Appeared in the Journal on Software and Systems Modeling, 2(3), 153—163, 2003

Systematic Stereotype Usage

Colin Atkinson', Thomas Kiihne?, and Brian Henderson-Sellers3

! University of Mannheim, Mannheim, Germany
colin.atkinson@ieee.org
2 Darmstadt University of Technology, Darmstadt, Germany
kuehne@informatik.tu-darmstadt.de
3 University of Technology, Sydney, Australia
brian@it.uts.edu.au

Abstract. As one of the UML’s main extension mechanisms, stereoty-
pes play a crucial role in the UML’s ability to serve a wide and growing
base of users. However, the precise meaning of stereotypes and their in-
tended mode of use has never been entirely clear and has even generated
much debate among experts. Two basic ways of using UML stereotypes
have been observed in practice: one to support the classification of classes
as a means of emulating metamodel extensions, the other to support the
classification of objects as a means of assigning them certain properties.
In this paper we analyze these two recognized stereotype usage scenarios
and explain the rationale for explicitly identifying a third form of usage
scenario. We propose some notational concepts which could be used to
explicitly distinguish the three usage scenarios and provide heuristics as
to when each should be used. Finally, we conclude by proposing enhan-
cements to the UML which could support all three forms cleanly and
concisely.

Keywords UML extension mechanism, stereotypes, classification, transitive
properties.

1 Introduction

In the context of object-oriented modeling, the notion of stereotypes was first
introduced by Rebecca Wirfs-Brock [1] as a means of classifying objects ac-
cording to their responsibilities within a system. In other words, in addition
to classifying objects by a natural domain specific type (e.g., ATMKeypad), her
idea was to classify objects according to the way in which they contribute to
the system’s implementation, such as “interface object” or “coordinator object”
etc. The categories for this secondary classification are drawn from the roles the
objects play within the system (see Fig. 1) and are thus design/implementation-
oriented. Consequently, while names of natural types (i.e., class names) would
typically be derived from the problem domain the names of stereotypes would ty-
pically be derived from the solution structure. Thus, stereotypes can essentially
be understood as a way of “branding” objects of a particular primary (natural)

type with additional design-focused roles or properties. Since Wirfs-Brock used
stereotypes primarily for explanation purposes, she did not map the stereotype
concept to a specific mechanism such as multiple inheritance.

This ability to add additional

classification information to a con- —
Account o

cept in a concise and straightfor- 8
ward way made Wirfs-Brock’s ste- % 3
reotype mechanism ideal for the de- 5 e 5
signers of the UML who were loo- § Person 0 &
king for a way of allowing users to £ %
add additional modeling concepts & —— g

Keypad 0. .

to the UML without having to ex-
tend the metamodel directly. Since
the introduction of the UML, the-
refore, stereotypes have primarily Fig. 1. Secondary Classification
become known as the “lightweight”

extension mechanism of the UML, allowing users to tailor the language to their
own needs without having to directly deal with the UML metamodel. The choi-
ce of stereotypes as a (restricted) language extension mechanism was not only
motivated by usability concerns, however, but also as a concession to many tool
vendors who at the time were unable to support direct metamodel specialization.

In the sense that it allows model elements to be “branded” with additional
classification information, the stereotype mechanism defined in the UML stan-
dard [2] is entirely faithful to the original concept of Wirfs-Brock. However, the
“official” UML extension mechanism differs from the original usage of stereoty-
pes in one very important way. Whereas Wirfs-Brock used stereotypes to brand
objects, the UML standard defines stereotypes as a way of branding classes. In
the terminology of the UML’s four level model hierarchy, the original stereoty-
pe mechanism was used to brand elements at the instance level, while the UML
standard presents stereotypes as a means for branding elements at the type level.

In the previous paragraph, we were very careful to refer to the “official” de-
finition within the UML standard, because in practice many UML users have
applied the UML stereotype mechanism not in the way defined by the UML
standard but rather in the way intended by Wirfs-Brock, that is, as a way to
brand instances. Thus, in practice one finds that users of the UML use stereoty-
pes in both styles—to brand types and to brand instances. It seems that the the
notational economy of stereotypes makes them an attractive alternative to the
traditional (M;-level) inheritance mechanism as a way of branding an object,
even when the latter captures the real-world scenario more accurately. One can
therefore observe in the literature a large number of stereotypes applied in a
very loose style. The result has been an intense debate among researchers and
experts about how stereotypes should and should not be used, e.g., whether the
original Wirfs-Brock usage should be considered valid in the context of UML [3].

