in	  pred_exp.split()])	  
	  	  	  	  true_exp='	  '.join([w[:4]	  for	  w	  in	  true_exp.split()])	  
	  	  	  	  if	  pred_exp	  ==	  true_exp:	  
	  	  	  	  	  	  	  	  return	  True	  
	  	  	  	  return	  False	  
	  
	  
	  
#	  Sample	  code	  for	  creating	  the	  vectorizer	  
	  
vect_articles	  =	  []	  
while	  len(vect_articles)<10000:	  
	  	  	  	  k=random.choice(acronymdb.values())[0][1]	  
	  	  	  	  vect_articles.append(articledb[k])	  
	  
vectorizer	  =	  TfidfVectorizer(max_df=1.0,	  max_features=10000,	  stop_words='english',	  use_idf=True,	  
binary=False,	  decode_error='ignore')	  
vectorizer.fit(vect_articles)	  
	  
	  
#	  Sample	  code	  for	  scraping	  acronym	  /	  definition	  pairs	  
	  
count=0	  
for	  zipname	  in	  glob.iglob(wiki_path+'*[0-‐9].txt.gz'):	  
	  	  	  	  if	  zipname	  in	  done_files:	  
	  	  	  	  	  	  	  	  print	  zipname	  
	  	  	  	  	  	  	  	  continue	  
	  	  	  	  count	  +=1	  
	  	  	  	  if	  count	  >	  max_files:	  
	  	  	  	  	  	  	  	  break	  
	  	  	  	  print	  "\nFile	  number",	  count,	  "of",	  total_files	  
	  	  	  	  scraped_arts,	  scraped_data	  =	  [],	  []	  
	  	  	  	  f	  =	  gzip.open(zipname,	  'r')	  
	  	  	  	  articles	  =	  f.read().replace('\n',	  '')	  
	  	  	  	  #	  All	  preprocessing	  here	  depends	  on	  form	  of	  downloaded	  data	  	  
	  	  	  	  articles	  =	  [art.split("]]")	  for	  art	  in	  articles.strip().split("[[")]	  	  	  #	  Subject,	  article	  pairs	  
	  	  	  	  if	  len(articles[0])<2:	  
	  	  	  	  	  	  	  	  articles.pop(0)	  
	  	  	  	  articles	  =	  [[art[0],	  '	  '.join(art[1:])]	  for	  art	  in	  articles]	  
	  	  	  	  for	  title,	  article	  in	  articles[1:]:	  
	  	  	  	  	  	  	  	  if	  title[:9]=='Wikipedia'	  or	  title[-‐16:]=='(disambiguation)'	  or	  title[:5]=='File:'	  or	  
title[-‐4:]=='.css'	  or	  title[:8]=='Category'	  or	  title[:5].lower()=='media'	  or	  
title[:5].lower()=='image'	  or	  title[:6].lower()==':image':	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  continue	  
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	  	  	  	  	  	  	  	  print	  title	  
	  	  	  	  	  	  	  	  articleid	  =	  base64.b64encode('https://en.wikipedia.org/wiki/'+title.replace('	  ',	  '_'))	  
	  	  	  	  	  	  	  	  acronyms	  =	  get_acronyms(article)	  
	  	  	  	  	  	  	  	  def_count	  =	  0	  
	  	  	  	  	  	  	  	  for	  acronym	  in	  acronyms:	  
	  	  	  	  	  	  	  	  	  	  	  	  patterns	  =	  definition_patterns(acronym)	  
	  	  	  	  	  	  	  	  	  	  	  	  definition	  =	  text_expand(acronym,	  article,	  patterns)	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  definition:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  def_count	  +=1	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  scraped_data.append([acronym,	  definition,	  articleid,	  title])	  
	  	  	  	  	  	  	  	  if	  def_count	  >	  0:	  
	  	  	  	  	  	  	  	  	  	  	  	  scraped_arts.append([articleid,	  article,	  zipname])	  
	  	  	  	  for	  line	  in	  scraped_arts:	  
	  	  	  	  	  	  	  	  line[1]	  =	  unicode(line[1],	  errors	  ='ignore')	  
	  	  	  	  	  	  	  	  line[1]	  =	  line[1][:30000].encode('ascii',	  'ignore')	  
	  	  	  	  	  	  	  	  line[1]	  =	  line[1].translate(table)	  
	  	  	  	  	  	  	  	  art_writer.writerow(line)	  
	  	  	  	  for	  line	  in	  scraped_data:	  
	  	  	  	  	  	  	  	  sd_writer.writerow(line)	  
defs_file.close()	  
arts_file.close()	  
 
 

 
	  

