Teaching Robots to Execute Verb Phrases

Daniel Hewlett, Thomas J. Walsh, Paul Cohen
Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA
{dhewlett, twalsh, cohen}@cs.arizona.edu

I. INTRODUCTION

Humans use verb phrases in a variety of ways, includ-
ing giving commands (‘jump over the hurdle’) and relaying
descriptions of events to others (‘he leapt over it’). These
simple verb phrases can actually convey a significant amount
of content, including descriptions of events and conditions that
should not occur, such as ‘avoid the puddle.” Humans have a
qualitative understanding of verbs that supports executing the
same verb in multiple contexts, and with different arguments.
Learning to perform verbs thus presents a challenging problem
for imitation learning, requiring a level of generalization across
both objects and the potential environments the verb can be
enacted in.

Since verb meanings are subjective and their meanings
complex, we adopt an imitation learning protocol where a
human teacher can both judge and demonstrate a verb phrase
to an agent. The protocol alternates between the agent exe-
cuting a verb command from the teacher and the teacher then
possibly enacting the verb phrase in the same environment.
The objective of the agent is thus to infer the “meaning” of
the verb phrase (essentially the teacher’s cost function), and
then act accordingly based on new verb commands. While
this is certainly some form of inverse reinforcement learning
(IRL), the non-Markovian and relational representation we use
to model verb phrases is far different from the standard linear
cost functions seen in IRL and we show this representation
performs empirically better for many natural verb commands.

Our verb model, called the Verb Finite State Machine or
VESM, represents sequences of qualitative states, so it sup-
ports the natural “stages” of verb completion, the composition
of verb meanings, and application to different environments.
Specifying an agent’s objective as a verb phrase with this
representation allows us to learn and enact behaviors that
would be difficult to capture using traditional Al encodings
such as goals (traditional planning) or reward functions based
on the state of an environment (reinforcement learning).

II. FRAMEWORK OVERVIEW

Formally, we consider a set of environments E where
each e € E has a set of objects O and a starting con-
figuration (or distribution over start states) for the low-level
properties (e.g x and y coordinates) of the objects and the
agent. In addition, we assume that the agent is equipped with
a qualitative understanding of the environment, specifically
relations between objects using a set of relational fluents F'
where every grounded fluent is either true or false at a given
timestep. Together, these attributes and fluents make up the

state of the environment. This two-level representation (object
attributes and relations) provides a qualitative description of
the environment, without assuming that the dynamics can be
captured at a purely relational level. These relations typically
describe spatial relationships such as LefrOf (X,Y).

A human teacher communicates objectives to the agent via
verb phrases such as ‘go around the block’, which we will
represent formally as go-around(Agent, Block). We consider a
set of available verb phrases V' such that v € V' has a meaning
based on a series of configurations of fluents in ' that are
either true or false on each timestep. For instance, Figure 1
illustrates (as a pair of finite state machines) the verb fetch,
where different stages of the verb are triggered by changes in
the truth values of these fluents.

Learning in our system involves incremental refinement of
verb semantics through interactions with a human teacher, a
process that extends work from the apprenticeship learning
literature [1]. The protocol for each episode is as follows:

1) The teacher can choose an environment e € F, and a

verb v € V and ask the agent to execute v in e.

2) The agent then uses its verb model along with a planner
to produce and execute a policy that enacts this verb
phrase. The human teacher can then label this execution
as successful, incomplete (for partial performance of the
verb), or violation (of the verb’s meaning).

3) If the agent’s behavior was judged by the teacher to
be incomplete or a violation, the teacher can provide
a demonstration of the verb in the same environment.
Both the agent’s and the teacher’s labeled trajectories
can be used by the agent to refine its verb model.

The goal of the teacher is to teach the verb-phrase semantics to
the agent in a complete enough form that the agent’s chance of
succeeding during subsequent teaching episodes is maximized.

