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Abstract

Negative correlation has clear statistical benefits for noise reduc-
tion and data representation. This paper describes two new algo-
rithms, negatively-correlated component analysis (NCCA) and negatively-
correlated basis analysis (NCBA), which are designed to exploit the
benefits of negative correlation. They build on the existing ICA ap-
proach, which can be seen as a special of these two algorithms. Ex-
amples of both algorithms are given, demonstrating their usefulness
and superior performance to existing ICA algorithms.

1 Overview

1.1 Introduction

Since the development of algorithms for Independent Component Analysis
(ICA) little more than a decade ago [1], it has seen a number of applica-
tions in neuroscience, most notably in cases of blind source separation, and
in models which relate natural image statistics to the properties of the early
visual system [2, 3].

In ICA, components are by definition assumed to be statistically independent,
that is:-

E{g(x)h(y)} = E{g(x)}E{h(y)} (1)

This also means that components must be uncorrelated, since this is a weaker
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condition subsumed by independence, where h(x) and g(x) are simply identity
functions:-

E{xy} = E{x}E{y} (2)

Whilst this can be a useful working assumption, independence is often sta-
tistically not the optimal condition for a set of variables. In particular,
negatively-correlated variables have some properties which make them prefer-
able to positively-correlated and independent variables, especially in cases of
noisy systems where negative correlation can help reduce the noise [4] and
increase the storage capacity (space filling).

1.2 Benefits of Negative Correlation

Two specific benefits of negative correlation are demonstrated here. The
first, shown in figure 1, is that negatively-correlated gaussian noise will tend
to reduce to zero more rapidly than independent and positively-correlated
gaussian noise as the number of instances of this noise increase. The utility
of this result is shown in figure 2, where gaussian noise is added to a number
of replications of the same image. Where the noise is positively-correlated
the image is almost completely obscured. Independent noise also results
in an image in which the detail has been completely lost to the noise. Only
when the noise (of the same strength as the previous two cases) is negatively-
correlated, does the image emerge, as the noise effectively cancels itself out.

[FIGURE 1 ABOUT HERE]

[FIGURE 2 ABOUT HERE]

The second benefit of negatively-correlated variables is their ability to fill a
space better than positively-correlated or independent variables, because of
their tendency to push each other away. Figure 3 shows a collection of data,
some positively-correlated elements, which will be called basis functions,
some independent basis functions, and some negatively-correlated basis func-
tions. It is immediately obvious from the figure that the negatively-correlated
basis functions are more evenly distributed throughout the space than the in-
dependent basis functions, which in turn are more evenly distributed than the
positively-correlated basis functions. The specific benefit of this space-filling
is that when the data need to be expressed in terms of the basis functions
(as is the case in a typical linear model, including the ICA model), then the
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residual error is minimised when the basis functions are negatively corre-
lated, and maximised when they are positively correlated, provided that the
coefficients are restricted to non-negative values. The need for this restric-
tion arises because where basis functions are negatively-correlated with each
other, by definition the most negatively-correlated function for basis function
a, will be simply -a. It is clear from this that if coefficients to basis function
a are allowed to take negative values, then there is no meaningful distinction
between a and -a in the model, which effectively means that whenever a is
present, -a is also implied as present. This means that a set of indepen-
dent components will best cover the space under these circumstances, with
their implied negatively-correlated components also being present; actual
positively- or negatively-correlated basis functions under these circumstances
will be to some extent redundant and suboptimal. However, where only non-
negative coefficients are allowed, basis function a no longer implies -a as well,
meaning that there is now a benefit to having real negatively-correlated ba-
sis functions, as the implies ones are no longer present. This non-negative
coefficient restriction is increasingly popular in more recent work [5, 6] for
other, principled, reasons, such as the fact that natural quantities cannot be
negative, images cannot consist of negative amounts of constituent objects,
neural firing rates cannot be negative etc., and so the non-negative constraint
should not be regarded as a weakness of the existing approach.

