
   
 

  

 

 

 

 

 

The Evolution of Symbiosis in Communities 

 

 

A Dissertation  

SUBMITTED TO THE FACULTY OF THE  

UNIVERSITY OF MINNESOTA BY 

 

 

Paul G. Nelson 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR THE DEGREE OF  

DOCTOR OF PHILOSOPHY 

 

 

Advisor: Georgiana May 

 

 

November, 2015 

 

 

 

 

 



   
 

 

 

 

 

 

 

 

 

Copyright Paul G. Nelson 2015



   
 

i 
 

Acknowledgments 

I would like to thank my advisor, Georgiana May, for all her support, help, and 

encouragement over the years. I would also like to thank my committee Ruth Shaw, Ford 

Denison, Eric Seabloom, and Mike Travisano who have provided valuable feedback and 

direction throughout my graduate studies. In addition I would like to thank Tony Dean, 

Claudia Neuhauser, and Frank Shaw for their invaluable evaluation of the model and 

analysis used in Chapter 1. I would also like to thank the May lab, especially Emme 

Bruns, Peter Lenz, Aaron David, Jakob Riddle, Alma Rodriquez Estrada, and Val Wong, 

for their help and feedback with these projects. I am also thankful for my parents who 

have been supportive and encouraging throughout. I am especially grateful to my wife 

Sun for her superhuman levels of patience during this process and to her mother, Chung 

Hee who made the food that kept me alive. 

 

 

 

 

 

 

 



   
 

ii 
 

 

 

 

 

Dedication 

 

I dedicate this work to my son Kai who is already letting playing with math get in the 

way of getting real work done. 

 

 

 

 

 

 

 

  



   
 

iii 
 

Abstract 

 All organisms host a menagerie of symbionts. While harmful pathogens have 

historically held the attention of researchers, recent technological advances have revealed 

a cornucopia of benign, and even beneficial, symbionts. Observations that most 

organisms are party to a wide variety of harmless symbionts are at odds with theory that 

suggests that infections by multiple symbionts should lead to the evolution of harmful 

pathogens. Current theory regarding the evolution of symbionts is predicated on the 

assumption that symbionts receive a reproductive payoff for harming their hosts. Because 

harming the host, or virulence, indirectly decreases symbiont infection duration, 

increased symbiont reproduction comes at a cost and leads to a tradeoff. A consequence 

of this tradeoff is that when multiple symbionts infect the same host the most virulent 

symbiont receives the highest reproductive payoff while all symbionts suffer decreased 

infection duration. Consequently, multiple infections are predicted to select for higher 

virulence, a prediction that runs counter to observation of the plethora of relatively 

harmless symbionts observed co-infecting most organisms. The three chapters of this 

thesis seek to bring theory in line with observations of the commonality of co-infecting 

commensals. The first chapter of this thesis lays out a mathematical model that uses the 

virulence tradeoff hypothesis to show that multiple infections do not necessarily lead to 

increased virulence. The second chapter extends the model developed in the first chapter 

to show that symbiont defense of the host can lead to the evolution of lower virulence. 

Finally, the third chapter examines genetic variation in virulence and inhibition between 

symbiont species for fungal symbionts isolated from two populations of maize. Together, 

this work furthers our understanding of how symbionts evolve in communities and is an 

important step toward resolving the paradox of ubiquitous benign symbionts. 
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Introduction 

 “No man is an island” has been used for centuries to expresses humans’ intimate 

and universal connection to other humans. It is perhaps fitting that the phrase was coined 

while its author, John Donne, was stricken with disease (Cox 1973), a state resulting from 

humans’ intimate and universal connection to the invisible microbial world. Just as no 

man is an island, no organism is an island; every living organism is party to a web of 

interactions that affects its survival, development, and reproduction (Weiblen 2002; 

Oliver 2003; Pradeu 2011). Historically, disease causing symbionts have received the 

most attention from the medical and scientific community. However, recent technological 

advances have revealed that all organisms, even seemingly healthy ones, are host to a 

cornucopia of symbionts (Rodriguez et al. 2009; Arumugam et al. 2011). This new world 

of apparently harmless symbionts poses a problem for the way we traditionally 

understand the evolution of symbiotic associations. Symbionts must take resources from 

their hosts to reproduce, therefore we expect some level of harm, or virulence, from most 

symbionts (Frank 1996). This thesis addresses the mismatch between theory, which 

predicts that many symbionts will harm their hosts, and observation, which find a 

cornucopia of symbionts that seem relatively harmless. 

 The three chapters of this thesis seek to understand the evolutionary dynamics that 

lead to benign, or even beneficial symbiotic associations. The first two chapters consist of 

mathematical models for symbiosis evaluated on a continuum between parasitism and 
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mutualism to determine if multiple infections necessarily cause the evolution of greater 

virulence. (Bremermann and Pickering 1983; Antia et al. 1994; Nowak and May 1994; 

van Baalen and Sabelis 1995; Mosquera and Adler 1998; Gandon et al. 2002; de Roode et 

al. 2005; Caraco et al. 2006; Alizon et al. 2009; Alizon et al. 2013). The third chapter asks 

if fungal symbionts of maize exhibit genetic variation for traits affecting virulence and 

competition between symbionts. The evolution of the host-symbiont relationship is 

closely tied to important questions in evolutionary biology, chiefly the evolution of 

altruism and the problem of public goods.  

 The relationship between altruism and symbiont evolution is clear when 

discussing beneficial symbionts. A symbiont trait that benefits the host at a fitness cost to 

the symbiont is, by definition, an altruistic trait. The logic behind the study of altruism 

can also be applied to the study of parasitism. Parasites necessarily exhibit virulence, or 

harm to the host. Virulence is usually understood as part of a tradeoff in which a 

symbiont receives a reproductive boon from harming its host (Alizon et al. 2009), leading 

to a tradeoff between transmission rate and infection duration. When other symbionts co-

infect the host, host health becomes a public good which can be eroded by symbiont 

virulence. A symbiont with lower virulence than its competitors harms its host to a lesser 

degree but does so at a relative cost to itself. Therefore the question, “How can symbionts 

evolve lower virulence?” is equivalent to the question “How can altruism evolve?” The 

first two chapters of this thesis treat virulence as the effect of symbiont activities on host 

mortality. Because symbiont morality is tied to host morality for bio-trophic symbionts, 

the effects of virulence on the host are a public good shared between symbionts. 
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Virulence can either yield an individual benefit to the symbiont expressing virulence and 

a public cost to other co-infecting symbionts, or virulence can yield an individual cost 

and a public good, allowing for the evolution of mutualism and parasitism on a 

continuum. Together, these chapters ask how communities of relatively benign symbionts 

can evolve. As a preface for these chapters, in this introduction I discuss the basic 

mechanisms of natural selection, introduce the problem of public goods and altruism, and 

finally discuss some solutions to those problems. 