III. VERB REPRESENTATION

Our representation for verb meanings is a relational finite-
state machine we will refer to as a Verb FSM (VFSM) (Figure
1). The VFSM differs from standard FSMs in that each edge
is labeled with a set of propositions (relational fluents as
described earlier), rather than a single symbol. Importantly, the
VFESM is not a finite-state controller (FSC), where each state
is mapped directly to an action. Rather, the VFSM accepts
qualitative traces that match the verb semantics. Additional
steps needed to execute the verb described by the VFSM are
presented in Section IV. The VFSM is a qualitative repre-
sentation in that it represents only propositional information,
and only information about the ordering of states rather than

~At(R, D)

Approaching(R, D) Carrying(R, O)
~Carrying(R,

At(R, D)
Carrying(R, O)

Carrying(R, O)

Carrying(R, O)

Approaching(R, O)

Start!

Start

At(R, D)
At(R, D) ~Carrying(R, 0) | ~Carrying(R,0)
Carrying(R, O) Touching(R, O) ‘ Touching(R, O)
Fig. 1. Anexample VFSM (shown for clarity as two machines, for acceptance
and for rejection) for deliver(Robot,Object,Destination). The left machine
accepts “successful” examples while the right one accepts “violations”.

Touching(R, O)
Carrying(R, O)

~Touching(R, O)
~Carrying(R,0)

their duration. It is also underspecified because each transition
specifies only a subset of the propositions comprising the
environment state. Conceptually, this VFSM is a combination
of two simpler FSMs, one representing correct verb behavior
and another encoding behavior that violates the semantics of
the verb. Also, each intermediate state contains a loop back to
itself (omitted from the diagram for clarity), allowing parts of
the verb to take varying amounts of time. The utility of using
a similar FSM for recognition of activities has been previously
established [2], showing that the FSM transitions capture the
natural stages and choices involved in verb completion.

A. Learning Verb Meanings from Teachers

The VEFSM is created by combining labeled traces of
behavior, excluding traces that are subsumed by others. FSM
construction is conservative in that only the instances labeled
as “success” or “violation” are included in their respective
FSMs, a cautious approach inspired by apprenticeship learning
results showing that acting based on the most specific hy-
pothesis allows the teacher to safely drive the generalization
process [1]. Each agent or teacher trace yields a sequence of
sets of relations, which defines a simple VFSM as a single
path between the first state and last state. By combining the
start states of many such paths, as well as the end states, a
single VFSM can be created, as shown in Figure 1.

IV. EXECUTING VERBS

We now describe how the VFSM can be combined with a
representation of the robot’s environment and modern planning
techniques to execute the verb. We begin by describing a model
from the reinforcement-learning literature that captures both
relational information and low-level robot dynamics.

A. MDP Representation

In order to leverage the VFSM model, a robot needs a
relational view of its environment, which could in principle be
provided by any relational MDP. However, since the dynamics
of complex physical environments cannot be captured by
purely relational models (like STRIPS), we will use a two-
level model called an object-oriented MDP (OOMDP) from
[3]. In an OOMDP, each state consists of a set of objects with
attributes, as well as a set of relations between the objects.
The set of relations are defined based on object attributes
(such as On(X, Y) := X.yCoord = Y.yCoord +1). Actions
have stochastic affects on object attributes, which in turn may
causes changes to the relational state.

Recall that the VFSM does not directly encode a policy for
verb execution. Thus, to plan for verb execution, we must
combine the dynamics model for the environment M. (an
OOMDP) and the qualitative verb model M, (a VFSM). This
requires combining the state spaces and transition functions
of the two models and using the terminal states of the VFSM
to indicate reward. Specifically, we build a combined MDP
Me = (Sc,A,Tc, Re,7y) where A and 7 come from the
OOMDP but the states S¢ = S X Sy are any pairing of an
OOMDP environment state and a VFSM state. The transition
function incorporates VFSM transitions. The reward function
is based only on the completion of the verb, 0 for accepting
states in the VFSM, and otherwise —1.