[FIGURE 3 ABOUT HERE]

Given these benefits to negative correlation, it may be expected that some
evolved systems would exploit this fact. Recently, it has been shown that
negative correlation between neural firing of different neurons is leads to a de-
crease in the noise of the signal (not surprising in view of the demonstrations
given earlier in this section), which therefore offers enhanced performance in
a stochastic system [7]. The authors also found evidence confirming the exis-
tence of this negative correlation in in vivo experiments on the rat’s olfactory
bulb.

1.3 Two different approaches for negative correlation
and ICA

We saw earlier that the basic ICA model, X = AS, therefore has two quite
different sets of variables to estimate: the components themselves, which
form the matrix S, and the basis functions, which together form the mix-
ing matrix A. Both of these are candidates for negative correlation, and as
such two complementary algorithms, negatively-correlated component anal-
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ysis (NCCA) and negatively-correlated basis analysis (NCBA), have been
developed and are presented in this paper. Both of them are generalisations
of ICA, which can be seen as special case of either algorithm.

The next section will outline the theoretical framework for NCCA and NCBA,
show the basic steps in the implementation of it, and highlight the benefits
of the specific approach taken here. Following that is a section containing
some simple examples demonstrating NCCA’s ability to recover negatively-
correlated components, and then a section showing examples of how NCBA
takes full advantage of the benefits of negative correlation.

2 Algorithm

2.1 General Form

Both NCCA and NCBA use the same fundamental approach, which is to
have an ICA core to find a set of components or basis functions, along with
a lagrangian penalty term to encourage those components or basis functions
to be negatively correlated.
We therefore start with the basic ICA model:-

x = As (3)

y = Wx (4)

(x are the mixed components, A is the mixing matrix, S are the original
source components, y are the recovered source components, W is the demix-
ing matrix.)

As stated above, we can find negatively-correlated components or basis func-
tions by maximising independence, as under ICA, with an additional con-
straint to minimise the correlations (maximise the negative of the correla-
tions) of the recovered components or basis functions using the technique of
Lagrange multipliers.

The difference between the marginal distributions fyi
(yi,W) and the joint

distribution fy(y,W) of the independent components y, can be expressed

as the difference between the marginal differential entropies
m∑
i

H(yi) and the

joint differential entropy H(y) of these components. This in turn can be
given by the Kullback-Leibler (K-L) divergence:-
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Df‖f̃ (W) =
m∑

i

H(yi)−H(y) (5)

H(y) = H(Wx) = H(x) + log | det(W) | (6)

⇒ Df‖f̃ (W) =
m∑

i

H(yi)−H(x)− log | det(W) | (7)

The correlation penalty term, including the different versions for the two
different algorithms, will be outlined in the next section. For now, it will be
represented by the lagrangian placeholder function F (W), and the standard
lagrangian coefficient, λ. This gives us the correlation penalty term:-

λ(F (W)) (8)

This can be added to the K-L divergence to give a complete objective function
to be minimised:-

Df‖f̃ (W) =
m∑

i

H(yi)−H(x)− log | det(W) | +λ(F (W)) (9)

It is important to note that in an algorithmic implementation, this function
is equivalent to the following two-step procedure:

D̄f‖f̃ (W) =
m∑

i

H(yi)−H(x)− log | det(W) | (10)

Df‖f̃ (W) = D̄f‖f̃ (W) + λ(F (W)) (11)

This means that the standard K-L divergence function can be calculated in
the first step, and the negative correlation penalty term can be applied in
the second step, without the optimisation technique employed for both steps
having to be the same. The result of this is that existing algorithms for the
ICA core can be imported without any significant modification for the first
step, and a simple gradient approach used to reduce the correlation between
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the derived components or basis functions for the second step.

The activation functions forming the update steps in an iterative algorithm
for the two equations above can be formed by taking the gradient of the
objective function with respect to the demixing matrix W. For the various
terms in the equations, this gradient is computed as follows:-

m∑
i

H(yi) The marginal distributions are the most problematic, as the for-

mation of the gradient requires a parametric estimation of the dis-
tributions. This can be achieved with reasonable accuracy using the
Gram-Charlier expansion. However, ICA algorithms typically take ad-
vantage of a computationally much simpler approximation, where the
objective function is simply given by an appropriate nonquadratic func-
tion. The most popular specific choice is log(cosh (Wx)), which yields
x tanh (Wx) as the derivative term; more generally, the derivative is
xϕ(Wx).

