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Abstract—Ensemble learning serves as a straightforward way
to improve the performance of almost any machine learning
algorithm. Existing deep ensemble methods usually naively train
many different models and then aggregate their predictions.
This is not optimal in our view from two aspects: i) Naively
training multiple models adds much more computational burden,
especially in the deep learning era; ii) Purely optimizing each base
model without considering their interactions limits the diversity
of ensemble and performance gains. We tackle these issues
by proposing deep negative correlation classification (DNCC),
in which the accuracy and diversity trade-off is systematically
controlled by decomposing the loss function seamlessly into indi-
vidual accuracy and the “correlation” between individual models
and the ensemble. DNCC yields a deep classification ensemble
where the individual estimator is both accurate and ‘“‘negatively
correlated”. Thanks to the optimized diversities, DNCC works
well even when utilizing a shared network backbone, which
significantly improves its efficiency when compared with most
existing ensemble systems. Extensive experiments on multiple
benchmark datasets and network structures demonstrate the
superiority of the proposed method.

Index Terms—Ensemble Learning, Diversity, Negative Corre-
lation Learning, Deep Learning

I. INTRODUCTION

NSEMBLE learning typically fuses multiple models to

get better performance than its individual models. It
has been used in multiple research fields such as machine
learning [1]-[4], computer vision [5]-[7], and so on. Diet-
terich [8] explained the success of ensemble learning from
the statistical, computational, and representational views. In
addition, bias-variance decomposition [6], [9] and strength-
correlation [2] also shed light upon the rationale of ensemble
learning theoretically.

Apart from the accuracy of the individual estimator, it is
widely convinced that much of the success of ensemble learn-
ing is attributed to the degree of disagreement, or “diversity”,
within the system. A simple yet intuitive explanation is that
millions of identical estimators are obviously no better than
any individual amongst them. Under this umbrella, a frenzy
of efforts has been devoted to encouraging better accuracy
and diversity trade-offs. A typical solution is to fully optimize
the individual estimator while injecting randomness into the
ensemble, e.g., randomly manipulating the training data to
provide each learner with a different subset of patterns or
features [2], [3].
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However, the exact roles of accuracy and diversity in ensem-
ble systems have not been well addressed although some the-
oretical analyses exist for the regression ensemble. Motivated
by bias-variance decomposition, [10] showed that the mean
squared error (MSE) for ensemble can be further decomposed
into the bias-variance-covariance three-way trade-off. In this
way, the optimal ensemble is said to be both “accurate” and
“diversified”. Based on the bias-variance-covariance, [1 1] first
proposed the well-known negative-correlation learning from
the evolutionary computation point of view by explicitly man-
aging the accuracy and diversity of the individual estimator.
This has motivated several works such as [12], [13], and more
recent ones in the deep learning era [6], [14], [15].

As for ensemble classification, where the individual esti-
mators output discrete class labels, the “diversity” is not yet
well understood and remains an open research issue. Although
[16] have made the first attempt by utilizing the one-hot coding
on the category labels and training multiple models with the
MSE under the negative correlation learning framework, this
method is far from optimal. On one hand, the MSE is prone to
outliers and is less robust than commonly used classification
loss functions, e.g., Softmax Cross-Entropy loss in the deep
learning era. On the other hand, this method has a high
computational complexity owing to the computation of the
pseudo-inverse of a large matrix. Therefore, existing ensemble
classification methods mainly utilize heuristic strategies to
enhance diversities implicitly. Examples include using differ-
ent diversity measures [|7], randomly sampling data/feature
subset [2], [3], utilizing different hyper-parameters [18], ran-
domly dropping network activations/connections [19], [20] and
aggregating different network outputs along the optimization
path [21]. Bian et al. provide some theoretical insights on
the diversity measurement in [22]. However, their work is
still lacking because it only focus on binary classification in
shallow learning scenarios.

