
PLIN3004/PLING218 Advanced Semantic Theory Lecture Notes: Week 3

1 Review
To briefly review the previous lecture, we are constructing a compositional semantic system for
the following simple grammar.

(1) a. SÑ DP VP
b. DPÑ John | Mary
c. VPÑ smokes | left

We assume that declarative sentences denote truth-values, and proper names denote indi-
viduals. We also assume that when a DP is made up of a proper name and nothing else, the
DP has the same denotation as the proper name, e.g.: for any model M , we have the following
equivalence.

4

5

DP

John

<

=

M

“ vJohnwM

TheCompositionality Principle says that themeaning of a complex expression is determined
solely by the meanings of its parts and their syntax. Let us apply this to the sentence ‘John
smokes’, which we assume has the syntactic structure in (2):

(2) S

VP

smokes

DP

John

The meaning of this sentence is determined by the meaning of [DP John] and the meaning of [VP
smokes]. You can understand the ‘meanings’ here to be the denotations, as denotations are a type
of meanings (and we want the Compositionality Principle to hold for all kinds of meanings,
although we only discuss truth-conditional meanings in this course). So for any model M ,
0

(2)
8M is determined by the denotations of DP and VP, i.e. v[DP John]wM and v[VP smokes]wM .

We know what
0

(2)
8M is, namely, a truth-value. It is 1 or 0, depending on what M is. We

also know what v[DP John]wM is, namely some individual. The exact referent is determined by
the model. What about v[VP smokes]wM? This is the topic for this lecture.

2 The Denotations of Intransitive Verbs
Verbs like ‘smokes’ that only take one argument are called intransitive verbs. Unlike for
sentences and proper names, it is not immediately clear what the denotations of intransitive
verbs should be. But there is one thing we know about them. According to the compositionality
principle,

0

(2)
8M is solely determined by v[DP John]wM and v[VP smokes]wM for any model M .

And we know that
0

(2)
8M is a truth-value (either 0 or 1) and v[DP John]wM is some individual.

So v[VP smokes]wM is something that can combine with an individual and produce a truth-value!
In order to give a concrete analysis of intransitive verbs, we adopt Frege’s Conjecture, which

states that the only way of combining meanings is function application. That is, when you put
two meanings together, one of them needs to be a function that takes the other meaning as its
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argument, and the resulting meaning is the value that the function returns for that argument.
This is a conjecture and there is no direct empirical evidence that this is correct, but it actually
takes us very far, as we will see throughout this course (although we will also see that we might
want to have other ‘modes of composition’ than function application). So let’s assume that
Frege’s Conjecture is correct, and give an analysis to v[VP smokes]wM .
Let us first formulate the compositional rule explicitly as in (3). We call this rule the

Branching Node Rule.

(3) Branching Node Rule

For any model M ,

3

A

CB

;M

“ vBwM
pvCwM

q or

3

A

CB

;M

“ vCwM
pvBwM

q

In words, if B and C are sisters in a tree, the denotation of the subtree [A B C] is either the
denotation of B applied to the denotation of C or the denotation of C applied to the denotation
of B, whichever makes sense. Usually, only one of these two possibilities makes sense.
For example, for (2), we know that v[DP John]wM is not a function but an individual. So

v[DP John]wM
pv[VP smokes]wM

q doesn’t make sense. Therefore, v[VP smokes]wM must be a func-
tion. Furthermore, it must be a function such that v(2)wM

“ v[VP smokes]wM
pv[DP John]wM

q.
Now, what exactly is the function v[VP smokes]wM? It should be able to take v[DP John]wM—

an individual—as its argument, and it should return
0

(3)
8M—a truth-value (0 or 1)—as its

output. Since v[DP John]wM can in principle be any individual in the model, it should be able to
combine with any individual in the model and for each of these individuals, it should return a
truth-value. So it’s a function from individuals to truth-values.
But which truth-value should it return? Recall that we know the truth-condition of the

sentence ‘John smokes’: For any model M , the denotation of this sentence should be 1 if the
denotation of ‘John’ in M smokes in M , and 0 if not. So we want:

(4) For any model M , v[DP John]wM
pv[VP smokes]wM

q “ 1 iff v[DP John]wM smokes in M .

