
1

STRUCTURED VECTOR FILE FORMAT (TOPOLOGICAL OR

NOT) IN MIRAMON (POINTS, NODES, ARCS AND

POLYGONS)

Document authors: Abel Pau, reviewed by Xavier Pons
Initial proposal: 18-09-2014 (12-04-2014 v. 1.1)

Last modified and version: 13-03-2019. 1.6

1. Background and motivation

As MiraMon began development, Xavier Pons and Joan Masó designed and created
the formats of the topological files of MiraMon, which are four: Points, Arcs, Nodes and
Polygons.

These files have an internal computer structure that makes them suitable to
efficiently access 2D and 3D vector information. That is why they are also used to
contain vector information without topological structure. Therefore, it is important to
understand that:

1. The structured format of MiraMon may contain files with or without
explicit topological structure.

2. The format collects information about whether it contains vector
elements with known topological relationships or not (commonly known
as "spaghetti" in the case of linear elements); more on this below.

3. A MiraMon structured file may contain data imported from a file without
topology (such as a SHP or a DXF) and in this case it will be simply a
structured file, NOT a topological file.

4. A MiraMon structured file may contain data with explicit topological
structure (for example as a result of topological digitizing in MiraMon,
resulting from a topological structuring process with certain module
options such as LinArc, or resulting from an importation of a format
without topology, such as a SHP, when during that import a topology
building process was made). In this case it is a proper structured
topological file.

This document complements “APPENDIX 2. Vector formats description” of the
MiraMon help file, where the description of the structured formats is given from the
user's point of view. Reading this appendix is recommended to be familiar with
MiraMon files. It is accessible directly through the MiraMon online help link:
http://www.creaf.uab.cat/miramon/help/eng/mm32/ap2.htm

http://www.creaf.uab.cat/miramon/help/eng/mm32/ap2.htm

2

Section 2 of this document describes the common part (topological header) in all the
files and the specific part for each type of file. Section 3 considers factors relating to
arcs and polygons, and in section 4 a complex polygon case is illustrated.

It is important to understand that, unlike other models of topological structure, in which
the arcs can only be used to cycle a single layer of polygons, in the MiraMon model a
single layer of arcs can be used to cycle several layers of polygons (a layer of
administrative limits can server to cycle a layer of municipalities, a layer of counties,
etc); of course, in each layer of polygons, only those arcs needed to cycle the
corresponding polygons are used. This causes that the classical topological information
about which polygon is on the right or on the left of each arc is not in the layer of arcs,
but in the polygon layer itself.

2. Description of the MiraMon structured vector file format

A MiraMon vector layer, whether it contains Points, Arcs, Nodes or Polygons, consists
of several files. The main files are 3:

 A file that contains the graphical information (geometric and, if it is the case,
topological), with coordinates, space dependencies, etc, and that have
a .pnt, .arc, .nod and .pol extension. This document explains the format of the
files corresponding to the part of the graphic elements.

 A main table of user attributes, which is in DBF format, or in extended DBF
format if more than 254 fields are required, if fields of more than 254 characters
are needed, etc. The DBF format is a well-known and documented format, while
the documentation of the extended DBF format can also be found in a technical
document created by Xavier Pons and available on the MiraMon website.
The .dbf extension is preceded by the letters 't', 'a', 'n' or 'p', depending on
whether it is a DBF relative to a layer of point, arcs, nodes or polygons. The rest
of the name is the same as that of the graphic file and is stored in the same
directory.

 A text file, in INI Windows format, described in the help section of MiraMon,
contains the layer metadata and also describes both the default (optional)
symbolization and the possible relationships of the main table with other tables
(be DBF or others, such as tables or queries in Access files, large database
managers such as SQL Server, Oracle, etc). The extension for this file is .rel,
and preceded by the letters 't', 'a', 'n' or 'p', in relation with a REL relative to a
layer of points, arcs, nodes or polygons. The rest of the name is the same as
that of the graphic file and is stored in the same directory.

Internally the points, nodes, arcs and polygons are indexed from 0 (the first element is
the 0, the second one is de 1, etc). This numbering provides what is called a graphic
identifier. It is never written in the binary file and is given by the order in which the
elements in the file are written. Nevertheless, from the user point of view, MiraMon
usually shows a numbering from 1, which seems more natural. For example, when in a
query by location MiraMon the text "Graphic element 3 of 8" is shown, internally the
element corresponds to the graphic identifier 2.