It is overly simplistic, however, to assume that the two aforementioned basic
usage scenarios span the full space of options. On closer analysis, it turns out

that many real world scenarios are not naturally represented by either of these
usage styles, but that a third interpretation that simultaneously brands a class
and all its objects is the most appropriate. In other words, often, properties of
real world concepts naturally imply both forms of classification at the same time.

Our goal in this paper is to investigate this phenomenon by fully characteri-
zing the three forms of stereotype usage scenarios and describing a strategy for
working out which form should be used for a particular real-world scenario. In
the following section, we first analyze and give examples of the two basic usage
scenarios and then elaborate on the third kind. We subsequently equip modelers
with a litmus test to identify which kind of stereotype they are facing, provide
guidelines as to when a certain form should be used, propose notational mea-
sures to make the intent of a particular stereotype explicit, and finally outline
how the three kinds could be most naturally accommodated in a clean multilevel
approach.

2 Generally Recognized Stereotype Usage Scenarios

In this section, we illuminate and discuss the two main types of stereotype usage
scenarios that have been recognized and debated in the literature [3]. Then,
we introduce the third form, which—although not explicitly recognized as such
in the literature to date—is possibly one of most common real world modeling
scenarios.

When discussing how stereotypes are used in practice, particularly when ana-
lyzing examples of stereotype applications, it is important to bear in mind that
the original intent of the modeler can never be known with absolute certainty.
There is always an element of uncertainty in our interpretations of what the
modeler originally had in mind. This can be regarded as being both a strength
and a weakness of stereotypes in the UML. It is a strength because it means
that users are able to exploit stereotypes without getting bogged down in de-
tailed semantic issues, but it is a weakness because if the modeler had a clear
meaning in mind this knowledge is lost. Consequently, in this and the following
section, when we classify stereotype usage scenarios we do so on the basis of our
interpretation of the real world situation that the modeler is trying to capture.

2.1 Type Classification
The UML 1.4 specification states that:

A stereotype is, in effect, a new class of metamodel element that is
introduced at modeling time [2] (page 3-33).

Hence, the motivation for the use of stereotypes is essentially to extend the
standard modeling vocabulary offered by the UML by facilitating the additional
classification of types. The mechanism by which this is achieved within UML 1.4
is described as—

. a way of defining virtual subtypes of UML metaclasses with new
metaattributes and additional semantics [2] (page 2-79).

In other words, a new type of modeling element becomes

«commentedClasss available that users can make use of at the M; level. Ac-

Worker cording to this definition, with the exception of “redefining

{commenter =Bob} | stereotypes” [4], stereotyped elements behave as if they were

instances of the base modeling element. Thus, stereotyping

of this kind provides a way of branding types so that they

Fig.2. Official can be associated with special semantics. If one attaches a

stereotype use stereotype (e.g., <commentedClass>) to a class (e.g., Wor-

ker), (see Fig. 2) for example, the effect is the creation of a

(virtual) subclass of the Ma-level metaclass Class (see Fig. 3). The stereotyped
class (Worker) is then considered to be an instance of this virtual subclass.

Thus, in our example, the stereotype <«com-

mentedClass> brands Worker rather than its in-

MZ stances. This becomes most evident when consi-
dering stereotypes such as «abstract> or <inter-

face> which unambiguously refer to the classes
CommentedClass they stereotype, since there are no direct instan-
commenter - String ces of abstract classes or interfaces. The UML

standard contains several examples of this “of-
ficial” use of stereotypes amongst the so called

M “standard elements” [2]. Standard Elements are
1 Worker predefined constraints, stereotypes and tagged va-
@ lues that augment the UML metamodel with ad-

ditional “out of the box” concepts. For instan-
ce, the UML has a standard stereotype <frame-
work> that is used to brand packages that con-
tains model elements specifying a reusable archi-
tecture for all or part of a system. Similarly Fon-
toura et al. define stereotypes <application> and <framework> which brand
elements as belonging to a specific application or to a generic framework [5].
Clearly, the properties of an instance at run-time are not influenced by whether
their classifier originated from generic framework artifacts or was introduced as
part of the application-specific customization of the framework.

Fig. 3. Effect of stereotype
on metamodel

Tagged Values Tagged values are intended to be used in tandem with stereo-
types as a means of assigning values to user types. They are a way to supply
additional information along with the branding (see Fig. 2, specifying the com-
menter). Tag definitions correspond to (meta-)attributes, defining what type of
value can be assigned to a type, and tagged values actually define the value (see
Fig. 3). Thus, tag definitions essentially correspond to attributes of (virtual)
metaclasses, while tagged values correspond to slots of user types. From version
1.4 of the UML, tag definitions should be used in conjunction with stereotypes
only, which reinforces the model of a stereotype as defining a virtual metaclass,
and a stereotyped element as representing an M;-level type.