Generalizing this, v[VP smokes]wM should return 1when its input is a person who smokes in M ,
and 0 when they do not smoke in M .

(5) For any model M , v[VP smokes]wM is the function that takes an individual x in M and
returns 1 iff x smokes in M .

We take this to be the denotation of [VP smokes].
As in the case of DPs, we assume that non-branching constituents like ‘[VP smokes]’ simply

inherit the meaning of its sole daughter, so we can also conclude that v[VP smokes]wM =
vsmokeswM for any model M . Then, we can state the denotation of the verb as follows.

(6) For any model M , vsmokeswM is the function that takes an individual x in M and returns
1 iff x smokes in M .

The other intransitive verb in our toy grammar, ‘left’, can be given essentially the same
analysis. That is, its denotation is (7).

(7) For any model M , vleftwM is the function that takes an individual x in M and returns 1
iff x left in M .

Furthermore, if youwant to enrich the grammar by addingmore intransitive verbs, e.g. ‘yawned’,
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‘ran’, etc., it is easy to cook up the denotations for them, using the same recipe.

(8) a. For any model M , vyawnedwM is the function that takes an individual x in M and
returns 1 iff x yawned in M .

b. For any model M , vranwM is the function that takes an individual x in M and returns
1 iff x ran in M .

At this point, let us state the assumption that non-branching constituents simply inherit the
denotations of their daughter constituents as a ‘compositional rule’. Although there’s no real
composition going on in such cases, you can see them as a trivial kind of composition. We call
this rule the Non-Branching Node Rule.

(9) Non-Branching Node Rule

For any model M ,

3

A

B

;M

“ vBwM

To sum up, we now have the denotations for all the words and two compositional rules,
Branching Node Rule and Non-Branching Node Rule, to derive the denotations of syntactically
complex expressions, including sentences. Generally, model-theoretic semantics has these two
components, the list of words/morphemes called the Lexicon and a set of compositional rules.
For our toy grammar, the Lexicon looks like (10).

(10) For any model M
a. vJohnwM = some individual determined by M
b. vMarywM = some individual determined by M
c. vsmokeswM is the function that takes an individual x in M and returns 1 iff x

smokes in M
d. vleftwM is the function that takes an individual x in M and returns 1 iff x left in M

And the compositional rules are the following two.

(11) Branching Node Rule

For any model M ,

3

A

CB

;M

“ vBwM
pvCwM

q or

3

A

CB

;M

“ vCwM
pvBwM

q

(12) Non-Branching Node Rule

For any model M ,

3

A

B

;M

“ vBwM

These twoÂăcompositional rules tell you how to derive the denotations of each grammatical
constituent. For example, the Non-Branching Node Rule says,

v[DP John ]wM
“ vJohnwM

and
v[VP smokes ]wM

“ vsmokeswM

And Branching Node Rule says:

v[S [DP John ] [VP smokes ]]wM
“ v[VP smokes ]wM

pv[DP John ]wM
q

“ vsmokeswM
pvJohnwM

q
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Similarly, you can compute the meanings of all the other grammatical constituents that our
simple syntax produces.

3 The Lambda-Notation for Functions
3.1 Basics

In formal semantics, it is customary to use the lambda-notation for functions, instead of lengthy
descriptions in English like ‘the function that takes an individual x and returns 1 iff x smokes
in M .’ Everything we will do in this course could be done without the lambda-notation, but it
would be surely too cumbersome to always use plain English to talk about functions. So let us
introduce the lambda-notation at this point.
In the lambda-notation, a function looks like:

λv : φ. α

• The symbol λ (the Greek letter ‘lambda’) has no meaning. It just says that what follows is a
function.