Natural Selection and Tradeoffs 

 Before discussing the role of public goods in symbiotic evolution it may be 

helpful to review the fundamental forces that shape evolution. Evolution is, in its simplest 

form, change in allele frequencies over time. In other words, given a genetically based 

trait z, the study of evolution is the study of how trait z changes, or Δz. There can be no 

better illustration of the important aspects of evolution than the Price equation (Price 

1970): 

∆𝑧�=cov(zi, wi)+𝐸�(wi∆zi)     (1) 

 Here change in trait z (Δz) is determined by the covariance between each value of 

z (zi) and fitness (wi) and the expected change in the trait value due to fitness (wi),  (E(wi 

Δzi)). The covariance term captures the effects of natural selection; if the covariance 

between fitness (wi) and the trait value (zi) is positive then the trait value is predicted to 

increase on average over population i. If the covariance is negative then the trait is 

deleterious and is predicted to decrease in frequency. An important requirement of natural 
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selection becomes readily apparent by rewriting the covariance term as a correlation 

(Frank 1997): 

∆𝑧 = 𝛽 var(𝑧) + 𝐸(𝑤𝑖∆𝑧𝑖)     (2) 

 Here β is the correlation coefficient between fitness and trait z, or the selection 

coefficient. In this form we can see that without genetic variation for the trait in the 

direction of selection, selection cannot affect a change in the trait value even if a trait is 

under strong selection and β is very large. In other words, evolution requires genetic 

variation. In this dissertation the first two chapters will focus on the forces that shape 

selection coefficient, β, on symbiont traits, and the third examines natural populations for 

evidence of variation in traits affecting organismal interactions. By examining the forces 

that affect natural selection on symbiotic traits we can shed light on the evolution of 

benign symbionts. 

 Natural selection, however, is only half of the Price equation and but one force 

that affects trait evolution. The second term (E(wi Δzi)) is more nuanced and represents 

factors other than direct selection that can affect trait evolution. This term can encompass 

neutral forces such as genetic drift, migration or mutation. Additionally, this term can 

encompass the effects of multi-level selection, or selection that incorporates both the 

group and individual level selection, and the public costs and benefits associated with co-

infection by other symbionts. The role of public goods and multi-level selection in the 

evolution of altruism is a key concept in evolutionary biology (Bijma et al. 2007) and will 

be discussed in greater detail below. In this thesis we modify established models of 
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parasite virulence evolution (e.g., Lenski and May 1994) to incorporate the effect of 

public goods and ask how symbionts with low virulence might evolve in a community 

context. 

 Equations one and two paint a fairly simplistic picture of natural selection in 

which a trait will increase without bound as long as genetic variation persists. However, 

nature is rife with examples of important traits that remain stable over long periods of 

time despite sufficient variation to allow selection to affect evolution. Examining the 

Price equation again reveals that, if Δz≈0 while var(z)>0, then β must go to zero. In other 

words, if a there is variation for a trait but the trait is not changing, then selection on that 

trait must be constrained in some way. Tradeoffs serve as an important constraint on trait 

evolution (Asplen et al. 2012). A tradeoff occurs where gain in one aspect of fitness 

results in loss in fitness associated with another trait. Tradeoffs have been shown to apply 

to a number of systems as disparate as enzyme kinetics (Savir et al. 2009) to animal 

foraging behavior (Bonter et al. 2013). A tradeoff between symbiont transmission and 

infection duration plays a central role in theory regarding the evolution of virulence 

(Alizon 2009) and is the focus of the first two chapters of this thesis. 

 When a trait is subject to a tradeoff it is predicted to evolve to an intermediate 

maximum virulence at equilibrium. The exact value of this state is a function of the form 

of the tradeoff, the physiology of the organisms, and the particulars of their environment. 

Tradeoffs often take the form of energy or resource allocation, often represented by the 

“Y model” in which allocation of a finite resource to one trait comes at the cost of 
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decreased allocation to other traits (Roff and Fairbairn 2007). For example, growing roots 

requires a plant to expend resources it could invest in leaves or seeds (Dybzinski et al. 

2011). Alternatively, tradeoffs could arise if a behavior yields rewards but also exposes an 

organism to risk. For example, many animals foraging for food entails exposure to 

predators (Thaler et al. 2012). In the case of symbionts, drawing too many resources from 

their host can elicit a host defense response or even kill the host, which also leads to the 

death of the symbiont (Alizon et al. 2009). In this thesis I explore how the tradeoff 

between reproduction and infection duration might explain the evolution of benign 

symbiotic communities. 

Public Goods, Altruism, and Parasitism 

  Tradeoffs might explain why there is a limit on foraging success or the length to 

which tree roots can grow. In both of these cases, however, the costs and benefits of the 

tradeoff are borne by the same organism, and this is not the case for host-symbiont 

interactions. When the costs and benefits of a trait affect different organisms, that trait 

becomes a public good. Public goods can be beneficial, as when wasps build a nest that 

may be used by other wasps (Bourke 1999), or detrimental, as when yeasts produce 

alcohol during fermentation that may limit their own growth and kill off neighboring 

yeasts (MacLean and Gudelj 2006). When natural selection acts on a trait that is 

beneficial for the individual but deleterious to the population, decreased population sizes 

or extirpation can result (Fiegna and Velicer 2003; Kerr et al 2006). Many terms have 
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been coined to describe the processes in which individuals benefit at the expense of the 

group, but by far the best known is “The Tragedy of the Commons” (Hardin 1968). 