«civilServant»

EmergencyWorker
«civilServant» «civilServant» «civilServant» Football
Professor Policeman Fireman ootballer
: N ; :
«instamceOf» «instamceOf» «instanceOf» «instaceO»
Bob:Professor Ben:Policeman Sam:Fireman John:Footballer

Fig. 4. Instance Classification with Stereotypes

2.2 Instance Classification

The previous section described the “official” purpose of stereotypes as defined in
the UML standard. As such, this has been characterized by some authors as the
“correct” way of using stereotypes. However, there are numerous practical ex-
amples of stereotype usage in the UML literature where the only purpose of the
stereotype is to classify objects rather than to classify classes. When used in this
way, stereotypes effectively serve as a shorthand for regular inheritance between
classifiers at the M; level. For example, Conallen uses <Applet> to stereotype
a class OnlineGame [6] (page 169). It seems obvious that instances of OnlineGame
should be considered to be applets, whereas OnlineGame itself is simply an ordi-
nary class. An alternative way to obtain the assumed modeling scenario would
therefore have been to make OnlineGame a subclass of an M;-level superclass Ap-
plet. Note that the JAvA AWT library does exactly this and provides Applet as a
class from which to inherit. After all, only the instances, the executable applets,
need to have certain features, which is why these are defined by their classes (or
superclasses). The classes themselves are not distinguishable from other classes
in any reasonable way, though. Therefore, the intent of stereotyping a class as
an <Applet> is to brand the instances rather than the class itself.

The use of stereotypes for instance classification is also commonly found
where there is a desire to brand objects as playing a particular role in a system.
Design pattern roles (e.g., Observer) played by domain classes are a frequent
example, but more application-specific examples also abound.

Fig. 4 illustrates a small example from the domain of pay role management.
In order to pay the appropriate salary to workers, taking into account tax de-
ductions and pension schemes, it is necessary to keep a model of the different
kinds of professions and which individuals belong to which professions. Fig. 4 il-
lustrates four different kinds of professions and models four different individuals
belonging to each of the professions. It also indicates that three of the professi-
ons also convey the status of being a “civil servant” on the individuals serving
in that profession. In Germany this is a particularly important distinction since
different tax and pension rules apply to civil servants with respect to other wor-

CivilServant

1

EmergencyWorker
Professor Policeman Fireman Footballer
A A !
«instamceOf» «instal%]ceof» «instar;lceof» «instar%meOf»
z i i |
Bob:Professor Ben:PoliceMan Sam:Fireman John:Footballer

Fig. 5. Instance Classification using Superclasses

kers. Thus, the diagram explicitly captures the fact that three of the professions
constitute civil servants while one (Footballer) does not.

In this example, the <civilServant> stereotype is essentially being used to
define an additional property which certain workers exhibit within German so-
ciety. Similar uses of stereotypes can be found in many domain-specific UML
models. However, when used in this style the stereotype is essentially serving as
a short hand way of defining an inheritance relationship.

The domain knowledge captured by Fig. 4 is also captured in Fig. 5 but
using regular inheritance rather than stereotypes. In fact, it is the more appro-
priate version, since the individuals (such as Bob, Ben, etc.) are civil servants
and not the professions (such as Professor, PoliceMan, etc.). If a shorthand way
of expressing such a modeling scenario is to be used then—instead of using
stereotypes—one could use angled brackets (e.g., <CivilServant>) instead of
guillemets (<civilServant>) in the class compartment as proposed in [7].

Yet, without literally interpreting the UML standard users merely assume
that they can (wrongly) use stereotypes as depicted in Fig. 4. It is easy to see,
though, that such attempts to capture the nature of instances simply cannot
work [8], since instantiation is not transitive. To illustrate this, let’s assume that
the stereotype <civilServant> defines a tagged value “pension” to be associated
with stereotyped elements with values “normal”, “super”, etc. In our example
(see Fig. 4), the tagged value (e.g., “{pension = normal}”) would be attached
to Professor and not to Bob. Such class—as opposed to instance—features, only
make sense if one wants to introduce profession types, such as BlueCollarProfession
and WhiteCollarProfession. These could be modeled as stereotypes to be used for
Professor etc. Useful tagged values (e.g., entryLevelQualificationRequired) could
then be defined and would correctly apply to the classes and not to the instances.