H(x) The first of the two terms which together make up the joint distribu-
tion is a function only of the mixture variables x, which means that
this term is a constant, not dependent on W. It thus drops out of the
gradient altogether.

log | det(W) | The second of the joint distribution terms clearly is depen-
dent on W. Some fixed-point ICA algorithms also drop this term,
by pre-whitening the data (thus assuming zero correlation), which re-
sults in this term also being a constant. However, this is clearly not
appropriate for negatively-correlated component analysis, and so the
gradient of this term must be included. This is given by W−T (the
inverse transpose of the demixing matrix).

λ(F (W) The abstract form of the correlation penalty term has a similarly

abstract gradient: λdF (W)

dW . The detailed form of these functions is
outlined in the next section.

Putting these gradient terms together, we have the complete gradient acti-
vation functions to be used in the iterative algorithm:-
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dD̄f‖f̃ (W)

dW
= xϕ(Wx)−W−T (12)

dDf‖f̃ (W)

dW
=

dD̄f‖f̃ (W)

dW
+ λ

dF (W)

dW
(13)

This finally gives us iterative update steps for estimating the demixing matrix
W based on maximising the negative gradient:-

∆W̄ = η[W−T − xϕ(Wx) (14)

∆W = ∆W̄− λ
dF (W)

dW
(15)

These provide the central weight update steps in the most general form. Spe-
cific implementation involved the use of a chosen existing ICA technique for
the first update step; several have been tested for use with the algorithms
presented here, including a simple generic gradient method developed for
testing these algorithms, the Bell-Sejnowski algorithm [8], Amari’s natural
gradient version of the Bell-Sejnowski algorithm [9], and Hyvärinen’s Fas-
tICA algorithm [10], with the important caveat that the orthogonalisation
step in a whitened domain must be removed (in order to allow components to
be correlated at all), when the implementation and testing of the algorithms
is described in more detail.

Specific implementation of the second update step involves a choice of neg-
ative correlation penalty function F (W), and a method for optimising this
function with respect to W. This is the subject of the next section.

2.2 Negative Correlation Penalty Function

In order to encourage the derived components or basis functions to be neg-
atively correlated, it is clearly necessary to minimise a function which mea-
sures the correlation between the components. As correlation is represented
by the correlation matrix, minimisation of this matrix is the obvious choice.
However, the function is not quite as straightforward as this, because the
correlation matrix is a matrix of variables, and the gradient of this is a third-
order (three-dimensional) matrix, whereas what is actually needed for the
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update steps is a vector-values function of variables (which is in practice a
matrix where the variables are represented by a vector of samples; this gives
us a matrix to update either A or S in the ICA model, depending on which
algorithm we are using). The reason for this discrepancy is that the cor-
relation matrix really represents a matrix of separate correlation measures,
rather than the single correlation measure that we need to minimise. The
solution for this is to actually sum the elements of the correlation matrix.
Hence for variables a, (in practice represented by matrix of samples A), the
elements of the correlation matrix aaT are summed together. This provides
the function which can be minimised with respect to each of the variables in
a, giving a vector-valued function which minimised the overall correlation of
a. A simple two variable example is given as follows:-

a =

[
a1

a2

]
(16)

aaT =

[
a1a1 a1a2

a2a1 a2a2

]
(17)

F (a) =
∑

aaT = a1a1 + a1a2 + a2a1 + a2a2 (18)

dF (a)

a
=

[
a1 + 2a2

a2 + 2a1

]
(19)

This gives us a vector (in practice a sample matrix) which can be used as
the lagrangian penalty term, and results in the derived variables being more
negatively correlated than would otherwise be the case. This gradient ap-
proach is completely stable given an appropriate learning rate, in common
with other simple gradient algorithms. In the general case, the result is as
follows:-

a =




a1

a2
...
ai




(20)

aaT =




a1a1 a1a2 . . . a1ai

a2a1 a2a2 . . . a2ai
...

...
. . .