• v is a variable, representing the input of the function. It’s a variable because its value varies
depending on what the input is. You can pick any variable name here, e.g. x, y, X , etc.

• φ describes what kind of input the function admits (typically in terms of v), meaning it
defines the domain of the function. Please keep in mind that φ needs to be a statement that
can be true or false. The idea is that if φ is true, the input is an appropriate kind of object for
the function to operate on, if φ is false, it is not.

• α describes the output.
It’s easier to understand this by looking at concrete examples. Here is one:

(13) λx : x is a natural number. x ` 5

This is a function that takes a natural number and adds 5 to it. You are probably more familiar
with the notation f pxq “ x ` 5. What’s in (13) is the same function. But the lambda-notation
is more convenient than this notation, because it is clear that you are referring to the function
itself, rather than the output value of f applied to x, which is denoted by f pxq. Also, in the
lambda-notation, you can explicitly specify the domain (i.e. ‘x is a natural number’). You can
also write (13) as (14). (Recall N is the set of natural numbers)

(14) λx : x P N. x ` 5

Functions like (14) whose domain restriction is expressed as the variable x being in some set S
are often abbreviated to λx P S. α. For instance, (14) is often written as λx P N. x ` 5. We
will adopt this abbreviation in this course, as it is common in the formal semantic literature.
It is important to notice that the choice of the variable x above is not important, precisely

because it is a variable. We could have chosen, say, y instead, as in (15), and meant the same
thing. So (15) and the above two functions are all the same.

(15) λy : y is a natural number. y ` 5

Usually, we use x, y, z as variable names, but in principle they can be any letter. It is, for
example, totally legitimate to use a completely arbitrary symbol as in ‘λ

a

:‚
Σ
P N.

a

:‚
Σ
` 5’,

but if there’s no reason to complicate the representation, you’d better use simple symbols for
variables.
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Functions need not be about mathematical operations. For instance, (16) is a legitimate
function (assuming that each dog has a unique name).

(16) λy : y is a dog in London. y’s name

This is a function that takes any dog in London and returns its name.
Using the lambda-notation, we can re-write the denotations of the intransitive verbs as follows.

(17) For any model M ,
a. vsmokeswM

“ λx : x is an individual in M . 1 iff x smokes in M
b. vleftwM

“ λx : x is an individual in M . 1 iff x left in M

If you read published papers in formal semantics, ‘1 iff’ is often omitted, but we keep it here
for the sake of explicitness. The set of all individuals in a given model (call the domain of the
model) is often written as D. Thus, these functions are more compactly written as:

(18) For any model M ,
a. vsmokeswM

“ λx P D. 1 iff x smokes in M
b. vleftwM

“ λx P D. 1 iff x left in M

3.2 Functions that return functions

Things get a bit more complicated, when you consider functions that return functions as values.
For example, we can define a function f ` that takes a natural number n, and returns a function,
which in turn take a natural number m and returns the value n`m. As you can probably guess,
f ` represents the operation of addition. Notice that f `p3q ‰ f `p5q, because f `p3q is the
function that takes a natural number and adds 3 to it, while f `p5q is the function that takes a
natural number and adds 5 to it. In the lambda-notation, f ` can be written as (19). We use ‘[’
and ‘]’ to indicate where the function starts and ends.

(19) f ` “ rλn P N. rλm P N. n ` mss

This function looks like it has two λ’s, but that’s not the right way of understanding it. Recall
that in the lambda-notation, each function has three parts. The first two parts are collapsed into
λn P N, which says that it takes any member n ofN, which is to say that n is a natural number, as
an input. Then the output description specifies what function it turns, namely rλm P N. n`ms.
If n “ 3, it returns rλm P N. 3 ` ms, if n “ 5, it returns rλm P N. 5 ` ms. These functions in
turn have three parts. They take any member m of N, i.e. any natural number, and returns 3`m
and 5` m, respectively.