 A tragedy of the commons arises whenever the interests of the individual conflict 

with the interests of the group. Conflict between individual and group interests arise 

when natural selection favors traits that are deleterious to the population or selects against 

traits that are advantageous to the population. A clear example of selection against a trait 

which is advantageous to the population arises with altruistic traits. Altruistic traits are 

traits that cause an individual to aid others at the expense of itself. For example, some 

termites have glands which can produce a sticky tar like substance. Termite soldiers will 

cling to predators and rupture their own abdomens, immobilizing the predator and saving 

its colony at the cost of their own life (Bordereau et al. 1997). Other examples of altruism 

are less extreme. For example, many birds work together to raise offspring that are not 

their own (Grant 1990). In both of these cases individuals incur an individual cost and 

provide a public benefit. 

 Conversely, there are also traits that provide an individual benefit at a public cost. 

A clear example, and the topic of this thesis, arises from co-infection between symbionts 

(Frank, 1996). When more than one symbiont infects a host and a rapacious symbiont 

kills the host, all other symbionts die as well. The virulent symbiont receives an 

individual benefit while inflicting a public cost on other, co-infecting symbionts (Ebert 

and Mangin 1997). For example, Ebert and Mangin (1997) manipulated the number of 

co-infections of a microsporidian parasite Glugoides intestinalis of Daphnia magna by 
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changing the host death rate. They found that strains of G. intestinalis that experienced 

lower rates of co-infection evolved to be less damaging and maintain longer lasting 

infections.  

The evolution of altruistic traits, which provide public goods at an individual cost, 

and rapacious traits, which provide an individual benefit while inflicting public costs, 

may seem to be entirely different phenomena. However, selection against a rapacious 

trait and selection for an altruistic trait are mathematically equivalent, as subtracting a 

negative is equivalent to adding a positive. Therefore, the discussion of the evolution of 

altruism below applies equally to the evolution of harmful, rapacious traits. 

 A common tactic for understanding the evolution of altruistic traits is to examine 

the outcomes of pairwise interactions between just two individuals. The most common 

metaphor used in pairwise analyses, and the metaphor most closely associated with the 

study of altruism, is that of the Prisoner’s dilemma (Nowak and May 1992). The 

Prisoner’s dilemma models interactions between individuals with two strategies, 

cooperation and defection. In this scenario, the greatest global fitness is achieved when 

two cooperators interact. In contrast, the globally worse outcome arises when two 

defectors interact, as each receives a low fitness payoff. However, when a cooperator and 

a defector interact, the defector achieves greater fitness than it would interacting with 

another defector, and the cooperator achieves lower fitness than between two defectors. 

Because cooperation results in the greatest global fitness, and cooperators each have 

lower individual fitness than they would as defectors, cooperation is an altruistic trait. 
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 Under the conditions where a defector always gains from interaction with a 

cooperator, cooperation can never evolve. In this scenario, an individual will have one of 

two possible partners, a cooperator or a defector. If the partner is a cooperator, the best 

immediate individual strategy is to be a defector. If the partner is a defector, the best 

strategy is to defect and not lose as much as a cooperator. Thus, defectors win in all 

circumstances and cooperation cannot evolve. Because the best outcomes for the 

population arise from cooperation, which is costly to the individual, the Prisoner’s 

dilemma results in a tragedy of the commons. This simplistic system overlooks a number 

of factors that might change interaction outcomes; the model assumes no population 

structure, the costs and benefits are static, and, by design, is limited to pairwise 

interactions. In this thesis I develop a model that goes beyond pairwise interactions to ask 

how interactions between symbionts on a community level might affect the evolution of 

virulence. 

 The evolution of altruism can be studied under more general conditions by 

amending the Price equation to include multi-level selection (Frank 1997). The Price 

equation given above examines how the trait value of individuals (zi), denoted by the 

subscript i, relates to the fitness of that individual (wi). Altruistic traits, however, are more 

complex because they affect fitness on two levels, the individual and the group. The first 

step in adapting the Price equation is therefore to change the subscript on each term to 

reflect the average trait value (zg), and corresponding mean fitness (wg) of each groups 

(g), as opposed to each individual: 
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∆𝑧 = cov(𝑧𝑔, 𝑤𝑔) + 𝐸(𝑤𝑔∆𝑧𝑔)    (3) 

As altruistic traits, by definition, always have high group level fitness, one could 

conclude that the covariance is positive and altruism should evolve easily. However this 

formulation entirely neglects within group selection, which precisely is where the costs of 

altruism lay. To remedy this oversight, one can use the original formulation for individual 

based evolution (Equation 1) to expand the term Δzg: 

∆𝑧 = cov(𝑧𝑔, 𝑤𝑔) + 𝐸(𝑤𝑔[cov(𝑧𝑔𝑖, 𝑤𝑔𝑖) + 𝐸(𝑤𝑔𝑖∆𝑧𝑔𝑖)])  (4) 

Here zgi and wgi are the trait and fitness values of individual i in group g. This equation 

can be simplified by substituting correlations for the covariances, as in Equation 2, and 

ignoring the final term (E(wgiΔzgi)). Using βg for the group level selection coefficient and 

βi for the individual level section coefficient, yields: 

∆𝑧�=βg var(zg)+𝐸�(wgβg var(zgi))   (5) 

 Because altruistic traits confer positive population level fitness and negative 

individual fitness, βg must be positive and βi must be negative. Therefore, Equation 5 

shows that the evolution of altruistic traits requires high variance between groups 

(var(zg)) and low variance within groups (var(zgi)). Returning to the Prisoner’s dilemma, 

individual defectors can outcompete cooperators, but groups of cooperators may out 

compete groups of defectors. However, just one defector in a population of cooperators 

will eventually drive those cooperators to extinction. Therefore, for cooperation to be 
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maintained on a long term basis the variation within populations must be effectively zero, 

which is a highly unlikely scenario. 