It must be kept in mind that the order in which the byte bits are written always follows
the Intel convention, not the Motorola one. In this document the name “double” refers to
a 64-bit real number (termed double in the C programming language); doubles have
enough numerical precision and range to store the coordinates used in geographic
information.

3

2.1.- Common structured headers to all files

2.1.1.- Header common to all structured vector files

All structured vector files in MiraMon have a common part in the beginning: the
topological header. This header has a size of 48 bytes. The structure and content of
the rest of the file depends on whether it contains points, arcs, nodes or polygons.

Description of the 48 bytes header:

 Topo Header
(TH)

0 3 File type (PNT, ARC, NOD, POL)

3 2 Version (“ 0”-“99”)

5 1 “.”

6 1 Subversion (“0”-“9”)

7 1 Flag (1 byte)

8 8 Bounding box: Minimum X

16 8 Bounding box: Maximum X

24 8 Bounding box: Minimum Y

32 8 Bounding box: Maximum Y

40 4 Element count

44 4 Reserved

File type, Version, Subversion

A chain consisting of 3 characters declaring the file type (PNT, NOD, ARC or POL and
that matches the file extension) and 4 characters that denote the format version, with
a decimal figure; these 4 characters align to the right.

As of April 15, 1997, an initial version 1.1 was designed that faithfully keeps downward
compatibility with the initial 1.0 version. For example, a start type is: "PNT 1.1".
If one day existed a 12.3 version it would say: "PNT12.3".

Flag

The byte flag can define up to 8 logical properties in the respective bits (True: 1 or
False: 0) independent of the file. The following bits are defined at the date of this
document.

4

Bits valid for PNT, ARC, NOD and POL files:

bit 0

Indicates that the topology has been verified by an application considered reliable. A
value of 1 informs that the file has been generated with a MiraMon application that
guarantees that the indicated topology is correct, or that the file has been imported
from another format where topological relationships were present and considered
reliable.

bit 1

Indicates that the file has been generated with a MiraMon application. Note that this bit
can be set to 1 even if the file does NOT contain topology at this time.

Bit only valid for PNT, ARC and POL files (in NOD files it has to be 0 in this version):

bit 2

For PNT: A value labeled as 1 indicates that the point file comes from a POL file via the
MiraMon support application (MSA) “Etiqueta” ("Label") and that has a label on polygon
0. The MiraMon MSA "AtriTop" queries this to inherit or not attributes of the polygon 0.
When in doubt write a 0 in the bit.

For ARC: A value of 1 indicates that the arc file contains only edges of polygons. This
means that a total cycling process (in which all arcs are involved) has been possible,
which guarantees that the file does not contain either end nodes or arcs with the same
polygon on both sides (dumbbells). If in doubt, write a 0 in the bit.

For POL: A value 1 indicates that the file has been correctly tagged with the MiraMon
"AtriPol" or "AtriTop" MSA, or with another MiraMon MSA such as "RasTop".
Specifically this means:

 There is no label in polygon 0.

 Does not present incoherently re-labeled polygons.

 There are no polygons without labels.

In case of doubt or in the case NOD write a 0 in the bit.

Bit only valid for PNT and POL files:

bit 3

For PNT: A value of 1 indicates that the point file comes from a POL file via the
MiraMon “Etiqueta” ("Label") MSA and does not have a label on polygon 0.

For POL: A value of 1 indicates that the polygon file contains groups (or regions) in
polygons different from the polygon zero. If topology is not verified bit 0 must be turned
off.

When in doubt, write a 0 in the bit.

5

bit 4

Only for PNT and ARC: The file presents 3D coordinates. POL and NOD files can be
3D, but their Z coordinates are always contained in the corresponding ARC file.

bit 5

Applicable to polygons, a value of 1 means that the Arcs that intervene in the cycling
(unused arcs are allowed) are only used once (with the same restrictions as a VEC of
polygons, but supports holes and groups). It cannot be combined with bit 0 since this
last flag would imply that the arcs would be used twice (at least against the polygon
zero) and that overlays would be prohibited, situations that we want to allow in the case
of the explicit polygons. See also the "Note on explicit polygons" at the end of the
document.

bit 6

For POL: A value of 1 indicates that the polygon file contains groups (or regions) in the
polygon zero. This can be interpreted as some polygon different from polygon zero has
one or more holes inside. This bit together with bit 3 allows to know all the information
regarding groups in a polygon file. If topology is not verified bit 0 must be turned off.