3.3 Lambda-conversion

When a function applies to an appropriate argument, you can simplify the representation.
This process is called ‘λ-conversion’ (or β-reduction, which is perhaps a more mathematically
rigorous term). Here is an example of vsmokeswM applied to an individual, John.

vsmokeswM
pJohnq “ rλx P D. 1 iff x smokes in MspJohnq

“ 1 iff John smokes in M

We are following the standard convention that the function comes to the left of the argument and
the argument is indicated by ‘p’ and ‘q’. So things like ‘pJohnqrλx P D. 1 iff x smokes in Ms’
and ‘pλx P D. 1 iff x smokes in MqrJohns’ don’t make sense. These expressions are not part of
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our metalanguage, and should never be used.
Here are some more examples, illustrating λ-conversion.

(20) a. rλx P N. x ` 5sp12q “ 5` 12 “ 17
b. rλx P N. x`5sprλy P N. y2sp3qq “ rλx P N. x`5sp32q “ rλx P N. x`5sp9q “

9` 5 “ 14

Recall that a function can return a function. Consider the following function f ´. This
function performs subtraction.

(21) f ´ “ rλn P N. rλm P N. n ´ mss

When one argument, say 3, is given, it returns:

f ´
p3q “ rλn P N. rλm P N. n ´ mssp3q “ rλm P N. 3´ ms

Here is an important convention. When two arguments follow a function, the function is applied
to the left one (= the one closer to the function) first.

f ´
p3qp2q “ rλn P N. rλm P N. n ´ mssp3qp2q “ rλm P N. 3´ msp2q “ 3´ 2 “ 1

Notice that f ´p2qp3q “ ´1, so f ´p3qp2q ‰ f ´p2qp3q.
Also remember that square brackets are used to delimit functions. Notice the following

inequality:

rλn P N. rλm P N. n ´ mssp3qp2q ‰ rλn P N. rλm P N. n ´ msp3qsp2q

The left-hand side is 1, as calculated above. The right-hand side is ´1, because:

rλn P N. rλm P N. n ´ msp3qsp2q “ rλn P N. n ´ 3sp2q “ 2´ 3 “ ´1

Here, 3 is the argument of the inner function, and 2 is the argument of the whole function. Here
we applied the inner function to 3 first, but the order of application does not change the final
output.

rλn P N. rλm P N. n ´ msp3qsp2q “ rλm P N. 2´ msp3q “ 2´ 3 “ ´1

4 Summary and Computations
To summarise, our semantics consists of the Lexicon (22) (now using the λ-notation) and
compositional rules (23).

(22) For any model M
a. vJohnwM = some individual determined by M
b. vMarywM = some individual determined by M
c. vsmokeswM

“ λx P D. 1 iff x smokes in M
d. vleftwM

“ λx P D. 1 iff x left in M

(23) a. Branching Node Rule

For any model M ,

3

A

CB

;M

“ vBwM
pvCwM

q or

3

A

CB

;M

“ vCwM
pvBwM

q
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b. Non-Branching Node Rule

For any model M ,

3

A

B

;M

“ vBwM .

It is important to realize that from these, we can now compute the meanings of any grammat-
ical constituent in the grammar. We can show this concretely by computing the meaning. As
an example, let us compute the meaning of ‘Mary left’, which has the structure in (24).

(24) S

VP

left

DP

Mary

We compute the meaning of this sentence with respect to a particular model, let’s say M3. To
simplify, let’s assume that in M3, ‘Mary’ refers to an individual c, and also that c left in the
situation described by M3. That is, we will use a model M3 such that vMarywM3 “ c and
vleftwM3pcq “ 1. Clearly, in this model, (24) should come out true. And we can verify this by
computing the denotation of the sentence as follows.
1. By theNon-BranchingNodeRule, v[DP Mary]wM3 “ vMarywM3 . Also, since vMarywM3 “ c,

we have v[DP Mary]wM3 “ c.
2. Similarly, by the Non-Branching Node Rule, v[VP left]wM3 “ vleftwM3 . Since the Lexicon

says that for any model M , vleftwM
“ λx P D. 1 iff x left in M , v[VP left]wM3 “ λx P

D. 1 iff x left in M3. (Recall that D is the set of all individuals in the model)
3. Finally, according to the Branching Node Rule,

0

(24)
8M3

“ v[VP left]wM3pv[DP Mary]wM3q

From 1. and 2., this is equivalent to:

rλx P D. 1 iff x left in M3spcq

By assumption c is a person who left in M3, so by λ-conversion, we obtain 1. So the
sentence denotes 1 in M3.