Mechanisms for the Evolution of Altruism 

 How, then, can altruism evolve if within group variation must be unrealistically 

low? The answer to this question comes in myriad forms and is often system specific, but 

any solution must either minimize the variance for an altruistic trait within groups 

(var(zgi)) or minimize the costs of an altruistic trait to cooperators. Kin selection is an 

important mechanism for minimizing within group variance. The second option, 

changing the costs and benefits of a public good, forms the topic of the first two chapters 

of this thesis. Therefore, I will briefly introduce kin selection and then discuss the first 

two chapters of this thesis in which I examine what can happen when the costs and 

benefits of public goods change with population density. 

 Kin selection, also known as inclusive fitness, is a method that includes the fitness 

of relatives when determining the fitness of an individual. For example, an individual 

whose sister has three offspring would have a higher inclusive fitness than an individual 

whose sister has zero offspring, all else being equal. Therefore, inclusive fitness captures 

the benefits that an altruistic trait has on close relatives (Hamilton 1963). Kin selection 

focuses on the relatedness, r, between individuals, the benefits conveyed to the relative 

by an altruistic trait, b, and the cost of the altruist of the trait c. Using these definitions, an 

altruistic trait will be advantageous if, as Hamilton (1963) showed: 

𝑟𝑏 > 𝑐       (6) 
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 Whereas group selection in Equation 5 requires that a population be divided into a 

number of discrete groups, relatedness (r in Equation 6) provides a continuous 

measurement that can be applied to all members of a population. Kin selection has been 

incredibly successful in explaining the evolution of many altruistic traits, especially the 

evolution of social insects (Queller and Strassmann 1992), however its application is not 

quite as straightforward as the name suggests. Relatedness (r), incorporates not only the 

manner in which two individuals are related to each other, but also the degree to which 

they are related to the population as a whole (smith et al. 2010). In other words, the 

relatedness of two brothers in a population of cousins is lower than their relatedness amid 

a population of strangers. Therefore, kin selection is another way of restating that the 

evolution of altruism requires low variance within groups and higher variance between 

groups, albeit with a far more useful definition of “groups”. 

 Altruistic traits can evolve much more readily when organisms can change their 

strategies based on their partner’s actions. In 1981 researchers Robert Axelrod and W. D. 

Hamilton, author of the seminal papers on kin selection cited above, invited the public to 

submit strategies for playing the iterated Prisoner’s dilemma. These strategies were pitted 

against each other in series of computer simulations to determine the most competitive 

strategy. Surprisingly, the winning strategy was the simplistic tit-for-tat, which simply 

cooperates at first and subsequently copies its partner’s behavior (Axelrod and Hamilton 

1981). By changing its behavior to match its partner, an organism exhibiting tit-for-tat 

behavior avoids being taken advantage of by defectors while maintaining high levels of 

cooperation with other tit-for-taters. In terms of Equation 5, the variance in strategies 
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among partners is almost zero, facilitating the evolution of cooperation. Tit-for-tat like 

strategies have been observed in a number of biological systems, where they are often 

called partner sanctioning, from interactions between fish (Milinski 1987) to exchanges 

between plants and nitrogen fixing bacteria (Kiers et al. 2006). 

 Altruistic traits are interesting because they are relatively common (van Dyken 

and Wade 2012) but, at first glance, seem unlikely to evolve. Group selection, kin 

selection, and partner sanctioning are all mechanisms that facilitate the evolution of 

altruism under static costs and benefits. Previous studies have shown that when the 

benefits of traits change with population density, natural selection can temper or 

ameliorate evolution of rapacious behavior under a tragedy of the commons (Rankin 

2007). In Chapters 1 and 2 of this thesis, I examine the evolution of virulence, a trait 

involving public goods, when the costs and benefits are variable.  

Chapter 1: The evolution of virulence in a symbiotic community 

 In Chapter 1, I use the classic virulence tradeoff between transmission rate and 

infection duration but alter it in three ways to ask whether multiple infections necessarily 

lead to the evolution of more damaging parasites. First, I model the evolution of parasites 

and mutualists on a continuum. A symbiont’s effect on its host is modeled as either 

positive or negative virulence, and its evolution depends on the biotic context. Second, I 

place the tradeoff in an ecological context. When infection frequency is low, new 

infections are easy to establish and selection favors virulent and rapidly reproducing 

symbionts. When infection frequency is high, new infections are difficult to establish and 
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selection favors strains with low virulence that can maintain long lasting infections 

(Lenski and May 1994). Third, I place the tradeoff in a community context by making 

virulence a public good. Symbionts that aid their hosts act as cooperators, prolonging the 

infection duration of co-infecting symbionts. Conversely, virulent pathogens act as 

defectors, killing the host and decreasing their own infection duration of and that of co-

infecting symbionts. Using this framework I show that mutualisms can be maintained in 

the face of multiple infections and that multiple infections do not necessarily lead to the 

evolution of greater virulence. 

Chapter 2: The evolution of virulence and defense of the host 

In Chapter 2, I expand on the framework established in Chapter 1 by examining 

the consequences of symbiont-mediated defense of the host on the evolution of virulence. 

Interactions between symbionts within a host can be important for the evolution of 

virulence, especially when symbionts can kill or inhibit other, co-infecting symbionts 

(Rigaud et al. 2010). Many symbionts may defend their hosts from attack. For example, 

the endosymbiont of fruit flies, Wolbachia, can serve as a defensive symbiont by 

protecting its host from a virus (Teixeira et al. 2008). Also, fungal endopytes in the genus 

Xylaria can protect the leaves of trees from antagonistic fungal pathogens (Fukasawa et 

al. 2009). In a macrobiotic example, Megalomyrmex ants serve as symbionts of fungus 

farming ants by protecting them from invasion by more aggressive species of ants 

(Adams et al. 2012). By defending hosts from their enemies, symbionts can avoid the 

public costs associated with virulent, co-infecting symbionts. Therefore, I incorporate 



   
 

15 
 

symbiont defense of the host into the framework established in chapter 1 to show that 

symbiont defense of the host can temper the evolution of virulence and preserve 

mutualisms.  