When in doubt, write a 0 in the bit.

Bounding box

Indicates the total bounding area in the order minX, maxX, minY, maxY, as in the
documentation REL file (all the bounding boxes of the binary files respect this
agreement). A double (real 64-bit) value is used for each member of the bounding box.

Count

Indicates the total number of entities in the file.

Reserved

They are reserved for future extensions.

2.1.2.- Heights for the 3D file case.

In the case of PNT and ARC, if the file is 3D, we will have two sections to define height.

Section Z.
Section Z is divided into three sections:

Subsection ZH. 32-byte header that is defined below.

 Z Header (ZH)

ZH 16 Reserved

ZH+4 8 Bounding box: Minimum Z

6

ZH+12 8 Bounding box: Maximum Z

 ZD

Reserved

16 bytes that are reserved for future extensions. Filled with 0.

Bounding Box: Minimum Z

Minimum value of all z in the file. One double is used.

Bounding Box: Maximum Z

Maximum value of all the z in the file. One double is used.

Subsections ZD.

For EACH ITEM (point or arc) a 24-byte header is written that has the following
structure.

 Z Description
(ZD)

ZD 8 Bounding box: Minimum Z

ZD+8 8 Bounding box: Maximum Z

ZD+16 4 Z count

ZD+20 4 Offset of 0th ZL

 ZL

Bounding box: Minimum Z

Minimum value of all the Z of the point.

Bounding box: Maximum Z

Maximum value of all the Z of the point.

7

Z count

In case of PNT: Number of point heights (value expressed as a negative
number). The number of heights is always a negative or zero value in point files
and indicates the number of point heights. In the arcs section we describe the
meaning of a "Z count" with a positive value (which in points does not make
sense).

In the case of ARC: Number of arc heights. If the number of heights is
positive this indicates the number of heights for each vertex of the arc. First all
the heights of the vertex 0, then those of the 1, etc are written. If the number of
heights is negative this indicates the number of arc heights, understanding
that all the vertices have the same height or heights (in the case of a countour
line, for example). Use -1.0E+300 as no data if one of the heights of any vertex
is not known.

Example:
A 4-vertices arc with number of heights 2: the heights of the first vertex will be
written, then those of the second, then those of the third vertex, and finally
those of the fourth. Total: 4x2 = 8 heights.

An arc of 4 vertices with number of heights -2: the four heights of the arc are
written. Each vertex will have these four heights in the same order in all the
vertices.

Offset of 0th ZL

Indicates the offset where the first height is written. This is only relevant if the
number of heights of this point is different from zero.

Subsections ZL.
The ZL section contains a list of heights of each point or arc.

 Z List (ZL)

ZL 8 Z Coordinate

 ...

Z Coordinate

PNT case: Height of the point that is represented. One double is used.

ARC case: Height of the indicated vertex of the arc that is represented or of the

whole arc. One double is used.

2.2.- Points file .PNT

The point file format (PNT) contains two sections (three in the 3D case) and are
described below:

Section TH. Common header in all files (48 bytes), previously described. The "File
type" field corresponds to the "PNT" string.

8

Section CL. For each POINT the coordinates are written (16 bytes).
The first point is written in offset 48, which is where the header always ends.
Description of the 16 bytes:

 Coordinate List
(CL)

CL 8 X Coordinate

CL+8 8 Y Coordinate

 ...

X Coordinate

X coordinate of the point that is represented. One double is used.

Y Coordinate

Y coordinate of the represented point. One double is used.

When flag 4 of the "Topological header common to all files" section is activated (1) a

section 3, described below, must exist.

Section Z (applies only in case the file is 3D).

The description of this section corresponds to section Z of the section "2.1.2.- Height
for the case of 3D file".

2.3 .ARC files

The arc file format (ARC) contains three sections (four in the 3D case) described below:

Section TH. Common header in all files (48 bytes), previously described. The "File
type" field corresponds to the "ARC" string.