From the optimization point of view, a better way for
ensemble classification is to jointly optimize the accuracy
as well as the diversity explicitly and this has been barely
studied for deep classification ensembles. In this work, we
tap into this gap and propose deep negative correlation clas-
sification (DNCC) that is backbone-independent and end-
to-end trainable for optimizing the long-standing accuracy-
diversity trade-offs for classification ensemble. The main idea
of DNCC, as illustrated in Fig. 2, is a new loss function
for ensemble deep classification, inspired by the ‘“negative
correlation learning” [1 1] which is commonly used in ensem-
ble regression. More specifically, we seamlessly decompose
the Softmax Cross-Entropy loss of ensemble deep networks
into the individual loss of each network and their Bregman
information, a quantity originally motivated by the rate-
distortion theory and used to measure the correlation amongst
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Fig. 1. Performance and network complexity trade-offs of different methods. We choose ResNet101 as the baseline network and test them with the input size
of 224 x 224. Obviously, DNCC obtains better trade-off between the performance and complexity. Please note that some methods utilize multiple networks
only in either the training (i.e., ONE) or the inference stages (i.e., Snapshot). For fair comparisons, here we report the maximum number of parameters/FLOPs

in both stages.

the ensemble here, and then derive a simple and efficient
method for deep ensemble classification. The loss function is
readily pluggable into any network architecture and amenable
to training via backpropagation. Finally, we show that our
DNCC outperforms challenging baselines on multiple bench-
mark datasets and network structures including CNNs [23],
[24], Transformers [25], and MLPs [26].

o We provide the definition of diversity in the deep classi-
fication ensembles by decomposing the commonly used
soft-max crossentropy loss seamlessly into individual
accuracy and the “correlations”.

o Based on our framework, we show it is easy to optimize
the accuracies and the the diversities of the base learners
in an end-to-end manner. In this way, the proposed
method naturally yields both *“ accurate” and “diversified”
deep ensembles.

o« We demonstrate the effectiveness of our approach on
different datasets when taking different network back-
bones. We show the proposed method is able to show
consistent improvement over existing ensemble methods
with significantly less FLOPs.

The rest of this paper is organized as follows. The related
work is summarized in Section II. And then, the definition
of the diversity and the “accuracy-diversity” decomposition
is presented in Section III. Finally, the empirical results
are presented in Section IV, followed by the conclusion in
Section V.

II. RELATED WORK
A. Conventional Ensemble Classification

Representative conventional ensemble methods include bag-
ging and boosting. They have been well studied in recent
years and applied widely in different applications. [|] works
by training multiple classifiers, which are formed by making
bootstrap replicates of the learning set, using these as new
learning sets, and then aggregating individual results. Due to
the independence amongst the ensemble, each base model
could be trained parallelly. As a special case of bagging,
random forest [2] utilizes multiple decision trees as the base
classifier and demonstrates its superiority in a wide range of

applications. Boosting [27] works in a curriculum learning
manner by first solving easy samples and progressively giving
more focus to samples that are difficult to classify. Bian et
al. [28] formulate ensemble pruning problem as an objection
maximization problem based on information entropy. For more
details on conventional ensemble classification, please refer
to [29].

B. Ensemble Deep Classification

Although deep learning based methods have proven to
surpass their shallow counterparts in various tasks, researchers
have successfully shown that their performance could be fur-
ther enhanced by ensemble learning. [19] introduced a dropout
strategy to prevent the co-adaptation of feature learners, in
which the key idea is to randomly drop units (along with
their connections) from a network during training. It can be
seen as an extreme case of bagging and each parameter of
the network is very strongly regularized by sharing it with
the corresponding parameter in all the other models [19].
The adaptive version of dropout is proposed in [30] where
a binary belief network is overlaid on a network and is used
to regularize its hidden units by selectively setting activities to
zero. Motivated by dropout, [20] introduced DropConnect to
regularize large fully-connected layers within neural networks.
It sets a randomly selected subset of weights within the
network to zero and thus each unit essentially receives input
from a random subset of units in the previous layer. DropCon-
nect could be regarded as a larger ensemble of deep neural
networks than dropout [20]. In [31], multi-column structures
are proposed where each column is actually a convolutional
neural network (CNN) with different parameters, and outputs
of all columns are averaged. The proposed method improves
state-of-the-art performance on several benchmark datasets.
Moreover, [32] proposed an ensemble of randomized deep
networks by the way of entropy minimization strategy [33]
and achieved improved results in visual tracking.