Chapter 3: Natural variation in virulence in a pathogen 

Chapters 1 and 2 consist of mathematical models that assume sufficient genetic 

variation for the evolution of important traits such as virulence and defense of the host. In 

the third chapter I utilize fungal strains isolated from two different populations of host 

plants to look for variation in traits important to the host-symbiont relationship and 

interactions between symbionts. I examine two traits, virulence toward the host in a 

pathogen, and inhibition of pathogen growth by a defensive symbiont. First, I examine 

evidence for genetic variation in virulence of the pathogen of maize, Ustilago maydis. 

Second, I examine evidence for genetic variation in the ability of the the fungal 

endophyte Fusarium verticillioides, to inhibit U. maydis growth (Rodriguez Estrada et al. 

2011). Additionally, to test for factors that may constrain the evolution of virulence in U. 

maydis, I look for a correlation between U. maydis growth in vitro and virulence toward 

the plant. Together, the chapters of this thesis help close the gap between theory, which 

predicts the evolution of communities of virulent pathogens (Frank 1996), and 

observations that most symbionts are relatively benign (Rodriguez et al. 2009; 

Arumugam et al. 2011). 
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Chapter 1: Coevolution between mutualists and parasites in symbiotic communities may 

lead to the evolution of lower virulence. 

 

 

ABSTRACT 

Many eukaryotes simultaneously harbor a diverse community of parasitic, mutualistic, 

and commensal microbial symbionts. Although the diversity of these microbial symbiotic 

communities has recently drawn considerable attention, theory regarding the evolution of 

interactions among symbionts and with the host is still in nascent stages. Here we 

evaluate the role of interactions among co-occurring symbionts on the evolution of 

virulence towards the host. We place the virulence-transmission tradeoff into a 

community context and model the evolution of symbiont trophic modes along the 

continuum from parasitism (virulence) to mutualism (negative virulence). To establish a 

framework for studying multiple infections of the same species, we develop a concept of 

shared costs, for which the negative consequences of virulence toward the host are shared 

to varying degrees among species symbiontspecies. We then extend the model to co-

infection by multiple species, a parasite and a mutualist. The results shows that 

mutualism is maintained when shared costs are sufficiently low, while greater virulence 

and parasitism toward the host are more likely when shared costs are high. Lastly, we 

show that the presence of a mutualist can ameliorate some costs of pathogen virulence, 

and consequently, both pathogen and mutualist species evolve to a less virulent state. 
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Introduction: 

Both plant and animal eukaryotes harbor a diverse and abundant microbiome of 

symbiont species living within their tissues (Arnold et al. 2000; Qin et al. 2010). While 

the complexity of these symbiotic communities is increasingly recognized (e.g., Piroth et 

al. 1998; Arnold et al. 2003; Oliver et al. 2003; Márquez et al. 2007), much less is 

understood about the function of these symbionts (The Human Microbiome Project 

Consortium 2012; Talbot et al. 2014). However, it is becoming increasing clear that few 

of these microbes cause disease (Dethlefsen et al. 2007). Consequently, the ecological 

factors and evolutionary processes that lead to parasitism, mutualism, or commensalism 

of microbes with their hosts remain an open question (Thrall et al. 2006; Rigaud et al. 

2010; Lively et al. 2014). In this work, we address the effects of interactions among co-

occurring symbionts on the evolution of virulence.  

Parasitism and mutualism describe extremes of a continuous spectrum of 

symbiont relationships with the host (Johnson et al. 1997; Denison and Kiers 2004), and 

transitions in symbiotic trophic modes may often occur (Arnold et al. 2009). However, 

the bodies of theory addressing the evolution of mutualistic and parasitic symbiotic 

modes have largely developed separately and in parallel. Studies of parasitism typically 

use deterministic models and explain the evolution of virulence by focusing on the 

dynamics of host populations, symbiont clearance, and transmission rates (Anderson and 

May 1979; Ewald 1980). On the other hand, studies of mutualism have most often used 

models based on game theory (Axelrod and Hamilton 1981) and focus on the conditions 

required for the maintenance of cooperation against "cheaters". Therefore, the study of 
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mutualism has focused on mechanisms such as repeated interactions (Doebeli and 

Knowlton 1998; Doebeli et al. 2004), host sanctions (West et al. 2002), kin selection 

(Bijma and Aanen 2010; Smith et al. 2010), and mode of transmission (Genkai-Kato and 

Yamamura 1999). Consequently, we lack an understanding of causes for evolutionary 

transitions between mutualism and parasitism, especially in the context of the diverse 

symbiotic communities found in most eukaryotic hosts.  

To date, most studies have focused on pairwise host-symbiont interactions 

(Stanton 2003) and invoke tradeoff models for understanding the constraints on virulence 

(Asplen et al. 2012). For parasite-host interactions, a negative correlation between the 

rate and duration of symbiont reproduction should limit the evolution of virulence, here 

defined as damage to the host that decreases host fitness (Kermack and McKendrick 

1932; Anderson and May 1979; May and Anderson 1983; Lenski and May 1994; Gandon 

et al. 2001; Alizon et al. 2009). While the virulence-transmission tradeoff has been 

demonstrated in pathogenic interactions (Edmonds et al. 1975; Ebert and Mangin 1997; 

Mackinnon and Read 1999; Messenger et al. 1999; Ebert 2003; de Roode et al. 2008), it 

is documented for fewer mutualistic interactions (e.g., Herre and West 1997; Oono et. al 

2011) despite its apparent explanatory power (Asplen et al. 2012). The tradeoff involved 

in mutualism may be viewed in the same light as parasitism; more beneficial interactions 

with a host should result in longer infection durations but lower transmission rates 

(Trivers 1971; West et al. 2002; Kiers et al. 2003). In this work, we go beyond pairwise 

interactions to bring trade-off models into the more realistic ecological context of 

multiple diverse symbiont communities co-infecting eukaryotic hosts.   
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A tradeoff between transmission and infection duration may explain why parasites 

evolve an intermediate level of harm to their host (Levin and Pimentel 1981; Antia et al. 