To mitigate the size of the combined state space and the
sparsity of reward, we encode “breadcrumbs” throughout the
state space so that small rewards are given for completing
each stage of a verb. A simple mechanism for encoding such
subgoals is to initialize the values of each state (V' (s¢)) using
a heuristic function ®(sc). We use the heuristic function
D(sc) = —p(sy), where p(s,) is the shortest distance in the
VESM from s, to an accepting state without violating the verb
semantics. This is the minimum number of stages remaining
in the VFSM to successfully complete the verb activity. This
heuristic draws the planner’s search towards areas where it can
progress through stages of the verb, but will not stop it from
backtracking if the currently explored branch does not allow
for the verb’s completion in the current environment.

B. Planning in the Combined Space

We now have a fully specified combined MDP My =
(Scy A, Tey Rey7y), as well as a heuristic function ®(s¢).
To actually perform the verb, the agent requires a planner
that can map states in M¢ to actions. When the environment
is deterministic, we can use the cost and heuristic functions
constructed above with simple A* search [4] to find the
optimal policy. Stochastic environments require a more general
planner. If the MDP is small enough, then standard MDP
planning algorithms like Value Iteration (VI) could be used.
However, because OOMDPs usually have a large ground state
space, and S¢ contains the cross product of all of these states
with all of the S, states, the computational dependence of
algorithms like VI on |S¢| is likely to be prohibitive. Instead,
our experiments with stochastic environments employ Upper
Confidence for Trees (UCT) [5], a sample-based planner that
sidesteps a dependence on |Sc| by only guaranteeing to
produce a policy for the start state sg. While UCT is not
expressly built to utilize a heuristic function such as our ®(s¢)
described above, we simply translated this heuristic into a
reward shaping function [6] that served to guide UCTs search
to areas where stages of the verb could be quickly completed.

V. EXPERIMENTS

We evaluated the performance of the VFESM on a set of
verbs, and against baseline methods described later in this
section. The verbs tested were the following: go(Robot, Target):
Travel to the target location; deliver(Robot,Object,Target):

go (gazebo) go (ww2d) deliver (gazebo) intercept (Www2d)

. L N
102 4 6 8 10 12
Teaching Episode

L . I R S . . .
2 4 6 8 1002 4 6 8 10 12 2 4 6 8
Teaching Episode Teaching Episode Teaching Episode

Fig. 2. Experimental results for execution of verb phrases. Error bars show
one standard deviation (n > 15).

Travel to the object, pick it up, then travel to the target and
place the object there; intercept(Robot,Enemy,Target): Make
contact with the enemy robot before it reaches the target. Our
experiments used two simulated mobile robot domains: the
Gazebo robot simulator!, where we ensured that the robot’s
actions had deterministic effects, and the Wubble World 2D
(WW2D) simulator?, where actions had stochastic effects.
Both environments contained similar objects and relations.

As a baseline for execution, we also implemented the
Maximum Likelihood verb model of Kollar et al. [7], which
we will refer to as ML. ML proceeds by iteratively simulating
all possible sequences of actions up to some depth (a breadth-
first search), and then executing the sequence that maximizes
the likelihood of the verb under a Naive Bayesian model. This
process terminates when all possible actions would decrease
the likelihood. ML only models the percentage of time that
each relation is true, and assumes all relations are independent
of each other. We also implemented the Inverse Reinforcement
Learning (IRL) method of Abbeel and Ng [8] as a baseline.

During each teaching episode, the robot is asked to perform
the verb in a situation it has not encountered before, which
is a form of hold-one-out evaluation. From many learning
trajectories, we can estimate the probability of success after a
given number of teaching episodes. This measure of perfor-
mance for the VFSM and the ML baseline at each teaching
episode is shown in Figure 2. The order of presentation by the
teacher was randomized for each learning trajectory. Success
is determined by an automatic validation procedure.