...
aia1 aia2 . . . aiai




(21)

F (a) =
∑

aaT = a1a1 + a1a2 + a2a1 + . . . + aiai (22)
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dF (a)

a
=




2
∑

ai

2
∑

ai
...

2
∑

ai



− a (23)

This general gradient algorithm for reducing the correlation between a set
of variables is used in both NCBA and NCCA. For NCBA, the variables
whose correlation is to be minimised are the set of basis functions, which are
the columns of the mixing matrix A, which therefore means AT gives the
sampled variables in rows to be used in the above formulae. For NCCA, the
components which are the rows of S are the variables for use.

One further trick is required in order to employ this gradient approach as the
second step in our NCBA and NCCA algorithms. These algorithms, as seen
in the earlier equations, require the update steps to be for the separating ma-
trix W (although in practice, some ICA algorithms use the mixing matrix A
in their update step). We therefore need to be able to give the negative corre-
lation step update matrix, expressed above in terms of either AT for NCBA
or S for NCCA, in terms of W. To do this we can employ another trick, not-
ing the fact that the least-squares error inverse for a non-square matrix AT

is given by the Moore-Penrose pseudoinverse, (AT )+. This therefore gives us
the best esimate of W to be used directly in the update step, and has the
added benefit of being simple and relatively efficient to calculate. Conversely,
in order to first enter the A domain in order to calculate the gradient update
step, the pseuodinverse can be used in the other direction, on the W sepa-
rating matrix yielded by the first update step. We thus have a translation
from W into A for the gradient update step, and then back again into W to
yield the final updated W matrix for the current iterative pass. It should be
noted that it is not possible to perform the gradient update directly in the W
domain because minimising the correlation of AT is equivalent to maximising
the correlation of W, which is unstable because the fixed point of perfect cor-
relation does not invert to perfect negative correlation back in the A domain.

For the NCCA algorithm, the update translation operations are slightly dif-
ferent. Given the W matrix from the first update step, the components S
can be easily calculated by noting that S = WX. Once the negative corre-
lation update has been calculated in the S domain, the conversion back to
the W domain is given by another simple calculation: W = SX+. It should
be noted that where S is constrained to be non-negative, which is not the
inherently the case for NCCA as it is for NCBA but may be adopted for
some purposes nonetheless, the calculation of S is more complex, and typi-

9



cally found using a constrained optimisation technique, which will generally
be much slower than the methods given here.

2.3 Benefits of the Current Approach

By adopting a two-step update procedure, where the separating matrix is
first calculated using an ICA update step, and then the resultant compo-
nents or basis functions are made more negatively correlated using the new
gradient step given in the previous section, there are a number of particular
benefits:-

• The two update steps do not need to use the same, gradient-based
optimisation procedure. This is especially important as the negative
correlation gradient algorithm is not stable in the W domain in which
ICA update steps typically operate.

• By having the ICA update step separately, existing ICA update steps
can be used with almost no modification required. The existing algo-
rithms do not even have to use a gradient optimisation approach to be
usable; multiplicative or quadratic programming algorithms can also
be used. The only constraint on ICA algorithm is that it must not con-
tain an orthogonalisation step (so the FastICA algorithm is excluded
or at least has to have that step removed, which can make it unsta-
ble for large problems). This is obviously necessary in order to allow
components to be any other than uncorrelated.

• By translating into the A domain for NCBA and the S domain for
NCCA where necessary, the ICA step can operate in either the A or
the W domain, and still be compatible with these algorithms.

• Existing ICA algorithms do not need to estimate the components S in
order to be used with these algorithms, although obviously ones that
do are also compatible.

• By using a separate negative correlation update step, the effect of the
negative correlation penalty term is both easy to asses, and easy to
control through the strength of the parameter λ.

• The separate negative correlation update step ensures the stability of
the algorithm, as the stability of existing ICA steps is not altered within
the first update step, and the second update step also has guaranteed
stability for a sufficiently low learning rate.
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It can be seen that the current algorithms are an extension of, and in a
real sense a generalisation of, ICA, combining the benefits of existing ICA
algorithms with the the benefits of negative correlation. The following two
sections give some brief demonstrations of how these combined benefits allow
these two new algorithms to outperform ICA.