1994; Lenski and May 1994) and outlines the conditions under which mutualisms are 

favored (Frank 1996; Neuhauser and Farrgione 2004). However, the virulence tradeoff 

also predicts that within-host competition among co-infecting symbionts will select for 

increased virulence and select against mutualisms (Bremermann and Pickering 1983; 

Antia et al. 1994; Nowak and May 1994; van Baalen and Sabelis 1995; Mosquera and 

Adler 1998; Gandon et al. 2002; de Roode et al. 2005; Caraco et al. 2006; Alizon et al. 

2009; Alizon et al. 2013). Therefore, the reality of rampant multiple infections by diverse 

and largely non-pathogenic symbionts in virtually all eukaryotic hosts pose a paradox: if 

co-infection selects for more aggressive parasites, how is so much variation in virulence 

maintained? 

To address this paradox we look to the diverse interactions among members of the 

microbiome as ecological factors that temper the evolution of increased virulence 

otherwise expected with infection by multiple symbionts (Fellous and Salvaudon 2009; 

Jaenike et al. 2010; Fenton et al. 2011; May and Nelson 2014). When multiple symbionts 

infect a host, virulence from one symbiont has the potential to effect all co-infecting 

symbionts through effects on the shared host. Therefore, we extended single infection 

models to incorporate virulence as a public cost. In doing so, we place the virulence-

transmission tradeoff in a community context to consider the conditions under which 

symbiotic interactions with hosts might evolve along the continuum between parasitism 
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and mutualism, and to show that symbionts with diverse trophic interactions with the host 

can persist under multiple infections. 

 

Methods 

Model description 

We begin by explicitly defining virulence as a symbiont trait that increases 

transmission at the cost of harming the host and thus decreases infection duration. Under 

our definition of virulence, symbionts with positive virulence harm their hosts and are 

parasites, while symbionts with negative virulence decrease host mortality and are 

mutualists. To model the relationship between symbiont transmission and infection 

duration, we incorporate a function (s), which acts as a switch between reproductive and 

non-reproductive states of the symbiont in the host. We then accommodate multiple 

infections of varying symbiotic relationship to the host by incorporating an explicit term 

for shared costs, the costs of virulence toward the host experienced by each symbiont in 

the community within that host. The model with shared costs, both within and between 

species, explores the conditions under which mutualisms might evolve, and diverse 

symbionts persist, within the microbial communities occupying eukaryotic hosts. 
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Figure 1.1: Model parameters. Host populations are either susceptible or infected. 

Establishment of new infections is modeled by the effective contact rate (c) and 

converts susceptible hosts into infected hosts. Symbiont infections have a probability 

s of entering into a non-reproductive state, and in that state, symbionts may die at 

probabiliy m or survive at probability 1-m .  Infections have a probabilty of 1-s of 

producing b propagules. Together, b and c define the effective transmission rate 

(bc).  Virulence manifests as a positive correlation between propagule production (b) 

and the probability of entering a non-reproductive state (s).  
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As in Lenski and May (1994), the host population does not evolve and we assume 

that the host population size is regulated by a negative density dependent, logistic 

Box 1: Terms used. 
ab: Slope of change in propagule production due to virulence 

as: Slope of change in s due to virulence 

b: Number of propagules produced per infection 

b0: Basal number of propagules produced; value of b when  

 virulence is zero 

c: Contact rate with susceptible hosts 

I: Number of infections 

K: Carrying capacity of hosts 

m: Probability of symbiont death while in a non-reproductive 

state 

N: Number of hosts 

p: Shared costs of virulence; the fraction of s due to the effects 

of co-infecting symbionts 

rH: Reproductive rate of uninfected hosts 

s: Probability of symbiont entering a non-reproductive state  

s0: Basal probability of entering a non-reproductive state; value 

 of s when virulence is zero 

v: Virulence, or increased host mortality due to infection 
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function. The host mortality rate is proportional to the mean symbiont virulence weighted 

by the infection frequency. These assumptions, while simplistic, allow us to use the host 

population as a feedback on symbiont evolution chiefly through the infection rate. The 

actual host population size has minimal effect on the results for symbiont evolution. The 

following equation for host population dynamics results:  

𝑑𝑁

𝑑𝑡
= 𝑁 ((1 −

1

𝐿
∑

𝐼𝑖

𝑁
𝑣𝑖̅

𝐿
𝑖 ) 𝑟𝐻 (1 −

𝑁

𝐾
) −

1

𝐿
∑

𝐼𝑖

𝑁
𝑣𝑖̅

𝐿
𝑖 )    (1) 

Here N is the total number of hosts, 𝐼𝑖 is the number of hosts infected by symbiont 

species i, 𝑟𝐻 is the growth rate of the host population in absence of any symbionts, L is 

the number of symbiotic species, and 𝑣𝑖̅ is the average virulence of genotypes within 

species i, and K is the host carrying capacity. The weighted average virulence of 

symbionts (
1

𝐿
∑

𝐼𝑖

𝑁
𝑣𝑖̅

𝐿
𝑖 ) represents symbiont induced host mortality and decreases both host 

population growth rate as well as host population size at equilibrium. By incorporating a 

switch between reproductive and non-reproductive states which occurs at probability s 

(Figure 1.1), the rate of change in the number of infections then becomes: 

𝑑𝐼

𝑑𝑡
= 𝐼((1 − 𝑠)𝑏𝑐 − 𝑠𝑚)     (2) 

If switched to a non-reproductive state, the symbiont suffers mortality within the 

host at rate m. Symbionts in a reproductive state (1 − 𝑠) produce b propagules, which 

infect a susceptible host upon contact. The contact rate (c) encompasses both 

transmission to a new host and the availability of susceptible hosts. A feature of this 

model is that (1 − 𝑐) describes the probability of death during transmission, which is 
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subject to ecological context, as compared to m, which describes symbiont mortality 

within the host (Box 1). As s appears in both the reproduction term,�(1 − 𝑠)𝑏𝑐, and the 

mortality term (𝑠𝑚), any increase in s will result in both an increase in symbiont death 

and a decrease in transmission. Appropriate to the goal of understanding the effects of 

interactions among multiple symbionts on the evolution of virulence, b, m, and s, reflect 

processes within the host, but c does not. 