Sections AH. For each ARC, a 56-byte header is written.
The first header is written in offset 48, which is where the common TH header is always
finished. The rest of AH is in the offset 48+56*id_arc.
Description of the 56 bytes of the header of an arc:

 Arc Header
(AH)

AH 8 Bounding box: Minimum X

AH+8 8 Bounding box: Maximum X

9

AH+16 8 Bounding box: Minimum Y

AH+24 8 Bounding box: Maximum Y

AH+32 4 Element count

AH+36 4 Offset of i-th AL

AH+40 4 Fist node id

AH+44 4 Last node id

AH+48 8 Length

 (AL)

Bounding box

Indicates the bounding box of the arc described in this header in the order minX, maxX,
minY, maxY. One double is used for each member of the bounding box.

Element count

Indicates the total number of arc vertices described in this header. One
unsigned __int32 is used.

Offset of i-th AL

Offset of the first arc vertex described in this header. One __int32 is used.

First node id

Initial node index of the arc that refers to the list of nodes in the node file associated
with the arc file that is described. One unsigned __int32 is used.

Last node id

Index of the final node of the arc that refers to the list of nodes in the node file
associated with the arc file that is described. One unsigned __int32 is used.

Length

Length of the arc that is described, in the same reference system as the coordinates.
One double is used.

10

AL

Generally, immediately after the succession of AH it would be appropriate for AL
sections to start appearing, but it is not necessary since each AL section can be found
from the offset indicated in the corresponding AH section.

Section AL.
List of arc coordinates. These are the coordinates corresponding to each individual arc
from the number of arc vertices defined in the 32nd byte of the corresponding AH and
of the offset defined in the 36th byte of the corresponding AH.

For each VERTEX of the arc, its coordinates (16 bytes) are written.
Description of the 16 bytes:

 Arc List (AL)

AL 8 X Coordinate

AL+8 8 Y Coordinate

 ...

X Coordinate

X coordinate of the vertex that is represented. One double is used.

Y Coordinate

Y coordinate of the represented vertex. One double is used.

When flag 4 of the "Topological header common to all files" section is on (1), a Section

Z is found, described below.

Section Z (only applies in case the file is 3D)
The description of this section corresponds to section 1 of the section "2.1.2.- Height
for the case of 3D file".

2.4.- .NOD node file

The format of node files (NOD) contains three sections and are described below:

Section TH. Common header in all files (48 bytes), previously described. The "File
type" field corresponds to the "NOD" string.

Sections NH. For each NODE, an 8-byte header is written.
The first header is written in offset 48, where the common TH header is always finished.
The rest of NH are in the offset 48+8*id_nod.

11

Description of the 8 bytes node header:

 Node Header
(NH)

NH 2 Arcs count

NH+2 1 Node type

NH+3 1 Reserved

NH+4 4 Offset of i-th NL

 (NL)

Arcs count

Indicates the total number of arcs that converge in the described node. An unsigned
short int (16-bit) is used.

Node type

Indicates the node type. It is used from version 1.1. Possible types of nodes are: typical
node (Node type=0), line node (Node type=1), ring node (Node type=2) and end node
(Node type=3). An unsigned char (8-bit) is used.

Reserved

It remains reserved for future extensions. A byte is used and takes the value 0 at the
moment.

Offset of i-th NL

Offset the first of the arcs that converge to the described node. One __int32 is used.
Offsets must be aligned to a multiple of 8 bytes. Thus, a ring node (Arcs count=1 +
reserved) occupies the same as a line node (Arcs count=2 and no filling is required).
For this reason the transformation of a ring node to a line node or vice versa does not
alter the offsets of the file.

NL

Generally, immediately after the succession of NH, NL sections begin to appear, but it
is not necessary since each NL section can be found from the offset indicated in the
corresponding NH section.

Sections NL.
List of index arcs that connect to different nodes. Access is granted to each one from
the offset of i-th NL.

For each NODE, arcs’ indexes that converge to the described node are written.

12

Description of the 4 bytes:

 Node List (NL)

NL 4 Arc id

 ...

Arc id

Index of the arc in the arc file that converges to the described node. One unsigned

__int32 is used.

2.5. - Polygon file .POL

The polygon file format (POL) contains four sections, described below:

Section TH. Common header in all files (48 bytes), previously described. The "File
type" field corresponds to the "POL" string.

Sections PS. They contain, for each ARC, the indexes of the polygons being on the left
and on the right (in this order) of the described arc. The topological information of the
first arc is written in offset 48, which is where the common header is always finished.
Note, as explained in the introduction, that a second layer of polygons based on the
same layer of arcs will refer to other arcs, specifically those that are needed to cycle
the polygons of the second layer.