The simplest verb, go, was tested in both domains, Gazebo
and WW2D. In each case, the VFSM was able to master the
verb, achieving a high rate of success after only a few training
examples, as shown in Figure 2. However, the ML baseline
was not able to match the performance of the VFSM, reaching
a plateau lower than the 90% success rate reported by Kollar
et al. [7]. While the VFSM explicitly models the completion
of a verb, ML instead relies on a decrease in the likelihood
function for termination, meaning that it does not always stop
at the goal, reducing its success rate.

On the more complex verb deliver, VFSM significantly
outperforms ML because it explicitly represents the sequence
of stages involved in delivering, and provides incremental
feedback to the planner based on the VFSM state. The failure

Uhttp://playerstage.sourceforge.net/
Zhttp://code.google.com/p/wubbleworld2d/

of ML to master deliver is not unexpected, as Kollar et al.
reported a low rate of success (29%) for the similar verb
bring [7]. However, the reasons for this failure underscore the
importance of the sequential nature of the VFSM for mod-
eling verbs. ML struggles with deliver because the features
it is trained on are order-independent averages, making it
difficult to model the sequential semantics of deliver. Since
ML attempts to match these averages, it frequently performs
behaviors inappropriate for the current stage of verb execution,
such as briefly dropping the object so that the Holding(R,0)
relation will be true “less often.”

The verb intercept, in which the enemy is another agent
moving along a known path to a target location, is perhaps
the most difficult verb because the agent must act effectively
in a constantly changing stochastic environment. As shown
in Figure 2, the VFSM representation outperformed the ML
baseline significantly on this verb. The ML method does not
learn a model of verb constraints, and relies on a full BEFS,
limited look-ahead and thus planning precision.

A. Comparison to Inverse Reinforcement Learning

Our examination of the Inverse Reinforcement Learning
(IRL) method of Abbeel and Ng [8] revealed properties not
well suited to a general verb representation. Because IRL
makes a linear cost assumption, its behavior on a “goal
oriented” verb like go was highly dependent on the amount of
“padding” at the end of an example showing the agent sitting
at the destination. With a large amount of padding the agent
successfully completed all test instances with one teacher
trace, but without padding, even with all the training data, it
failed in all the test examples because it preferred approaching
the goal to actually reaching it. For a verb like deliver, IRL had
trouble finding a weight for Carrying, since this was a “good”
relation as long as the agent was not at the destination (a
non-linear relationship). These results indicate that while IRL
can learn certain verbs very quickly, it cannot capture the full
range of complicated (non-linear) verb definitions. Our VFSM
captures such relationships (the stages of verb completion) and
can be seen as a step towards generalizing IRL techniques to
more complex teacher cost functions.

REFERENCES

[1] T.J. Walsh, M. L. Littman, and C. Diuk, “Generalizing Apprenticeship
Learning across Hypothesis Classes,” in ICML, 2010.

[2] W. Kerr, A. Tran, and P. Cohen, “Activity Recognition with Finite State
Machines,” in IJCAI, 2011.

[3] C.Diuk, A. Cohen, and M. L. Littman, “An object-oriented representation
for efficient reinforcement learning,” in ICML, 2008.

[4] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Upper Saddle River, NJ: Prentice Hall, 2003.

[5] L. Kocsis and C. Szepesvari, “Bandit Based Monte-Carlo Planning,” in
ECML, 2006.

[6] E. Wiewiora, “Potential-Based Shaping and Q-Value Initialization are
Equivalent,” Journal of Artificial Intelligence Research, vol. 19, pp. 205—
208, 2003.

[7] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Grounding Verbs of Motion
in Natural Language Commands to Robots,” in International Symposium
on Experimental Robotics, 2010.

[8] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in /ICML. New York, New York, USA: ACM Press,
2004.