Rearranging terms of Equation 2 to express the more familiar net reproductive 

rate (𝑅0) yields 𝑅0 =
(1−𝑠)𝑏𝑐

𝑠𝑚
. Note that this formulation differs from the classical form 

(Anderson and May 1982) in that we focus on symbiont processes. Here, 1-s in the 

numerator represents pathogens in the host that are reproducing with an effective 

transmission rate, bc, to a new host. In the denominator, sm represents pathogens that die 

without reproducing and thus is analogous to host recovery or clearance of the pathogen.  

In this work, we use the per capita rate of change in infections (
𝑑𝐼

𝐼𝑑𝑡
) of each 

genotype (i), as a measure of fitness, wi. To model selection pressure on virulence, we 

examine the relationship between virulence and fitness, of any individual genotype: 

   𝑤𝑖 = (1 − 𝑠𝑖)𝑏𝑖𝑐 − 𝑠𝑖𝑚𝑖    (3.1) 

𝛿

𝛿𝑣
𝑤𝑖 = ((1 − 𝑠𝑖)𝑏𝑖

′ − 𝑠𝑖
′𝑏𝑖)𝑐 − 𝑠𝑖

′𝑚𝑖 − 𝑠𝑖𝑚𝑖
′    (3.2) 

Here 𝑏𝑖
′, 𝑠𝑖

′, 𝑚𝑖
′�are the derivatives of each function with respect to virulence. 

Whereas Equation 2 gives the change in total infections for a symbiotic species, Equation 

3.1 gives the change in the numbers of an individual strain. Optimal virulence occurs 
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where Equation 3.2 is zero and reflects an evolutionary stable state (ESS) which is 

refractory to invasion by genotypes that exhibit either greater or lesser virulence. In this 

work, we are interested in evolutionary or co-evolutionary outcomes, therefore we focus 

on the predicted optimal virulence level after sufficient time for natural selection to 

operate and the system has reached a stable state. Hence, we look for solutions to 

Equations 2 and 3.2 that yield evolutionary stable states (ESS) at ecological equilibria.  

 Combining Equation 2, which gives ecological equilibria for an ESS, with 

Equation 3.2, which gives ESS for each ecological equilibria, produces a system of 

ecological and evolutionary feedbacks that determine the virulence level at equilibrium. 

When a new symbiont enters an uninfected, susceptible host population, c is large and 

selection for transmission is predicted to lead to the evolution of more virulent symbiont 

populations. As the symbiont spreads and susceptible hosts become scarcer, selection 

pressure for rapid transmission decreases and symbiont virulence evolves to an 

intermediate level (for a detailed description see Lenski and May 1994). Note that 

throughout this work we assume sufficient genetic variation and a stable direction of 

selection over time to generate the predicted effects. The evolution of virulence is 

constrained by the boundary conditions that b is positive and s, m, c are all between zero 

and one. Discontinuities can occur when 
𝛿

𝛿𝑣
𝑤𝑖 = 0 occurs outside of the boundaries 

conditions (b > 0; I > 0; 0 ≤ s ≤ 1). 

Virulence tradeoff.  

We incorporate the tradeoff between transmission and duration of infection by 

allowing symbiont propagule production (b), the switch to a non-reproductive states (s), 
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and mortality (m) to increase with virulence (v): 
𝛿𝑠

𝛿𝑣
,
𝛿𝑏

𝛿𝑣
,
𝛿𝑚

𝛿𝑣
> 0. Additionally, we assume 

that the contact rate (c) is negatively correlated with infection frequency: 
𝛿𝑐

𝛿(𝐼/𝑁)
< 0 as in 

Anderson and May (1979). Under these conditions virulence (v) evolves according to 

Equation 3.2, while the symbiont population changes according to Equation 2.  As long 

as all functions are monotonic, the “competitive exclusion principle” holds and each level 

of infection frequency (𝐼/𝑁) will yield a single, optimal virulence (Bremermann and 

Thieme 1989). If infection frequency in low, c is large, and natural selection favors 

symbionts with high reproductive rates and high virulence. As infection frequency 

increases, c decreases, and infections that are longer lasting but more slowly reproducing 

are favored (Lenski and May 1994). Equations 2 and 3 reach equilibrium where 
𝑑𝐼

𝑑𝑡
= 0 

and 
𝛿

𝛿𝑣
𝑤𝑖 = 0 or:  

 𝑏′

𝑏
−

𝑠′

𝑠(1 − 𝑠)
−
𝑚′

𝑚
= 0 

(4) 

Explicit incorporation of multiple infections and shared costs.  

The model focuses on the indirect selection on virulence caused by the effects of 

co-infecting symbionts on host mortality. To do so, we incorporate a term for shared 

costs; each symbiont gains an individual reward from harvesting host resources, but all 

co-infecting strains share the costs of effects on host mortality rates, either positive 

effects of lowering host mortality (mutualism) or negative effects (parasitism). Models 

incorporating shared costs under multiple infections generally assume a set number of 

infecting strains, most often two, and that co-infecting strains share costs of virulence 
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completely (Bremermann and Pickering 1983; van Baalen and Sabelis 1995; Mosquera 

and Adler 1998; Friesen and Mathias 2010). However, a number of mechanisms such as 

spatial structure (Lipsitch et al. 1995; Caraco et al. 2006; Kerr et al. 2006), kin structure 

(Frank 1992), and host sanctions or defense (Antia et al. 1994; Kiers et al. 2003) may 

prevent the costs of virulence from being shared completely. 

The cost of virulence to an individual strain is modeled through s, the switch to a 

non-reproductive state of the parasite, which might result from biological factors such as 

host resistance or death of the host. Therefore, s in Equations 2 and 3 depends on the 

virulence of an individual strain (𝑣) and the average virulence of all co-infecting strains 

(𝑣̅) (Frank, 1997). Additionally, because the cost of virulence of co-infecting strains will 

depend on the frequency of the symbiont in the host, we modify 𝑣̅ by a function,�𝑃 (
𝐼𝑥

𝑁
), 

which accounts for infection frequency of that strain and is defined by the overall 

frequency of multiple infections and the degree to which costs are shared within a host. 

The shape of 𝑃 (
𝐼𝑥

𝑁
) is system specific and depends on the probability of reinfection and 

how virulence manifests within the host. For example, symbionts that grow systemically 

through the host might generate greater shared costs than do symbionts that grow only in 

the local region at the point of infection. 