It is sometimes argued that traditional instance classification by using inheri-
tance is not powerful enough to express certain advanced semantic properties [9].
For instance, it is argued that the quality of being a clock (e.g., an active notion
of ticking) could only be captured with a stereotype so that a tool could generate
appropriate code accordingly. This special instance behavior cannot be achieved
by using a superclass Clock. However, this is an artificial result of the different
levels of support given to stereotypes and subtyping by UML tools. Stereotypes
do not inherently provide any better support for capturing such semantics. If a
tool can exploit the existence of a certain stereotype to attach special seman-
tics to modeling elements, it could just as well exploit the fact that the model
element is a subtype of a certain special supertype (e.g., Clock).

We conclude this section by observing that even some of the “standard ele-
ments” stereotypes defined in the UML specification may at first sight also
be interpreted as serving to support instance classification. Take the <parame-
ter> stereotype, for example. This is applied to associations to brand them as
being of a temporary nature. However, the property of “temporariness” clearly
applies primarily to the instances of associations—the links—rather than to the
associations themselves. However, it seems that the association itself may also
be distinguished from other purely structural, non temporary, associations. The
next section puts the spotlight on exactly this issue.

2.3 Transitive Classification

In the previous two sections, we identified two commonly observed ways of using
stereotypes in practice: one “official” way that conforms to the UML standard
(i.e., type classification, such as <interface>) and one “unofficial” way that does
not conform to the standard way (i.e., instance classification, such as <civilSer-
vant>) and is thus strictly speaking incorrect. In line with the current literature
we have until now implied that these are the only two options.

However, as hinted at by the <parameter> stereotype this is something of
an over simplification. In describing the <parameter> stereotype, we pointed
out that it is primarily intended as a way of branding instances, but also left
open the question as to whether its also makes sense to think of the type (the
association itself) as being branded by this stereotype.

In general, we make the following observations about the problem of mapping
real world scenarios to the classification forms identified in the previous sections:

— There is no published systematic procedure to work out whether type clas-
sification or instance classification is the best match.
— Often both forms of classification apply.

The «parameters example is a good case in point. Clearly, this scenario includes
instance classification, since it is ultimately the links which exhibit a temporal
property. But it is also the case that an association stereotyped with <parame-
ter> is distinguished from other associations. The «parameter> label is essential
information for a reader of the class diagram to understand that this particular

association is not motivated by structural considerations but only indicates a
temporal communication path.

Such a scenario clearly constitutes a third form of usage scenario, which we
refer to as transitive classification. This usage scenario refers to situations in
which the intent of the user is to brand both the type and the instances of the
type. In other words, the user intends the branding of the type to transitively
apply to its instances as well. Thus, in a sense this scenario represents a combi-
nation of the type and instance classification scenarios described in the previous
sections.

In fact, when a modeler wishes to add a new natural type (i.e., add to the set
of primary classifiers), the intent is usually to apply this third transitive form.
When one removes secondary classification (such as <controller» or «commen-
tedClass>) from a formerly decorated element the element will essentially remain
unchanged. When, however, one removes a stereotype whose purpose is to extend
the set of modeling element types (such as <parameter>) the natural type of
the model element will change from a special kind to a standard type, involving
significant changes in semantics, including completely changing the nature of the
instances. Whether their type is said to be <commentedClass> or not is not re-
levant for instances, but whether their type is said to be, e.g., <active> certainly
heavily influences their behavior.

As a typical example of “tran-

<persistent> . sitive classification” consider the
Account peee--meeoee- > gnerac® | situation in Fig. 6. It is obvious
{storageModes = XML} that instances of Account should
writeObject() be persistent and not the class Ac-
count itself. However, as well as

«instanceOf» requiring the instances to support

a writeObject() operation, for the

myAccount persistence mechanisms to work

one must also require certain pro-
perties of class Account itself. He-
re, Account is required to realize
the Serializable interface and also
specify a format according to which its instances are to be serialized. The <per-
sistent> stereotype as used in Fig. 6 therefore affects both type and instances.
Unlike in pure type classification (e.g., stereotype <commentedClass>) the intent
is that distinct type properties transitively apply to instances as well.

Fig. 6. Transitive Sterotype

As a second example, let us revisit the civil servant example in the previous
section. In this example it is clear that objects should be characterized as “civil
servants”, and that classes (i.e. Professor, Policeman, etc.) are not distinguished
from other classes in any reasonable way. But what if the property of being a civil
servant carries with it some information that holds for all civil servant objects.
For example, in many countries, civil servants have to complete a minimum
number of years service to qualify for a full pension when they retired. Since this
piece of information is constant for all civil servant instances, it is most naturally

defined at the class level (e.g., as a static variable in JAvA). We would then have
a situation in which both classes and instances are affected by the “civil servant”
property, i.e., we would have a transitive property.