#	  Sample	  code	  for	  testing	  tf-‐idf	  model	  

	  
def	  test_model(text,	  C=1.,	  loss='l1',	  kernel='linear'):	  
	  	  	  	  acronyms	  =	  list(get_acronyms(text))	  
	  	  	  	  if	  not	  acronyms:	  
	  	  	  	  	  	  	  	  return	  None	  
	  	  	  	  correct	  =	  total	  =	  0	  
	  	  	  	  train_score	  =	  []	  
	  	  	  	  for	  acronym	  in	  np.unique(acronyms):	  
	  	  	  	  	  	  	  	  if	  acronym	  not	  in	  acronymdb:	  
	  	  	  	  	  	  	  	  	  	  	  	  continue	  
	  	  	  	  	  	  	  	  true_exp,	  text	  =	  text_expand(acronym,	  text,	  definition_patterns(acronym),	  cut_text	  =	  True)	  
	  	  	  	  	  	  	  	  if	  not	  true_exp:	  
	  	  	  	  	  	  	  	  	  	  	  	  continue	  
	  	  	  	  	  	  	  	  data	  =	  acronymdb[acronym]	  
	  	  	  	  	  	  	  	  Y	  =	  data[:,0]	  
	  	  	  	  	  	  	  	  if	  True	  not	  in	  [same_exp(true_exp,	  y)	  for	  y	  in	  np.unique(Y)]:	  
	  	  	  	  	  	  	  	  	  	  	  	  continue	  
	  	  	  	  	  	  	  	  num_classes	  =	  int(data[-‐1][-‐1])+1	  
	  	  	  	  	  	  	  	  if	  len(np.unique(Y))<=1:	  
	  	  	  	  	  	  	  	  	  	  	  	  continue	  	  	  	  #	  To	  see	  only	  the	  ones	  with	  multi	  class	  predictions	  
#	  	  	  	  	  	  	  	  	  	  	  	  pred_exp	  =	  Y[0]	   #	  Otherwise,	  predict	  the	  only	  option	  
#	  	  	  	  	  	  	  	  	  	  	  	  train_score.append(1.0)	   #	  Training	  score	  is	  obviously	  100%	  in	  this	  trivial	  case	  
	  	  	  	  	  	  	  	  else:	  
	  	  	  	  	  	  	  	  	  	  	  	  total	  +=	  1	  
	  	  	  	  	  	  	  	  	  	  	  	  X	  =	  [articledb[aID]	  for	  aID	  in	  data[:,1]]	  
	  	  	  	  	  	  	  	  	  	  	  	  X	  =	  vectorizer.transform(X)	  
	  	  	  	  	  	  	  	  	  	  	  	  clf	  =	  LinearSVC(C=C,loss=loss)	  
	  	  	  	  	  	  	  	  	  	  	  	  clf.fit(X,Y)	  
	  	  	  	  	  	  	  	  	  	  	  	  train_score.append(clf.score(X,Y))	  
	  	  	  	  	  	  	  	  	  	  	  	  s=vectorizer.transform([text.translate(string.maketrans("",""),	  string.punctuation)])	  
	  	  	  	  	  	  	  	  	  	  	  	  pred_exp	  =	  clf.predict(s)[0]	  
	  	  	  	  	  	  	  	  if	  same_exp(true_exp,	  pred_exp):	  
	  	  	  	  	  	  	  	  	  	  	  	  correct	  +=	  1	  
	  	  	  	  	  	  	  	  	  	  	  	  print	  acronym,':',	  pred_exp	  
	  	  	  	  	  	  	  	  else:	  
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	  	  	  	  	  	  	  	  	  	  	  	  print	  acronym+':',	  pred_exp,';\t',	  true_exp	  
	  	  	  	  if	  total>0:	  
	  	  	  	  	  	  	  	  test_score	  =	  float(correct)/total	  
	  	  	  	  	  	  	  	  return	  np.average(train_score),	  test_score,	  total	  
	  	  	  	  return	  None	  
	  

 
t00=time.time()	  
article_count=0	  
train_error,	  test_error	  =	  [],[]	  
train_scores,	  test_scores	  =	  [],[]	  
	  
train_scores	  =	  []	  
test_scores	  =	  []	  
for	  fname	  in	  glob.glob(folder_path+'/*.txt'):#	  test	  docs	  
	  	  	  	  print	  '\n',fname	  
	   file_text	  =	  open(fname).read()	  
	  	  	  	  file_text	  =	  [clean_html(text)	  for	  text	  in	  file_text.split('<BODY>')]	  
	  	  	  	  for	  text	  in	  file_text:	  
	  	  	  	  	  	  	  	  result	  =	  test_model(text)	  
	  	  	  	  	  	  	  	  if	  result:	  
	  	  	  	  	  	  	  	  	  	  	  	  train_score,	  test_score,	  subcount	  =	  result	  
	  	  	  	  	  	  	  	  	  	  	  	  train_scores.append(train_score)	  
	  	  	  	  	  	  	  	  	  	  	  	  test_scores.append(test_score)	  
	  	  	  	  	  	  	  	  	  	  	  	  article_count+=subcount	  
	  
	  
print	  "Training	  Average:",	  np.average(train_scores)	  
train_error.append(1.-‐np.average(train_scores))	  
print	  "Testing	  Average:",	  np.average(test_scores)	  
test_error.append(1.-‐np.average(test_scores))	  
print	  "Acronyms	  Tested:",	  article_count	  
print	  "Time:",	  time.time()	  -‐	  t00	  
	  
	  

	  

	  