3 Examples of NCCA

The examples in this section show the NCCA algorithm in operation. As
NCCA is designed to find negatively-correlated components, the demonstra-
tions here focus on its ability to accurately recover source signals that are
negatively-correlated. Its performance is contrasted with that of ICA on the
same tasks.

3.1 Example 1: Basic performance

The first example (figure 4) clearly demonstrates the most important feature
of NCCA - its superior ability to recover the original, negatively-correlated
signals. While ICA has recovered signals that remain quite significantly
mixed, and are not the original source signals, NCCA has successfully re-
covered the original, negatively-correlated source signals to a much greater
extent.

[FIGURE 4 ABOUT HERE]

3.2 Example 2: ICA recovers original independent sig-
nals, NCCA recovers negatively-correlated source
signals

The example here (figure 5) visibly demonstrates the difference between the
independence goal of ICA and the negatively-correlated components goal of
NCCA. The negatively-correlated source signals are recovered by NCCA,
whilst ICA recovers independent signals. The signals recovered by ICA are
actually closely related to those from NCCA, and can be explained in terms
of the method used for generating the source signals. This was a standard
technique of starting with independent source signals (such as a sine wave and
a sawtooth function for the two-component example), and pre-mixing them
with a negative correlation matrix to establish the original source signals for
the algorithms to recover. After this, the pre-mixed source signals are mixed
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together with the mixing matrix to produce the mixed data. Because both
mixing and pre-mixing are linear operations, they can in fact be described
by just a single mixing operation, as though the original independent signals
were mixed together just once to produce the mixed data. Because of this,
it is not surprising that ICA finds this combined mixing matrix and original
independent source signals. It is important to note that this does not at
all invalidate this test; on the contrary, it points to a specific weakness in
this ICA algorithm when faced with correlated signals (which it is not de-
signed for). It is desirable however, also to test the algorithms without this
pre-mixing stage leading to this phenomenon. This is addressed in the next
section.

[FIGURE 5 ABOUT HERE]

3.3 Two methods for generating negatively-correlated
test signals

The most common method for generating negatively-correlated test signals
is to first generate independent signals, and then to pre-mix them with a
negative correlation matrix. An advantage of this method is that it allows
easy and precise control of the correlation relationship between any number
of components. However, it was seen in the previous example that under
these circumstances, ICA will tend to recover the independent signals prior
to pre-mixing, rather than negatively-correlated source signals. An alterna-
tive method for creating negatively correlated signals without pre-mixing by
a correlation matrix is to use phase control. By adjusting the relative phase
of two periodic signals, their correlation can be altered. Figure 6 shows two
periodic signals along with a graph that shows how the correlation changes
with phase shift. It is straightforward using this approach to set the cor-
relation to a desired value, including a particular negative correlation, or
alternatively simply to set the phase to the point of maximally negative cor-
relation. The advantage of this approach is that the source signals remain in
their original form, without being pre-mixed. Clean signals with a negative
correlation provide a useful way of further testing the NCCA algorithm, and
this is the method that is used in the remaining two examples.

[FIGURE 6 ABOUT HERE]
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3.4 Example 3: ICA recovers independent ”mixtures”,
NCCA recovers negatively-correlated clean signals

Using the technique of phase shift in generating the negatively-correlated
source signals, this example (figure5) shows the superior performance of
NCCA in recovering the original source signals. It is notable that ICA re-
covers signals that are statistically independent, but that do not take the
precise shape of the original source signals. In finding independent rather
than negatively-correlated signals, ICA is forced to find slight mixtures of
the original signals, rather than the pure signals themselves.

[FIGURE 7 ABOUT HERE]

3.5 Example 4: Assessing the correlation penalty co-
efficient (λ)

The final example in this section looks at the role of the correlation penalty
coefficient (λ). The value of the coefficient was systematically varied whilst
the other experimental parameters (learning rate, epochs etc.) remained con-
stant. It can be seen in figure 8 that the correlation of the derived components
changes smoothly with the value of λ, which shows both the stability of the
algorithm under changes to this value, and demonstrates that the negative
correlation penalty step offers a way to systematically control the correlation
of the components found by NCCA (including even making them positively
correlated if so desired).