Fig. 7 illustrates the idea of transitive classification in re-

lation to the Professor example first introduced in Fig. 4 and <civilServants
Fig. 5. In this diagram the intent of the stereotype <«civilSer- Professor
vant> is not only to brand the class Professor itself (since it {minYears = 30}
now has a distinguishing characteristic: the “minYears” tag-

ged value which flags it as different from other types), but also cinstahceOf>
to brand the professor instances as being different to normal

workers. Because of the taggedValue “minYears”, the inheri- Bob:Professor

tance mechanism used in Fig. 5 is no longer adequate for our
needs, but using a stereotype only may lead to a purely offici-
al interpretation missing the point about objects carrying the
“civil servant” property as well. It is important to reiterate
that we are referring to the modeler’s intent when identify-
ing this (and the other) stereotype usage scenarios. With the current definition
of stereotypes and instantiation in the UML it is not possible to syntactical-
ly distinguish transitive classification from pure type classification. Support for
addressing this issue will be discussed in section 4.

Fig. 7. Transi-
tive Sterotype

3 Classification of Stereotype Usage Scenarios

Having motivated and introduced the different kinds of stereotype usage sce-
narios, we now present a systematic classification of the different scenarios and
describe concrete criteria for choosing between them. This classification is or-
thogonal to other classification approaches, such as that of Glinz et al. [4] that
concentrate on categorizing usages conforming to the official interpretation of
stereotypes.

«taxed» Video «taxed»
Video Video
{taxRate = 16%} taxRate : Integer {taxRate = 16%}
«instanceOf» «instanceOf» «instanceOf»
2001 2001
2001 taxRate = 16% taxRate = 16%
(a) Type only (b) Instance only (c) Transitive

Fig. 8. Forms of Classification

10

Fig. 8 shows a practical example of the three different cases side-by-side. In
Fig. 8(a) the modeler intends to brand class Video only, adding the information
that this product type has a tax rate of 16% associated with it. The tax rate
information is not accessible from instances of Video. Fig. 8(b) shows the opposite
extreme in which the modeler wants to classify Video objects and give them
each a separate tax slot. Without any additional constraints there is nothing to
control the values assigned to the tax slots of individual instances of Video. These
values may or may not be the same. Fig. 8(c) shows the intermediate situation
in which the modeler wants a tax rate to be visible at the level of individual
objects, but wants to fix the value of the tax rate for each object at the value of
the type. Thus, the intent in Fig. 8(c) is to brand instances as well as the type.
Notice that with current stereotype notation it is impossible to distinguish the
situations shown in Fig. 8(a) and Fig. 8(c) from the stereotyped class alone.

Table 1 summarizes the three different scenarios in tabular form. The left
hand column represents type classification, in which the intent is to brand the
type only, and not the instances. The middle column represents regular instan-
ce classification in which the intent in using a stereotype is only to brand the
instances of a type, not the type itself. As has already been pointed out, this
situation should be handled more appropriately with regular inheritance (i.e.,
the classifier of the instances is defined to be a subtype of a supertype corre-
sponding to the stereotype). Finally, the right hand column of Table 1 represents
the transitive classification usage scenario in which the intent is to brand the
instances of the type and the type itself.

Table 1. Forms of Classification

Type Instance Transitive
Classification Classification Classification
e.g., <abstract> e.g., <applet> e.g., <persistent>
affects affects affects

types only instances only types & instances

The difference between these three forms can also be explained in terms of
their effects on the type and/or instance facets of the model element to which
they are applied. As explained in [10], model elements representing types ge-
nerally have two facets—a type facet which describes the properties of their
instances (e.g., attributes and methods), and an instance facet which describes
the element’s properties as an object (e.g., tagged values). In terms of these
facets—

1. type classification purely affects the instance facet of types,
2. instance classification affects the type facet of types only, and
3. transitive classification affects both facets of types.

With this terminology, we have an easy way to find out which category a certain
stereotype belongs to. By checking which facets of a model element at the My

11

level are influenced by the stereotype, one can immediately tell which kind of
stereotype one is dealing with.

The systematic view just established is perhaps also helpful in explaining
why modelers use stereotypes for instance classification even though the UML
definition explains them in terms of type classification. As we already mentioned,
in such cases the use of inheritance at the M level would be more appropriate,
since inheritance is the most natural way to influence the type facet of a type.
The type facet of a subtype is simply extended with that of the supertype,
which is exactly what is needed when one wishes to make sure that a set of
instances carry certain properties. However, it is the case that a generalization
relationship is a link between two types at the M; level, i.e., such a link must
be regarded as belonging to the instance facet of a type. Therefore, the use of
a stereotype—which can only affect the instance facet of a type in the non-
transitive case—seems understandable, since one can imagine that the modeler
associates a designated type facet with a designated instance facet. One way
to make this assumption true, i.e., truly make the stereotype have the effect of
transitive classification, is to use a constraint which demands any type equipped
with this stereotype to inherit from a particular class (e.g., civilServantl). Another,
more cumbersome way is to use a much more complex constraint which spells
out the full type facet required for “CivilServant” types.