Stochastic multiple choice learning (sMCL) is proposed
in [34] to train diverse deep ensembles, which follows a
“winner-take-gradient” training strategy. Experimental results
demonstrate the broad applicability and efficacy of SsMCL for
training diverse deep ensembles. An ensemble of deep CNN is
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Fig. 2. Comparison between conventional ensemble methods and the proposed DNCC. Left: Conventional ensemble naively trains many different models and
optimizes individual accuracies independently. Right: DNCC jointly trains an efficient deep ensemble (with negligible extra parameters) where the individual

estimator is both accurate and diversified.

introduced in [5], where the individual results are aggregated
by the KemenyYoung method [35]. Deep neural decision
forest [36], [37] unifies random forest with the representation
learning functionality from deep convolutional networks in an
end-to-end manner. In [38], [39], the deep forest is proposed
to generate a deep forest ensemble with a cascade structure
that enables deep forest to do representation learning, and
the number of cascade levels can be adaptively determined
such that the model complexity can be automatically set.
BatchEnsemble is established in [40] where each weight
matrix is defined as the Hadamard product of a shared weight
among all ensemble members. Besides, [4 1] showed how deep
learning methods could be applied in the context of crowd-
sourcing and unsupervised ensemble learning. Ensemble-based
Decorrelation Method is introduced in [42] to regularize deep
neural networks and avoid overfitting. Snapshot ensemble [21]
trains a single neural network converging to several local
minima along its optimization path and saves the model pa-
rameters. In [43], the authors introduced a simple and scalable
predictive uncertainty estimation using Deep Ensembles. In
the same way, other methods [44]-[40] approximate Bayesian
inference for neural networks with Bayesian model averaging.
A naive on-the-fly-ensemble is introduced in [47]. It works by
training a single multi-branch network while simultaneously
establishing a strong teacher on the fly by aggregating all
the results to enhance the learning of the target network in
a knowledge distilling strategy. Random subspace strategy is
used in [48] for video classification. Chen er al. [49] design
a new loss function to rectify the bias toward the majority
classes for class-imbalance deep learning.

Different from existing methods which usually implicitly
encourage diversity in the ensemble system, we explicitly
decompose the ensemble Softmax Cross-Entropy loss into
individual classification loss and the pairwise correlations
between individual predictions and the ensemble outputs. This
is beneficial in the sense that both accuracy and diversity are
fully optimized by back-propagation. To summarize, we make
the following contributions:

III. METHODOLOGY

Before elaborating on the proposed ensemble deep clas-
sification method, we first briefly present the notations and
background knowledge. We assume that we have access to
N training samples, i.e., X = {xi,...,xx}. Our objective
is to predict their category labels, i.e., Y = {y1,...,yn}-
We denote a generic data point/feature tensor by x and use
X,, with ¢ denoting the place-holder for the index wherever
necessary. ¢y and ¥y, are similarly defined. Suppose we have
xe€Xandye )Y ={1,---,K}, in which K is the number
of classes.

We achieve our goal by learning a mapping function G :
X — Y. Then the learning problem is to use the set X to learn
a mapping function G, parameterized by 6, to approximate
their label Y as accurate as possible:

ef%

= —fZlog %) )

fi
167

where f; denotes the j'* element (j € {1,---,K}) of the
vector of class scores f. For simplicity, we will use L to
represent L(G) whenever the dependence of the loss function
with the parameters can be easily inferred from the context.
We consider the mapping function G' to be an ensemble of
deep networks, composed of M base classifier G = {G™}M_,,
where the classifiers G™ : X — Y,m € {1,..., M}, called
based deep networks, are combined using averaging:

M f;:'
zzog I DI
= m=1

where f" denotes the 4t element (j € {1,--- ,K}) of the

vector of the m!" classifiers’ class scores. Now we provide

the definition of the Bregman divergence as follows:

Definition 1. (Bregman Divergence [50]). Letg: S - R, S =
dom(g) be a strictly convex function defined on a convex set
S C R? such that g is differentiable on 7i(S), assumed to be
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Fig. 3. DNCC consists of multiple networks with a shared backbone. In the penultimate layer, we divide the features into multiple non-overlapping subsets
and train multiple classifiers accordingly. In the training phase, each classifier is forced to be both accurate and “negative correlated”. In the testing phase,

we simply use the average aggregation.

nonempty. The Bregman divergence dg : S X 1i(S) —
is defined as:

dg(t+6,t) = g(t +9) —g(t)— <d6,vgt) >, 3

where 7g(t) and ri(S) represent the gradient vector of g
evaluated at ¢ and the relative interior of S, respectively.
dom(g) represents the effective domain of g, i.e., set of all ¢
such that |g(t)| < 400 is denoted by dom(g).

[0, 00)

Definition 2. (Bregman Information [51]). Let 7" be a random
variable that takes values in 7 = {t;}, following a prob-
ability measure v. Let p = E,[T] = ., vit; € 7i(S) and
dg : S x1i(S) — [0, 00) be the Bregman divergence.Then the
Bregman information of T in terms of dg is defined as:

- e

With Definition 1 and 2, we have the following results:

Ig = E m:u (4)

Lemma 1. Given any convex function g, for any random
variable T', we have:

Elg(T)] — g(E[T]) = Ig(T). 5)

]
= Elg(T)] — g(E[T]) — E[< T — E[T], vg(E[T]) >]
= Elg(t) — g(E[T])- < T - E[T], vg(E[T]) >] (6)
= Eldg(T, E[T])]
= Ig(T)

With the above results, it is easy to obtain the following
results by considering the convexity of the -log function.

Proposition 1. For an ensemble of network, its Softmax
Cross-entropy Loss L, as defined in Eq. (2), can be de-
composed into the average loss of its base network and the
Bregman Information:
M
37 > In

m=1

—1_i04. (7

Proposition 1 explains the effect of error correlations in an
ensemble system by stating that the Softmax Cross-entropy
Loss of the ensemble network is guaranteed to be less than
or equal to the average loss of the base networks. Existing
ensemble classification methods mainly work by training mul-
tiple models independently. This may not be optimal because,
as demonstrated in Proposition 1, the ensemble loss consists
of both the individual loss and the non-negative Bregman
information of the inputs. Based on this, we propose to learn
a correlation-regularized ensemble system with the following
objective:

SN

[log(
i=1 Z] 1 6
efvi 1 i efvi )

Zf:l i M m=1 Zf=1 e
where d_;,, could be obtained by setting g as —log in Defini-
tion 1. Eq. (8) can be regarded as a smoothed version of Eq. (7)
to improve the generalization ability of the ensemble models.
The parameter A here controls the ensemble’s accuracy and
diversity and note that its optimal value may not necessarily be
1 because of the discrepancy between the training and testing
data [6], [9], [15].

More specifically, we consider the function G as an ensem-
ble of networks as defined in Eq. (2) where each base network
is posed as:

G (%) =G5 (GG_1 - (G1"(x4))),
m=1,2---M, i=1,2---N,

®)
— A% dflog(

9

where m, 7, and Q stand for the index for individual networks,
the index for data samples and the depth of the network,
respectively. More specifically, each predictor in the ensemble
consists of cascades of feature extractors G;", ¢ = 1,2--- Q-1
and classifier G As the diversity in the system are enhanced
by regularizing the Bregman Information, we are able to use
a shared network backbone for high efficiency. Formally, the
lower levels of feature extractors are shared by each predictor,
i.e.,g;” =G,q¢=12---,9-1,m=1,2--- , M. Based on
that, we further divide the outputs of the highest level feature
extractor Gg_1 to different subsets, each of which is used
as input for different classifier gg. This has been shown to
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TABLE I
COMPARISON OF DNCC WITH OTHER BASELINE METHODS ON THE
CIFAR DATASET.