[FIGURE 8 ABOUT HERE]

4 Examples of NCBA

The NCCA algorithm has been shown to be effective in recovering com-
ponents that are negatively-correlated. The NCBA algorithm has a com-
plementary purpose, which is to utilise the noise-reduction and space-filling
benefits of negative correlation. It was seen in earlier sections how negatively-
correlated basis functions could offer a theoretical advantage over positively-
correlated and independent basis functions in representing data with non-
negative coefficients. This section contains two practical examples of this
advantage in operation, inspired by the widespread use of ICA on natural
image processing.
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4.1 Example 1: A pre-whitened natural image

It can be seen that the original image has been preprocessed with a low-pass
whitening filter. This image is actually one that has been used in examples
of ICA, where such filtering is common to assist the ICA algorithm in useful
basis functions. In order to give a fair trial to ICA, this pre-whitened im-
age is used in the test here. Three different conditions were tested: positive
correlation (where λ was given a negative value), independent (ICA) and
negative correlation (NCBA, where λ was given a positive value). Figure 9
shows the basis functions found in the three conditions. It is immediately
apparent that the positive correlation condition has obtained perfectly cor-
related basis functions, which is catastrophic for representing data points,
as it is equivalent to only having one basis function. The independent and
negatively-correlated conditions have found ten different basis functions. The
correlation values are given for these, which show that the algorithm has
indeed found positively-correlated, uncorrelated, and negatively-correlated
basis functions respectively.

Figure 9 also shows the image reproduced by representing each 3x3 image
patch as a non-negative linear combination of the basis functions for each
of the three conditions, and placed in its appropriate position in the overall
image. This technique allows an immediate evaluation of the performance of
the algorithms. It is clear that the positively-correlated basis functions have
allowed only a very poor representation of the image, not surprising in view
of the perfect correlation between the basis functions. More significantly,
however, the independent basis functions have also resulted in a rather noisy
image reproduction, suggesting that they are suboptimal for this task. Only
the negatively-correlated basis functions allow for a perfect reproduction.
The reproduction error values are given for all three conditions, corroborat-
ing the visual evidence.

[FIGURE 9 ABOUT HERE]

4.2 Example 2: An unpreprocessed natural image

Whilst ICA algorithms prefer the data, in this case a natural image, to be
preprocessed, in particular pre-whitened, it is worth investigating whether
or not the NCBA algorithm performs any worse on an image which has not
been preprocessed at all.

This example follows the same procedure as the previous one, with positively-
correlated, independent, and negatively-correlated conditions. Figure 11
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shows that once again, when positive correlation is encouraged, perfectly cor-
related basis functions are found, whereas the uncorrelated and negatively-
correlated conditions find ten different basis functions.

The image reproductions in figure 11 also follow the pattern of the previous
example, with the positively-correlated basis functions allowing the worst im-
age reproduction, followed by the independent basis functions which still give
a very noisy reproduction, and then the negatively-correlated basis functions
which give a perfect, noise-free, reproduction. It can be seen from the error
values as well that the lack of preprocessing of the image did not damage the
performance of the algorithm at all, in contrast to that of the ICA algorithm,
whose relative performance here was worse than in the previous example.

[FIGURE 10 ABOUT HERE]

5 Conclusions

Negative correlation has several benefits which can result in systems with
lower noise, or more accurate representation of information with a limited
set of resources. In particular, it has been shown that negatively-correlated
noise is reduced in accordance with the central limit theorem much more
effectively than independent or positively-correlated noise. It has also been
shown that negatively-correlated basis functions allow a more accurate rep-
resentation of a set of data with non-negative coefficients than the same
number of independent or positively-correlated bases.

In this paper, we have outlined two algorithms to exploit these statistical
benefits of negative correlation, both of which are developments of the rel-
atively new ICA approach. NCCA finds components which are negatively
correlated, whilst NCBA finds negatively-correlated basis functions. Both
algorithms are based on an ICA core with a lagrangian penalty term en-
couraging negative correlation, but the algorithms make use of a number of
special techniques in order to allow the penalty term to be applied separately,
and in a different domain, to the main ICA update step. A number of advan-
tages to this have been outlined, emphasising in particular the compatibility
of these new algorithms with a wide variety of existing ICA approaches, as
well as their relative efficiency and stability.