#	  Sample	  code	  for	  testing	  Word	  Embedding	  Model	   

def	  test_model(text,	  C):	  	  	  	  #	  Only	  count	  multiclass,	  w/	  correct	  def	  possible 
	  	  	  acronyms	  =	  list(get_acronyms(text)) 
	  	  	  if	  not	  acronyms: 
	  	  	  	  	  	  	  return	  None 
	  	  	  correct	  =	  total	  =	  0 
	  	  	  train_score	  =	  [] 
	  	  	  for	  acronym	  in	  np.unique(acronyms): 
	  	  	  	  	  	  	  if	  acronym	  not	  in	  acronymdb: 
	  	  	  	  	  	  	  	  	  	  	  continue 
	  	  	  	  	  	  	  true_exp,	  text	  =	  text_expand(acronym,	  text,	  definition_patterns(acronym),	  cut_text	  =	  True) 
	  	  	  	  	  	  	  if	  not	  true_exp: 
	  	  	  	  	  	  	  	  	  	  	  continue 
	  	  	  	  	  	  	  data	  =	  acronymdb[acronym] 
	  	  	  	  	  	  	  Y	  =	  data[:,0] 
	  	  	  	  	  	  	  if	  True	  not	  in	  [same_exp(true_exp,	  y)	  for	  y	  in	  np.unique(Y)]: 
	  	  	  	  	  	  	  	  	  	  	  continue	  	  	  	  #	  Don’t	  test	  acronyms	  not	  encountered	  in	  training 
	  	  	  	  	  	  	  if	  len(np.unique(Y))<=1: 
	  	  	  	  	  	  	  	  	  	  	  continue	  	  	  	  #	  To	  see	  only	  acronyms	  with	  multi	  class	  predictions 
	  	  	  	  	  	  	  else: 
	  	  	  	  	  	  	  	  	  	  	  total	  +=	  1 
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	  	  	  	  	  	  	  	  	  	  	  X,	  Y	  =	  [],	  [] 
	  	  	  	  	  	  	  	  	  	  	  for	  (d,	  aid,	  title,	  ac)	  in	  data: 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  train_text	  =	  articledb[aid].translate(string.maketrans("",""),	  
string.punctuation).split() 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  vect	  =	  [np.zeros(vec_size)] 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  i,wi	  in	  enumerate(train_text): 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  wi	  ==	  acronym: 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  w	  in	  train_text[i-‐(window_size/2):i]+train_text[i+1:i+(window_size/2)]: 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  w	  in	  embedding: 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  vect.append(embedding[w]) 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  vect: 
#	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  X.append(np.sum(vect,0))	  	   #	  Sum	  method 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  X.append(np.average(vect,0))	   #	  Average	  method 
#	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  vect=np.array(vect) 
#	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  X.append([vect[np.argmax(np.abs(vect[:,i])),i]	  for	  i	  in	  range(vec_size)])	  #	  
Argmax	  method 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Y.append(d) 
	  	  	  	  	  	  	  	  	  	  	  clf	  =	  LinearSVC(C=C,loss='l1') 
	  	  	  	  	  	  	  	  	  	  	  clf.fit(X,Y) 
	  	  	  	  	  	  	  	  	  	  	  train_score.append(clf.score(X,Y)) 
	  	  	  	  	  	  	  	  	  	  	  s	  =	  [np.zeros(vec_size)] 
#	  	  	  	  	  	  	  	  	  	  	  	  stext	  =	  text.split() 
	  	  	  	  	  	  	  	  	  	  	  stext	  =	  text.translate(string.maketrans("",""),	  string.punctuation).split() 
	  	  	  	  	  	  	  	  	  	  	  for	  i,wi	  in	  enumerate(stext): 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  wi	  ==	  acronym: 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  w	  in	  stext[i-‐(window_size/2):i]+stext[i+1:i+(window_size/2)]: 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  w	  in	  embedding: 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s.append(embedding[w]) 
	  	  	  	  	  	  	  	  	  	  	  if	  len(s)>1: 
#	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s=np.sum(s,0) 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s=np.average(s,0) 
#	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s=np.array(s) 
#	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s=[s[np.argmax(np.abs(s[:,i])),i]	  for	  i	  in	  range(vec_size)] 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  pred_exp	  =	  clf.predict(s)[0] 
	  	  	  	  	  	  	  	  	  	  	  elif	  len(s)==1: 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  pred_exp	  =	  clf.predict(s)[0] 
	  	  	  	  	  	  	  	  	  	  	  else: 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  continue 
	  	  	  	  	  	  	  if	  same_exp(true_exp,	  pred_exp): 
	  	  	  	  	  	  	  	  	  	  	  correct	  +=	  1 
	  	  	  	  	  	  	  	  	  	  	  print	  acronym,':',	  pred_exp 
	  	  	  	  	  	  	  else: 
	  	  	  	  	  	  	  	  	  	  	  print	  acronym+':',	  pred_exp,';\t',	  true_exp 
	  	  	  if	  total>0: 
	  	  	  	  	  	  	  test_score	  =	  float(correct)/total 
	  	  	  	  	  	  	  return	  np.average(train_score),	  test_score 
	  	  	  return	  None 
 