Method \ CIFAR10 \ CIFAR100
Res50 [23] 94.80 77.39
Res50-Snapshot [21] 94.78 78.47
Res50-ONE [47] 94.89 78.56
Res50-SSPUE [43] 94.82 78.39
Res50-DNCC 95.05 79.05
Res101 [23] 94.98 77.78
Res101-Snapshot [21] 95.30 78.52
Res101-ONE [47] 95.41 78.61
Res101-SSPUE [43] 95.28 78.55
Res101-DNCC 95.53 78.82

be effective in generating an ensemble system without extra
computational overhead than a standard single network [6].
Apparently, this strategy is significantly more efficient than
previous efforts in naively fusing multiple different deep
networks [52], [53]. An overview of the proposed method
can be found in Fig. 3 and illustrations on the accuracy and
complexity trade-off are presented in Fig. 1.

A. Discussion

Advocating both accuracy and diversities amongst individ-
ual models has been shown to be effective in the ensemble
learning community. [2] derived the upper bound for ensem-
ble’s generation error by the way of both the “strength” and
the “correlation” for base models. In addition, the Probably
Approximately Correct (PAC) learning theory [54] shows
that a good learner should be both accurate and with low
hypothesis space complexity. In the proposed method, the
complexity has been reduced in two ways. First, by using a
shared network backbone, the proposed method is efficient and
the complexity has been reduced significantly [6]. Second, the
existing method [55] has shown that enhancing the ensemble
diversity could also lead to a small hypothesis space complex-
ity. The proposed loss function, as shown in Eq. (8), penalizes
the pairwise correlation amongst the ensemble by reducing
the Bregman distance between the individual networks and
the ensemble results, and is thus beneficial in reducing the
hypothesis space complexity.

IV. EXPERIMENTS

To demonstrate the feasibility of DNCC, we evaluate it
on several benchmark datasets, including CIFAR10 [56], CI-
FAR100 [56], and ImageNet [57]. For CIFAR10 and CI-
FAR100, we employ the well-established residual networks
(ResNet) [23] and use ResNet50 and ResNet100. We split
the features of the last global average pooling into 8 non-
overlapping subsets with equal dimensionality and train 8
classifiers accordingly. For CIFAR10, the batch size is set
to 128 and we train the network for 150 epochs. The initial
learning rate is 0.1 which is decreased by a factor of 0.1 for
every 50 epochs. For CIFAR100, we train the network for
200 epochs and we decrease the learning rate by a factor of

0.1 at epochs 60, 120, and 160 with an initial learning rate
of 0.1. As for the ImageNet dataset, apart from ResNet50 and
ResNet101, we also evaluate DenseNet121 [24]. Moreover, we
also add the recently proposed Transformer and MLP networks
in the comparisons to further understand the merits of the
proposed methods. For Transformer and MLP architectures,
we choose the Swin-Transformer [25] and the Vision Per-
mutator [26]. For all the networks trained on the ImageNet
dataset, we firstly expand the features in the penultimate layer
to 8 of its original dimension, then split the resulting features
into 8 non-overlapping subsets. Finally, we train 8 classifiers
accordingly. For each network, we follow the original training
protocol. For CNNs, we adaptively control the value of A\ by
setting it to be % x 1072, in which epoch and #epoch
stand for the number of current epoch and the number of
the maximum epoch, respectively. For Swin-Transformers and
Vision Permutator, A is simply set to be 5e — 4. We run all
experiments with PyTorch [58].

A. Main Results

We compared our proposed method with the baseline net-
work (i.e.Res50, Res101) and several state-of-the-art ensemble
learning strategies. Firstly, we consider the Snapshot Ensem-
ble [21]. It trains a single neural network and saves the model
parameters when converging to several local minima along
the optimization path. We also consider the On-the-Fly Native
Ensemble (ONE) [47]. ONE trains multi-branch networks
and distills the knowledge from the ensemble results to each
branch on the fly. The other method we compare is the SSPUE
(Simple and Scalable Predictive Uncertainty Estimation using
Deep Ensembles) which is a combination of ensembles and
adversarial training [43].