Description of the 8 bytes:

 Polygon side (PS)

PS 4 Left side polygon

PS +4 4 Right side polygon

 ...

 PH

Left side polygon

Polygon located on the left of the described arc. One unsigned __int32 is used.

Right side polygon

Polygon located on the right of the described arc. One unsigned __int32 is used.

The arcs that do not participate in the cycling will have the value at "0xFFFFFFFF"
which is the maximum value for an unsigned __int32.

Sections PH. For each POLYGON, a 64-byte header is written. The first section is
foundin 48+8*n_arc and the other 48+8*n_arc+64*id_pol.

13

Description of the 64 bytes of the head of an arc:

 Polygon Header
(PH)

PH 8 Bounding box: Minimum X

PH+8 8 Bounding box: Maximum X

PH+16 8 Bounding box: Minimum Y

PH+24 8 Bounding box: Maximum Y

PH+32 4 Arcs count

PH+36 4 Arcs in external rings count

PH+40 4 Ring count

PH+44 4 Offset of i-th PL

PH+48 8 Perimeter

PH+56 8 Area

Bounding box

Indicates the bounding box of the polygon described in this header in the order minX,
maxX, minY, maxY. A double is used for each member of the bounding box.

Arcs count

Indicates the total number of arcs that constitute the polygon described in this header.
One unsigned __int32 is used.

Arcs in external rings count

Indicates the total number of outer arcs that constitute the polygon described in this
header. If "0xFFFFFFFF" is indicated, it means that anything is known about which
arcs are defining internal rings (internal borders) and which are external rings; in this
case the bit 0 of the corresponding element from the Polygon Arc List VFG (see the
PAL section that follows) is always 0. One unsigned __int32 is used.

14

Ring count

A polypolygon is a polygonal entity that can be formed by more than one ring. This set
of bytes indicates the number of polypolygon rings described in this header. In case of
polypoligones with holes, the holes count like inner rings of the polypolygon. One
unsigned __int32 is used.

Offset of i-th PL

Offset to the first arc of the polygon described in this header. It is advised to use
multiples of 8. One __int32 is used.

Perimeter

Perimeter of the polygon described in this header, in the same reference system as the
coordinates. One double is used.

Area node

Area of the polygon described in this header, in the same reference system as the
coordinates. One double is used.

Sections PAL. For each POLYPOLYGON the arcs that compose it (5 bytes) are
written.

Description of the 5 bytes:

 Polygon Arc List (PAL)

PAL 1 VFG

PAL+8 4 Arc id

 ...
VFG

The byte VFG (standing for “Vora (Edge) – Fi (End) – Gir (Flip)”) is used to determine
characteristics of the arc that composes the polygon. When a bit is set (value 1) the
property it defines is considered to be TRUE; otherwise, FALSE.

The following bits are defined at the date of this document.

bit 0 (V): Indicates whether the arc is part of an outer ring (value 1) or of an inner ring
(0) of the polypolygon.

bit 1 (F): Indicates whether the current arc ends the ring (value 1) or if it is necessary to
bind with another arc to close the ring (value 0). Therefore, if the number of 1’s (value 1)
of a polypolygon is counted, this coincides with the number of rings that make up the
polypolygon.

bit 2 (G): It can have two interpretations:

a) This boolean indicates whether the polygon in question is in the left side
(value 1) or in the right side (value 0) of the arc, according to the vertices
drawn direction in the ARC file.

15

b) In the case of constructing explicit polygons (non-topological), this bit
indicates whether the plot order of the vertices written in the arc file must be
flipped (value 1) to write this ring fragment in the sequence of coordinates
that describe the entire ring explicitly, or if the order has not to be flipped
(value 0); this is due to the fact that in explicit polygons rings must be
constructed making the polygon itself remaining to the right, which allows
the outer rings to be automatically calculated with a positive area and the
inner rings with a negative area, and to be constructed in this manner it may
be necessary to have to flip (invert) the order of the sequence of the vertices.

NOTE: The polygon always stands to the right of the succession of coordinates that
describe the ring explicitly. This criterion coincides with the criterion of ArcInfo. This
means that the outer rings cycle clockwise and the internal rings counterclockwise.