Several simple demonstration examples of NCCA and NCBA have been given
here, each chosen to demonstrate a particular feature of the algorithms.
These examples show that:-
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• NCCA offers superior performance to ICA in recovering negatively cor-
related signals.

• ICA recovers uncorrelated versions of the signals, whilst NCCA recovers
the actual negatively correlated signals.

• When clean, negatively correlated source signals are generated using a
phase-shift technique, ICA tends to recover uncorrelated mixtures of
these, whereas NCCA recovers the negatively correlated clean original
signals.

• NCBA gives basis functions which allow more accurate representation
of data (image data in the examples given here), allowing better recov-
ery of that data, than ICA.

• NCBA appears to be less demanding in terms of required preprocessing
of data for than ICA.

• For both algorithms, correlation of components/basis functions varies
smoothly as a function of λ, the negative correlation penalty coefficient
(shown as an NCCA example in this paper, but equally valid for NCBA
also).

The examples presented in this paper are just very small demonstrations of
what NCCA and NCBA can do. In particular, althought the NCBA exam-
ples were in this case given for image reproduction, it is important to note
that there is nothing special about image data in this regard, and the result
is equally applicable to any data whatsoever, including data in variables that
are not themselves negatively-correlated. When non-negative coefficients are
used, negative-correlated basis functions will always be on average at least as
effective as independent basis functions, and usually more so, at representing
any set of data whatsoever.

There are a number of possible further developments for the algorithms pre-
sented here. One possibility is to explore the effects of negatively-related
higher-order moments, particularly in view of the higher-order, non-gaussian
nature of ICA which is an important part of these algorithms. Whether or
not the same benefits, perhaps to an ever greater extent, could exist for neg-
ative higher-order moments remains to be seen.

Another as-of-yet unexploited potential advantage of the NCBA algorithm
also requires further development. This concerns the space-filling benefit of
negative correlation. It can be shown that at present, the advantage con-
ferred by the space-filling property of negatively correlated basis functions is
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actually the result not of space-filling per se, but of the increased probability
that the basis functions will surround the mean of the data, which therefore
allows a more accurate non-negative coefficient representation. When all the
basis functions lie in a similar direction from the data mean, as is more likely
to happen with positively correlated and uncorrelated basis functions be-
cause they are more closely tied together, this will result in the suboptimal
representation that is seen in the examples. What this means is that the
actual space-filling itself, which results in negatively-correlated basis func-
tions being on average closer to the data points they are representing and
hence require on average lower coefficient values, is not yet being exploited by
the algorithm. In fact, in systems where resources (which means coefficient
values) are costly (including biological systems), this space-filling benefit is
likely to be important. For example, in neural systems in may result in lower
firing rates being needed because individual neurons may be more accurately
attuned to individual stimuli. This intriguing idea requires further investi-
gation.

Also related to biological systems, the notion of how negative correlation is
actually implemented in such systems is another subject for research. For ex-
ample, data from the olfactory bulb suggests that neural firing is negatively-
correlated [7]. Whilst this result may be seen as supporting the above hy-
pothesis that natural systems will exploit the benefits of negative correlation,
it also raises the question as to what neural mechanisms can give rise to it.
The issue is currently being investigated.

We hope that the NCCA and NCBA algorithma, as generalisations of ICA,
allowing application to a wider group of problems and offering significant
benefits in representing and reproducing data, offers a useful new statistical
tool, as well as potentially offering insight into existing informating process-
ing systems.
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6 Figures
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Figure 1: Central limit shrinkage of negatively-correlated noise. As the num-
ber of noise instances (samples) increases, negatively-correlated noise shrinks
to zero quickly, whereas independent and positively-correlated noise require
more instances for their values to decrease, with positively-correlated noise
potentially having a non-zero asymptote. This shows how negative corre-
lation can eliminate noise both more quickly, and more completely. The
positively-correlated noise here has a correlation of 0.1 between each of the
ten instances of noise, whilst the negatively-correlated noise has the opposite
value of -0.1.