CIFAR10. The CIFAR10 dataset [56] consists of natural color
images sized at 32 x 32 pixels. It has 50,000 training images
and 10,000 testing images from 10 classes. We use a standard
data augmentation scheme [59], in which the images are zero-
padded with 4 pixels on each side and then randomly cropped
to generate 32 x 32 images. Besides, we also horizontally flip
the inputs with a probability of 0.5. We use ResNet50 and
ResNet101 [23]. The experimental results are summarized in
Tab. I. From the experimental results, we can see that with
the same network backbone, the proposed DNCC method
yields the best results for both ResNet50 and ResNet101 and
surpasses state-of-the-art ensemble learning strategies such as
Snapshot Ensemble [21], ONE [47] and SSPUE [43].

CIFAR100. The CIFAR100 dataset [56] has the same statistics
as CIFARI10 except that the images are sampled from 100
classes. We use the same data augmentation technique as
done for CIFARI10. In the same way, we use ResNet50 and
ResNet101 [23]. Results for Snapshot Ensemble, ONE, and
SSPUE with the same architecture are also provided. Results
are presented in Tab. I. Conclusions from the CIFAR10 dataset
are also applicable here.

ImageNet. The ILSVRC 2012 classification dataset [57] con-
sists of 1000 images classes, with a total of 1.2 million training
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TABLE II
COMPARISON OF DNCC WITH OTHER BASELINE METHODS ON THE
IMAGENET DATASET.

Network | Accuracy | Params | FLOPs
Res50 [23] 76.1 25.6M 4.1G
Res50-Snapshot 76.4 204.8M 32.8G
Res50-ONE 76.6 144.7 9.8G
Res50-SSPUE 76.3 204.8M 32.8G
Res50-DNCC 76.8 36.0M 4.5G
Res101 [23] 774 44.6M 7.8G
Res101-Snapshot 77.9 356.8M 62.6G
Res101-ONE 78.2 163.7M 13.5G
Res101-SSPUE 78.0 356.8M 62.6G
Res101-DNCC 78.5 55.0M 8.3G
Densel21 [24] 74.4 8.0M 29G
Dense121-Snapshot 74.7 63.8M 23.0G
Densel121-ONE 75.0 26.8M 4.4G
Densel121-SSPUE 74.8 63.8M 23.0G
Densel21-DNCC 75.2 23.6M 2.9G

images and 50,000 validation images. We adopt the same data
augmentation scheme as in [23] and apply a 224 x 224 center
crop to images for testing. For this dataset, we use various
architectures including CNN, Transformer, and MLP. As for
CNN,we use ResNet50, ResNet101, and DenseNet121. Re-
sults for Snapshot Ensemble, ONE, and SSPUE with the same
architecture for each network are also provided Results are
summarized in Tab. IL. In order to further understand the merits
of DNCC, we also report the number of parameters and FLOPs
(with input size of 224 x 224) of each method. Please note that
some methods, such as ONE, use multiple auxiliary heads in
the training phase and prune them in the inference phase. In
addition, other methods, such as the Snapshot Ensemble, save
multiple models and use all of them in the inference phase.
For more fair comparisons, we report the maximum number
of parameters and FLOPs for each method in both training
and testing stages. It is also straightforward to see that DNCC
yield better trade-offs between the performances and network
complexities.

In Tab. III, we also evaluate DNCC on more advanced non-
CNN architectures. We choose the Swin-Transformer [25]
and the Vision Permutator (ViP) [26] as the representative
work of the transformer and MLP respectively. As the Swin-
Transformer and the Vision Permutator typically need more
training epochs (i.e., 300) to converge, we did not compare
other ensemble methods because they typically need more
FLOPs/Parameters and thus significantly slow down the train-
ing process. We can show that the proposed DNCC improves
different baselines.