We have chosen a particular model M3 here, so we ended up with a particular truth-value. If
we didn’t know what the model looks like, we can simply end the computation with 1 iff c left
in M3, because this statement means that if c left in M3, the denotation of the sentence is 1, if
not, it is 0.
In the above computation, we started with the individual words and computed the meanings

of more complex expressions by using the compositional rules. Such a computation is called a
bottom-up computation.
Instead, we can start with the most complex expression and go down the tree towards the

terminal nodes, using the compositional rules. That will be a top-down computation. Here’s
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a demonstration for the same sentence and the same model:
0

(24)
8M3

“ v[VP left]wM3pv[DP Mary]wM3q (BNR)
“ v[VP left]wM3pvMarywM3q (NBNR)
“ v[VP left]wM3pcq (by assumption)
“ vleftwM3pcq (NBNR)
“ rλx P D. 1 iff x left in M3spcq (Lexicon)
“ 1 (λ-conversion)

In each line, we performone operation, e.g. the first line decomposes the sentence intoDP andVP
by the Branching Node Rule, the second line removes the DP-projection by the Non-Branching
Node Rule, and so on.

5 (Optional) Model Theoretic Semantics
In this optional section, we will explain how model-theoretic semantics works in some more
detail.
For the small grammar we have been discussing, a very simple model suffices. In particular,

a model M will have two parts, DM and VM . DM is called the domain of the model and is the
set of individuals in the state of affairs M represents. So DM is just a set. VM , on the other hand,
is meant to tell you what is going on in the model. We can see it as a function of the following
kind.
Recall that our grammar generates four simple sentences, e.g. ‘John smokes’. In order to

know the truth or falsity of this sentence, you need to know (i) who John is and (ii) whether that
person smokes. VM tells you both of these things.
Let us start with (i). If M is a model, then VM must be a function such that for any proper

name N , vNwM
“ VMpNq such that VMpNq P DM . In words, the denotation of a proper name

N is VMpNq, which must be some individual in DM . More concretely, let us assume that there
are three individuals, a, b and c. Suppose, furthermore, that there are three models M1, M2 and
M3 such that:

(25) a. vJohnwM1 “ VM1pJohnq “ a
b. vJohnwM2 “ VM2pJohnq “ b
c. vJohnwM3 “ VM3pJohnq “ c

This illustrates how the denotation of ‘John’ varies across situations.
Moving on to (ii), VM also tells you whether the individual referred to by ‘John’ smokes in

the situation represented by M . Specifically, VM assigns some set to the verb ‘smokes’. That is,
for any model M , we have VMpsmokesq Ď DM . For instance:

(26) a. VM1psmokesq “ t a, b, c u
b. VM2psmokesq “ t a, c u
c. VM3psmokesq “ t a, b u

For example, (26a) means that in M1, a, b and c smoke.
In the previous sections we stated the denotation of the verb ‘smokes’ as follows (where D is

actually DM):

(27) vsmokeswM
“ λx P D. 1 iff x smokes in M
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This is actually a shorthand. What x smokes in M actually means is that x is a member of the
set VMpsmokesq. That is to say, (27) is a paraphrase of (28).

(28) vsmokeswM
“ λx P DM . 1 iff x P VMpsmokesq

To summarise, a model M is made up of two things, a set of individuals DM and a function
VM that assigns values to expressions like proper names and intransitive verbs. Proper names
are given individuals as their values, and intransitive verbs are given sets of individuals as their
values.
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