While we have just established a way to actually make a stereotype realize
transitive classification using plain UML only, we still need to be aware of the
difference between a stereotype whose sole purpose is to classify instances and
a stereotype which affects both type and instances, i.e., transitive classificati-
on. How to make the choice between the two cases and subsequently how to
notationally distinguish them is the subject of the following two sections.

3.1 Usage Guidelines

As conceptual modeling mechanisms, with clearly distinct semantics (captured in
Table 1), the difference between the three usage scenarios is easy to understand.
What is much more challenging, however, is working out which scenario best fits
a particular real world situation. A systematic process for making this decision
is given in Fig. 9.

Instance classification is the most easy to match to real world situations, since
it actually corresponds to an ordinary classification of instances, where one uses
a type to describe the common properties of a set of objects. Thus, in scenarios
where there is no type level information (i.e., no properties of instances are fixed
at the type level nor does the type need to be distinguished from other types),
instance classification is the obvious choice. In terms of the Video example, the
property “price” is a good illustration (see Fig. 10), assuming the price can vary
from video to video, this would be represented as an attribute at the type level,
and be given different values for each instance. No information is required at the
type level.

When there is some property that could reasonably be applied to the type, the
situation becomes more difficult. The existence of a type-level property implies

12

either transitive or type classification. As specified in Fig. 9, one now needs to
decide whether instances are affected or not. The difficulty in doing this arises
because there is virtually no form of type-level information which cannot, in
some form or another, be regarded as relevant to the instance level as well. Take
the «commentedClass> stereotype, for example. Normally, one would think that
software objects do not care about whether their classes are commented. But on
the other hand, one cannot exclude a situation in which someone wants to reject
all objects from being dynamically added to his system unless they can testify
that their classes have been developed with the use of comments.

Also, in the case of the video example,
should the property of the tax rate be as-

[property not [property
sociated with the class only, with the ob- visible at visible at
jects only or with both (see Fig. 8)7 As- type level] ype level

suming that the tax rate is fixed for all
videos, it is reasonable to view the tax va- :
lue as belonging to the type only. Howe- canstance
ver, from the perspective of clients of vi- [property not
deo objects, the tax rate is just a normal visible at
property that they might be interested in instance level
(like price). The fact that it is constant for
all video instances might be irrelevant at

the instance level. Since there is a case for [das%?ceation] [C.;r;"‘;}ﬁlt;v{fm]
viewing it as either a type-level property

or an instance-level property, there is also

a case for viewing it as both (i.e., transiti- Fig. 9. Supporting the decision
ve property). process

[property
visible at
instance level]

Thus, from these examples it can be seen that a
decision for one of the classification scenarios pure-

taxed .
«Video» ly based on the nature of concepts in a real world
{taxRate = 16%} scenario cannot be made. The choice heavily depends

- on the needs and intent of the modeler. In the case
price : Integer K R

A of the video example, we are assuming that the real

i world scenario dictates that taxes are constant for vi-

| «instanceOf> deos of a particular kind. This, therefore, implies that

' “taxRate” is at least a type-level property—ruling out

2001 the pure instance classification scenario. The questi-

price = 9.95 on then is whether or not “taxRate” should also be

viewed as an instance-level property. This is where

the purpose of the model and the needs of the mode-

Fig. 10. Priced Object ler come in. The fundamental question at this point

is whether the modeler wants tax rates to be visible

to clients of the instances. In other words, should a client of a video instance

be able to directly determine (i.e., see) its tax rate? If the answer is yes, the

tax property is best thought of as transitive (i.e., belonging to the type and

the instances) and the transitive classification approach should be chosen. If no,

13

the tax property is best regarded as merely a type-level property, and the type
classifications scenario should be chosen.

What remains to be discussed is how to make sure one uses a proper name
for the stereotype. We now provide a litmus test for determining whether a ste-
reotype name is appropriate or not. Assuming that the correct kind of stereotype
has already been determined, and has been called “S”, one question to ask is:

Do I under any circumstance want instances of the stereotyped element
to be understood as “S”-instances?

If the answer is yes, then the stereotype name is wrong. For example, if it is the
case that an OnlineGame instance ought to be regarded as an “applet” instance
then “Applet” is a good candidate for an Applet superclass name, but not for the
stereotype. Just as class names spell out what their instances (i.e., objects) are
(e.g., applets), stereotype names ought to spell out what their instances (i.e.,
types) are (e.g., AppletType). A stereotype name does not necessarily need to
have the “-type” suffix, though. A stereotype name <component> makes sense
since types branded with this stereotype are particular components, whereas
their instances are usually referred to as component instances.