B. Trade-off between Accuracy and Diversity

In order to further understand the merits of DNCC, we
shed light upon the trade-off between accuracy and diversity
in this section. In [60], the authors showed that enhancing
diversity could in principle lead to a small hypothesis space
complexity which is essential in improving the generalization
ability of the learning system. Here we compare the accuracy

TABLE 111
EFFECT OF DNCC ON POPULAR TRANSFORMER AND MLP-LIKE MODELS
ON THE IMAGENET DATASET.

Network | Accuracy | Params | FLOPs
Swin-T [25] 81.2 28.3M 4.5G
Swin-T-DNCC 81.5 38.4M 4.5G
ViP-Small/7 [26] 81.5 25.1M 6.9G
ViP-Small/7-DNCC 81.9 29.4M 6.9G

and diversities of DNCC with the conventional ensemble. In
this study, we compare Res101-DNCC and Res101-Ensemble,
which is trained by setting A = 0, and train them on the
CIFARIO dataset. We split the training data into two non-
overlapping subsets with a ratio of 4:1 and use them to train
and validate the methods, respectively. Following the previous
section, the ensemble size is set to 8. Motivated by [3], we
compare the pairwise accuracy and diversity of both methods.
For the " and jth classifier in the ensemble, the accuracy
is measured by the mean accuracy of both classifiers, and the
diversity is defined as:

Wi W]

— ) (10
W5l W]

1K
Diversity(i,j) = I Z(l
k=1
where W/ is the weights of the i*" classifier for the k" class.
Eq. (10) is essentially the average angle between the corre-
sponding decision hyper-planes for the two classifiers [60].
In this example, as there are 8 individual classifiers in the
ensemble, there exist C3 = 28 pairs and we visualize the
diversity and accuracy for DNCC and the conventional ensem-
ble in Fig. 4. More specifically, in Fig. 4(a) and Fig. 4(b), we
visualize the diversity and accuracy trade-off of both methods.
The x-axis and y-axis stand for the accuracy and diversity
improvement (positive value in the y-axis indicates that DNCC
has better pairwise accuracy and diversity over the conven-
tional ensemble, respectively) for each pair, respectively.
For the diversity part, DNCC shows clear superiority over
the conventional ensemble baseline, as expected. Fig. 4(a)
compares the accuracy improvement of DNCC over the con-
ventional ensemble. The x-axis stands for the index of each
pair. The y-axis is the accuracy difference between DNCC
and the conventional ensemble. In this case, a positive value
indicates that DNCC achieves better pairwise mean accuracy
than the conventional ensemble. It is interesting that in most
cases, the pairwise mean accuracy of DNCC is better than
the conventional ensemble. Two reasons could lead to this
improvement: i) The penalty term introduced in Eq. (8) could
work as a strong regularizer for the individual models in the
ensemble and thus reduce its over-fitting. ii) Advocating the
diversity of DNCC in our setting could also lead to more diver-
sified feature representation in the bottom network backbone,
which essentially prevents their output units from co-adapting.
Similarly, Fig. 4(b) shows the diversity difference in the same
manner. Obviously, DNCC demonstrates a clear advantage in
the diversity part over the conventional ensemble. Finally, we
observe that the DNCC and the conventional ensemble achieve
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94.26% and 93.97% accuracy, respectively. However, for the
individual classifier in both methods, the accuracy is mostly
within 60% —90%, which again demonstrates the effectiveness
of ensemble methods in improving the final performance.

C. Trade-off between Efficiency and Accuracy

Previous ensemble methods [52], [53] fuse outputs from M
different models in the inference phase, and hence requiring
M times of computational overhead than a standard single
model. In contrast, the proposed method is able to have the
same inference time in our design [6]. The speed of a single
model using different backbones can be found in [61].

Although we mainly advocate an efficient solution of “train
1 and get N for free”, in practice, one could simply further
enhance the classification accuracy by having the base network
branch at an earlier stage. To demonstrated this, we have
done extra experiments on the CIFAR100 dataset with the
ResNet50 backbone. In particular, we grew different network
branches after the Res2X, Res3X, Res4X blocks. We achieved
the accuracy of 80.04%, 79.70%, and 79.05%, respectively.
In addition, the accuracy of 80.26% was obtained in a naive
setting in which 8 independent ResNet50 were used. Those
results are also provided in Tab. IV. The results verify that
inserting more diversities in the ensemble, by having different
randomly initialized branches at the early stage of the network,
could lead to better ensemble performances.