19



Original Image Positively−Correlated Noise

Independent Noise Negatively−Correlated Noise

Figure 2: Benefit of negatively-correlated noise. With ten separate samples
of noise added to the original image, the differing effects of the correlation of
the noise can clearly be seen here. In particular, negatively-correlated noise
largely disappears leaving original image clearly visible. Here, the positively-
correlated noise again has a correlation of 0.1 between each of the ten in-
stances of noise, whilst the negatively-correlated noise has the opposite value
of -0.1.
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Figure 3: Efficacy of negatively-correlated basis functions. The negatively-
correlated basis functions (black diamonds) are more widely distributed than
the positively-correlated basis functions (white circles), and offer a more use-
ful basis for representing the data points (crosses). The non-negative least-
squares error for representing the data is 0 for the negatively-correlated bases,
but 122.94 for the positively-correlated bases. In this example, the positively-
correlated basis functions have a correlation with each other of 0.9 , whilst
the negatively-correlated basis functions have the lowest possible correlation
for eight basis functions, -0.14286.

21



0 50 100 150 200 250 300 350 400 450 500
−2

0

2
Original Signals

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

0 50 100 150 200 250 300 350 400 450 500
−2

0

2
ICA−Recovered Signals

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

4

0 50 100 150 200 250 300 350 400 450 500
−2

0

2
NCCA−Recovered Signals

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

Figure 4: NCCA vs ICA for signal recovery. This shows the central ben-
efit of the NCCA algorithm, which gives a better recovery of the original,
negatively-correlated signals than ICA. The correlation of the ICA compo-
nents was 0.0082009, whereas that of the NCCA components was -0.35562,
much closer to the original signals correlation of -0.4.
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Figure 5: ICA recovering uncorrelated signals. Where the signals are pre-
mixed to be negatively-correlated, before the main mixing stage to produce
the mixed data, ICA recovers the first, uncorrelated versions of the signals,
whereas NCCA recovers the desired, negatively-correlated signals. The cor-
relation of the ICA components was 0.038128, whereas that of the NCCA
components was -0.42265, again much closer to the original signals correla-
tion of -0.4.
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Figure 6: Correlation control using phase shift. Sinusoidal and saw-tooth
source signals are shown, along with the correlation between these two signals
as a function of the phase between them.
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Figure 7: ICA recovering independent mixtures. This example shows that
when clean negatively-correlated source signals are created using the phase-
shift technique, ICA tends to recover independent versions of these signals,
which are mixtures of the original source signals, whereas NCCA tends to
recover the actual source signals. The correlation of the ICA components
was 0.25919, somewhat positively correlated, whereas that of the NCCA
components was -0.31384, once again much closer to the original signals
correlation of -0.35089.
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Figure 8: Correlation as a function of the penalty coefficient λ. The sigmoid
curve in this graph highlights the robust and stable nature of the NCCA and
NCBA algorithms, with correlation varying smoothly with the strength of
the negative correlation penalty.
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Figure 9: Basis functions and image representation. This figure shows the
positively-correlated, independent, and negatively-correlated basis functions
recovered by using the NCBA algorithm (with a negative penalty coeffi-
cient to obtain positively correlated basis functions and a zero coefficient to
obtain the independent basis functions, which is therefore ICA in effect).
Image data has also been represented using these basis functions, and the
clear benefit of negative correlation is apparent. The correlation values for
positively-correlated, independent and negatively-correlated basis functions
respectively are 1 (the maximum), -0.03666 (close to uncorrelated), and -
0.10717 (near to the lowest possible of -0.11111. The respective image rep-
resentation LSE values are 1.6625, 0.36347 and 0.
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Figure 10: Basis functions and image representation for non-preprocessed
image data. Similar to figure 9, except for the fact that in this case the
image data has not been subject to any preprocessing. Again, negative cor-
relation offers by far the best basis functions for representing the image data.
The correlation values for positively-correlated, independent and negatively-
correlated basis functions respectively are 1 (the maximum), 0.20188 (slightly
positively correlated), and -0.098868 (near to the lowest possible of -0.11111.
The respective image representation LSE values are 1.7583, 1.1481 and 0.
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