It cannot be overemphasized that if one wants instances to be regarded as
“S”-instances then one is not really dealing with a proper stereotype name but
with the name of an Mj-level supertype. What can be achieved by a stereotype
<AppletType>, however, is that classes like OnlineGame inherit from a superclass
Applet. In this way—exploiting the terribly imprecise meaning of “is-a” [8]—
not only an OnlineGame is-an applet (is-a — instance-of) but OnlineGame is-an
applet (is-a — kind-of) as well, which seems to be the primary motivation for
(incorrectly) using an <Applet> stereotype in such cases.

4 Notational Support

Having identified the primary stereotype usage models and discussed the heuri-
stics that can be used to choose between them, we now discuss how the scenarios
could be distinguished notationally. Modelers not only need a systematic way
of obtaining the kind of stereotype most appropriately fitting the situation in
hand, they also need a way to unambiguously document their decision.

In the first subsection, we discuss strategies for distinguishing them using
the current version of the UML and then, in the following subsection, we discuss
possible approaches that might be employed in future versions.

4.1 Current UML

Fig. 8 illustrates that, by considering class Video alone, it is not possible to deduce
which of the two stereotype kinds was intended. We therefore propose slight
notational enhancements to the current version of the UML so that all three
kinds of stereotypes can be distinguished. Figure 11 depicts our suggestions for
all three cases.

14

«commentedClass» <Sounds S «persistent»
Worker OUICI tream Account
{commenter = Bob} usic {storageModes = XML}
(a) Type level (b) Instance level (c) Transitive case

Fig. 11. Notational support

Note the use of an adjectival stereotype name in Fig. 11(c). It is equally valid
to think of both Account itself and an Account instance as supporting persistence.

Also, note the underlined tagged values which indicate that this information
is meant to be useful for the type level only. Whenever a tagged value needs to be
visible to instances as well (as in “taxRate = 16%”) it should not be underlined.

Note, however, that while underlining tagged values works for conveying
intent, i.e., restricting the visibility of a class feature (e.g., commenter) to be
visible to the class only as opposed to all of its instances as well, it is not suitable
to control whether a class feature (such as taxRate) shall be a part of an object’s
feature list (as in Fig. 8(c)). In order to achieve the level of expressiveness to
independently control visibility and feature extent it is best to assume a true
multi-level modeling approach for UML modeling.

4.2 Advanced Support

In [11] it is suggested that the traditional two level modeling assumption be
abandoned and UML modeling be based on a multi-level approach involving
user metatypes in addition to user types and user instances. Just like stereo-
types, user metatypes are above the level of user types, providing a means of
type classification. A semantic model for such an approach is “Higher Order
Logic” [12]. For instance, types of (user-)types can be regarded as second-order
predicates, expressing properties of first-order types.

With the availability of a user modeling level above the normal M; type level
and in the presence of “deep instantiation” [11] it is easy to control where the
features involved in the scenario of Fig. 10 become visible and where not.

Figure 12 illustrates how one can control the visibility of “taxRate”. In
Fig. 12(a) “taxRate” is just an ordinary (meta-)attribute, giving rise to a slot
at type Video only. This is analogous to a tag definition/tagged value pair in
the UML. In contrast, Fig. 12(b) specifies “taxRate” to be of potency two, i.e.,
makes it appear as an attribute (rather than a slot) at type Video. Therefore,
this attribute gives rise to a corresponding slot at instance 2001.

Note the underlining of “taxRate” in Fig. 12(b), meaning that “taxRate” is
a so-called dual field rather than a simple field. In contrast to simple fields, dual
fields may already be assigned a value before they become a slot. This allows the
value of “16%” to already be assigned a value at the type level. Furthermore, we
used a potency value of 1 in “16%!'” to indicate that this value is constant for

15

ProductType
ProductType
taxRate? : Integer
taxRate : Integer
ﬂl\ «instanceOf»
| «instanceOf»
|
! Video
Video
taxRate! = 16%"
taxRate = 16% price : Integer
price : Integer
A

I «instanceOf»
I «instanceOf»

L 2001
2001
taxRate = 16%
price = 9.95 price = 9.95
(a) Tax as a type property (b) Tax as a transitive property

Fig. 12. Choosing the desired tax scope

the level below. Had we used “16%” instead, it would have meant that the type
Video is associated with a tax rate of 16% but that any Video has a “taxRate”
slot which may be assigned any individual value (analogous to the price slot).