TABLE IV
ACCURACY-EFFICIENCY TRADE-OFF OF DNCC oN CIFAR100 WITH A
RESNET50 BACKBONE.

Split Position | Shared Params | Accuracy
Input 0% 80.26%
Res2X 6% 80.04%
Res3X 36% 79.70%
Res4X 91% 79.05%

D. Ablation Studies

In this section, we provide some ablation studies to further
understand the merits of the proposed DNCC. In particular, we
study the effect of the ensemble size N and the regularization
parameter A in the following sections.

Effect of the Ensemble Size: The existing ensemble learning
theory [2] shows that it will bring no harm in terms of the
final accuracy to increase the ensemble size. However, this
improvement does not come with no cost: increasing the
ensemble size will dramatically increase the computational
complexity as well. Therefore, in practice, one may need to
control the ensemble size to achieve a better trade-off between
performance and computational resources.

In order to investigate the role of the ensemble size in
DNCC, we conduct a set of experiments on the CIFAR100
dataset. We use a tight version of ResNet18 [23] which we call
tight-ResNet18 for this experiment. More specifically, for each
residual block of ResNetl8, we reduce the number of output

TABLE V
COMPARISON OF DNCC WITH THE CONVENTIONAL ENSEMBLE BY
SETTING A = 0.

Method \ CIFAR10 \ CIFAR100 \ ImageNet
Res50 [23] 94.80 77.39 76.14
Res50-Ensemble 94.85 78.42 76.51
Res50-DNCC 95.05 79.05 76.82
Res101 [23] 94.98 77.78 77.37
Res101-Ensemble 95.36 78.48 78.12
Res101-DNCC 95.53 78.82 78.45

channels by a factor of 8 to save the training time. We train
M different networks with the same training protocol with
different weight initialization. All the networks are trained for
300 epochs with an initial learning rate of 0.1 and a batch
size of 128. We decrease the learning rate by a factor of 0.1
at epochs 60, 120, and 160, respectively. A in Eq. (8) is set
to le-4. Fig. 5(a) displays the performance of tight-ResNet18
ensemble as the effective ensemble size, M, is varied. It can be
seen that both methods yield better performance than the single
model in most cases and most importantly, DNCC performs
better than the conventional ensemble method when we have
N > 4, which demonstrates the effectiveness of the proposed
DNCC.

Effective of X\: The parameter A controls the correlation
among base models in the ensemble system. On the one hand,
setting A = 0 is equivalent to training each classifier in an
independent manner. On the other hand, a larger value of A
could yield a less-correlated ensemble with high diversities.
However, we also observe that a larger value of A could also
have a negative effect on the accuracy of individual models,
which could lead to worse final accuracy. This is because a
larger value of A will affect the network optimization towards
maximizing accuracy by weakening the effect of the first term
in Eq. (8). In order to study the effect of A\, we conduct
ablation experiments with different values of A\ using the
previous settings. More specifically, we train 8 tight-ResNet18
models with the parameter A in {0, le-8, 1e-6, 1le-4,1e-2,1}
and report the results in Fig. 5(b). As can be observed, setting
A to a small value of le-4 could yield the best result. In
addition, we also report the results of different backbones on
different datasets when setting A = 0 in Tab. V. Results clearly
show that the proposed DNCC outperforms the conventional
ensemble by setting A = 0. Hence, it is beneficial to manage
the accuracy-diversity amongst the ensemble.

V. CONCLUSION

In this paper, we have presented the deep negative corre-
lation classification (DNCC) algorithm to learn efficient and
structure-independent deep network ensembles by involving
Bregman information. Our analysis presents a new view of en-
semble Softmax Cross-Entropy loss by decomposing it into in-
dividual accuracy and diversity between individual prediction
and the ensemble output. Apart from the high efficiency, our
proposed method is also advantageous when compared with
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