Arc id

Index of the arc from the arcs file which is the base of this polygon file.

2.6 Format summary for all file types

Below is a summary table of all formats of MiraMon structured vector files.

 PNT ARC NOD POL

TH 48 TH 48 TH 48 TH 48

CL 16 AH 56 NH 8 PS 8

CL ... AH ... NL 4 PS ...

ZH 20 AL 16 NL ... PH 64

ZD 24 AL ... PH ...

ZD ... ZH 20 PAL 5

ZL 8 ZD 24 PAL ...

ZL ... ZD ...

Z
L

8

 ZL ...

3. Some considerations about the files of Arcs and polygons

 There is always a polygon, which is called polygon zero (or universal polygon).
This makes sense in a file with guaranteed topology, but not in a file of explicit
polygons. The polygon zero is composed of all arcs that form rings of all other
polygons in the file, provided these arcs are not in contact with any other
polygon. For example, in an archipelago in which the sea was the polygon zero,
the different inner rings would be the outer edges of the islands of the
archipelago. In the case of a file composed of a single polygon with a hole (not
with another polygon within the hole) the polygon zero has as arcs all the arcs
of the file. When the zero polygon does not have a topological meaning
(typically in layers of explicit polygons), it consists of zero arcs.

16

 In the case of being an explicit polygon file, the polygon zero is documented
with the header filled with 0 and has no PH or PAL section.

 Group files contain polygons grouped into groups of polygons where each

group has a polygon ID and a single PH section.

 The order in which the arcs that constitute a polygon is written (polypolygon) is:
1. outer ring
2. inner rings contained in the previous outer ring
3. outer ring
4. inner rings contained in the previous outer ring
5. ...

 Each inner edge counts on the total count of the rings.

 The perimeter of the polygon zero is the sum of lengths of all edges and has a

positive sign.

 The area of the polygon zero is the sum of the areas of all polygons and with a

forced negative sign.

Note on explicit polygons: A file of explicit polygons, whether of groups or not,
should be defined as a POL file with the following particulars:

o In the flag of the section TH, bit 0 is not set and bit 5 is set. Bit 3 of this
flag has the value as is convenient.

o The section PS (of the polygons of each side of each arc) contains the
graphic identifier of the polygon on one side and the polygon zero on the
other, depending on the polygon being in the right or left side.

o Polygon 0 is constituted by 0 arcs and has no PAL section.

A file of NON-TOPOLOGICAL groups (which support overlays) must be defined as
a POL file with the following particulars:

 In the flag of the section TH, bit 0 is not set and bit 3 is set.

 The PS section (of the polygons of each side of each arc) is filled with
0xFFFFFFFF (maximum value of type unsigned __int32 value).

 The polygon 0 is formed by 0 arcs and does not contain a PAL section.

4. Illustrative example of a complex polygon

The following example illustrates one of the most complex cases: two polygons, the
first with two holes and three enclaves, and the second without a hole and one enclave.

17

The polygon on the left part of the example (blue) is the index 1 polygon, because
polygon zero "cannot be seen" (it is not painted). The polygon on the right part is the
one with index 2. The index of the arcs is clearly seen.

In order to clarify this example, we describe some interesting questions to highlight:

 The number of elements in this polypolygon is 2, not 6 (which is the number of
rings). This is specified in the header of the polygon file described in the section
TH, specifically in byte 40 (and occupy 4 bytes).

 The byte 7 (flag) header of the polygon file described in the section PH will have
set, at least, bit 3.

 The section PS, which determines which polygon is in the left and right side,
looks like this: 01-10-10-01-01-01-01-02-02 (hyphens are only visual aids).

 In the section PH (headers of the polygons) it should be noted that the header
of polygon 1 will have 6 Arcs count, 4 Arcs in external rings count and 6
Ring count, while the head of polygon 2 will have 2 Arcs count, 2 Arcs in
external rings count and 2 Ring count.

 Finally, the section PAL will have the following aspect (VFG is shown as a set of
three bits):

0: 1-1-0, 0
 0-1-1, 1 (It must be flipped so that the direction of a hole is counterclockwise)
 0-1-1, 2 (It must be flipped so that the direction of a hole is counterclockwise)
 1-1-0, 3
 1-1-0, 4
 1-1-0, 5
1: 1-1-0, 6
 1-1-0, 7