Such a multi-level modeling approach not only makes stereotyping and tagged
values redundant as mechanisms in their own right! but furthermore makes it
trivial to control the scope of properties independently of the level where they
are introduced. The modeler’s intent can be captured in a concise and intuitive
manner without ever requiring constraints that enforce certain type facets to be
present.

5 Acknowledgements

An earlier version of this paper was presented at the “UML 2002” conference
and published by Springer-Verlag in LNCS 2460. This is contribution number
02/15 of the Centre for Object Technology Applications and Research.

6 Conclusion

Thanks to their notational conciseness and convenience of use, stereotypes have
earned a permanent place in the affections of UML users and have become an
indispensable part of the UML’s extensibility mechanisms. However, as explained
in this paper and others, they are often deployed by users in ways that do

! Notational shortcuts as presented in Fig. 11 are still valuable and should be made
available.

16

not strictly conform to the UML standard and can therefore be ambiguous or
misleading to readers of the model. Our goal in this paper has been to first
identify and understand the different de facto ways in which stereotypes are
used by UML modelers (whether they be “official” or “unofficial”) and then
to consolidate practical guidelines for working out which scenario makes sense
under which circumstances. We then elaborated on how the different stereotype
usage scenarios could be distinguished notationally, both in terms of existing
UML notation and in terms of possible future notations.

We observed that a suitable interpretation of the UML standard would ac-
tually allow both type and instance classification usages for stereotypes but
beyond that we have established that a simplistic reduction to two basic modes
is insufficient. We identified that many real world scenarios are actually best
thought of as combining these two forms so that they simultaneously classify
the type as well as its instances. For this form of usage scenarios we introduce
the term “transitive classification”.

In fact, one of the possible reasons for the extensive debate on what stereoty-
pes mean and how they should be used has been that the three forms have never
hitherto been made fully explicit. It turns out that many examples of stereoty-
pe applications in the literature are best understood as transitive classification,
rather than simply type (“official”) or instance (“unofficial”) classification. Since
transitive classification best matches the properties of many real-world situati-
ons, it will continue to be used in the future regardless of the intended “official”
stereotype semantics and regardless of how well this case can be expressed with
standard stereotypes. However, in the spirit of providing a language which is
as expressive and accurate as possible we believe that it is important for future
versions of the UML to take all three stereotype usage scenarios into account,
and to provide users with explicit notation for specifying which scenario they
are intending to use.

References

[1] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Responsibility-driven
design: Adding to your conceptual toolkit. ROAD, 1(2):27-34, July—August 1994.

[2] OMG. Unified Modeling Language Specification, Version 1.4, 2000. Version 1.4,
OMG document ad00-11-01.

[3] Brian Henderson-Sellers. The use of subtypes and stereotypes in the UML model.
Journal of Database Management, 13(2):43-50, 2002.

[4] Stefan Berner, Martin Glinz, and Stefan Joos. A classification of stereotypes
for object-oriented modeling languages. In Robert France and Bernhard Rumpe,
editors, Proceedings of the 2° International Conference on the Unified Modeling
Language, LNCS 1723, pages 249264, Berlin, October 1999. Springer Verlag.

[5] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. The UML Profile for
Framework Architectures. Addison-Wesley, 2002.

[6] Jim Conallen. Building Web Applications with UML. Addison-Wesley, Reading,
MA, 2000.

[7] Colin Atkinson and Thomas Kiihne. Strict profiles: Why and how. In Andy
Evans, Stuart Kent, and Bran Selic, editors, Proceedings of the 3¢ International

[9]

[10]

[11]

[12]

17

Conference on the UML 2000, York, UK, pages 309-323, LNCS 1939, October
2000. Springer Verlag.

Colin Atkinson, Thomas Kiihne, and Brian Henderson-Sellers. To meta or not to
meta — that is the question. Journal of Object-Oriented Programming, 13(8):32—
35, December 2000.

Bran Selic. Re: Ask about UML. email communication 10:15:56 -0400, September
2001. email to third author and others.

Colin Atkinson and Thomas Kiithne. Meta-level independent modeling. In In-
ternational Workshop Model Engineering (in Congunction with ECOOP’2000).
Cannes, France, June 2000.

Colin Atkinson and Thomas Kiihne. The essence of multilevel metamodeling.
In Martin Gogolla and Cris Kobryn, editors, Proceedings of the 4" Internatio-
nal Conference on the UML 2000, Toronto, Canada, LNCS 2185, pages 19-33.
Springer Verlag, October 2001.

D. Leivant. Higher order logic. In D. M. Gabbay, C. J. Hogger, and J. A. Robin-
son, editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 2, pages 229-321. Oxford Science Publications, 1994.