While 𝑃 (
𝐼𝑥

𝑁
) can take on different shapes to encompass different modes of host 

symbiont interaction, the contact rate (c) must be limited by the infection frequency for 

the system to reach ecological equilibrium. Thus, while each host can harbor multiple 
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symbionts, we retain the negative density dependent feedback (
𝛿

𝛿
𝐼𝑥
𝑁

𝑐 < 0) required for 

Equation 2 to reach equilibrium. Assuming that the effects of virulence among multiple 

infections are additive (as in Bremermann and Pickering 1983), and taking the average 

over all L species gives the total public cost of virulence: 
1

𝐿
∑ 𝑃 (

𝐼𝑖

𝑁
) 𝑣𝑖̅

𝐿
𝑖  (for a non-additive 

treatment, see Alizon et al. 2009). The public cost of virulence as used here accounts for 

the average virulence of each species, the infection frequency, and the degree to which 

costs are shared among symbiont genotypes and between symbiont species. Finally, we 

insert linear functions into b, c, s, and m to obtain a set of equations which model the 

evolution of virulence for symbiotic species x: 

 𝑏𝑥 = 𝑎𝑏𝑥𝑣𝑥 + 𝑏0𝑥 (5.1) 

 

𝑠𝑥 = 𝑎𝑠𝑥𝑣𝑥 +
1

𝐿
∑𝑃(

𝐼𝑖
𝑁
)𝑣𝑖̅

𝐿

𝑖

+ 𝑠0𝑥 

(5.2) 

 𝑚𝑥 = 𝑀𝑥�𝑖𝑠�𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡�𝑎𝑛𝑑��0 < 𝑀𝑥 ≤ 1 (5.3) 

 
𝑐𝑥 = 1 −

𝐼𝑥
𝑁

 
(5.4) 

The terms 𝑎𝑏 and 𝑎𝑠 give the slopes of the payoff and penalty for virulence, 

respectively. Greater values of 𝑎𝑏 yield more propagules per damage done to the host, 

while greater values of 𝑎𝑠 increase the likelihood that an infection will enter a non-

reproductive state due to harming its host. Two parameters expresses symbiont processes 

when virulence is zero: 𝑏0 is the basal reproduction rate and 𝑠0 is the basal probability of 

entering a non-reproductive state. For simplicity, we assume m to be a constant; as this 



   
 

29 
 

will cause m to drop out of Equation 4, the exact value of M will have no effect on 

virulence at equilibrium. Note that c as defined by Equation 5.4 will produce a logistic 

relationship between change in infections and infection frequency. We employ a logistic, 

density-dependent function to illustrate our results because it is mathematically tractable 

and commonly used.  Many mechanisms can result in density-dependent infection 

success, such as host immune response (e.g. Portugal et al. 2011), host behavior changes, 

or direct action of the symbiont (e.g., Folimonova 2012). Note that because the 

probability of infection for each symbiont species depends only on the infection 

frequency of that species, symbionts of the same species  affect each other both by 

competing directly for infection sites and through shared costs of virulence whereas 

symbionts of different species affect each other only indirectly through the shared costs 

of virulence (Equation 5.2). 

For every value of c and 
1

𝐿
∑ 𝑃 (

𝐼𝑖

𝑁
)𝑣𝑖̅

𝐿
𝑖  there exists an optimal virulence 𝑣𝑥

∗, for 

each species such that 
𝛿

𝛿𝑣𝑥
𝑤𝑥 = 0. If all strains within a species x have virulence 𝑣𝑥

∗ and 

the corresponding fitness 𝑤𝑥
∗, and a new strain with virulence 𝑣𝑥̇ and fitness 𝑤𝑥̇ enters the 

population, the difference in growth rates between the two strains is: 𝑤𝑥̇ − 𝑤𝑥
∗ =

−𝑎𝑠𝑥𝑎𝑏𝑥(𝑣𝑥
∗ − 𝑣𝑥̇)

2. Because 𝑎𝑠𝑥 and 𝑎𝑏𝑥�are always positive, 𝑤𝑖̇  is always less than 𝑤𝑥
∗ 

making 𝑣𝑥
∗�an evolutionary stable state. This system reaches equilibrium where 

𝑑𝐼𝑥

𝑑𝑡
=

0;
𝛿

𝛿𝑣𝑥
𝑤𝑖 = 0�; 𝑣𝑥̅̅ ̅ = 𝑣𝑥

∗  for all L species or: 
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𝑣𝑥
∗ =

−(
1
𝐿
∑ 𝑃 (

𝐼𝑖
𝑁)𝑣𝑖̅

𝐿
𝑖 + 𝑠0𝑥) ± √(

1
𝐿
∑ 𝑃 (

𝐼𝑖
𝑁)𝑣𝑖̅

𝐿
𝑖 + 𝑠0𝑥) −

𝑎𝑠𝑥𝑏0𝑥
𝑎𝑏𝑥

𝑎𝑠𝑥
 

(6) 

Finding solutions.  

The equations presented here yield solutions for any set of parameters given 

positive tradeoff slopes (𝑎𝑏𝑥 > 0�and 𝑎𝑠𝑥 > 0) and basal probability of non-reproduction 

(𝑠0𝑥) between 0 and 1. Solutions can be defined explicitly in the special case of single 

infections (P=0). Under single infections the shared costs are zero (
1

𝐿
∑ 𝑃 (

𝐼𝑖

𝑁
) 𝑣𝑖̅

𝐿
𝑖 = 0) 

and Equation 6 yields explicit solutions which are independent of host dynamics 

(Equation 1) and host contact dynamics (c). Multiple infections (P>0), on the other hand, 

produce non-linear equations in which cannot be solved explicitly. However, numerical 

solutions can be found by testing values of shared costs (
1

𝐿
∑ 𝑃 (

𝐼𝑖

𝑁
) 𝑣𝑖̅

𝐿
𝑖 ) for equilibria 

using Equation 2 and Equation 6. First, a test value of  
1

𝐿
∑ 𝑃 (

𝐼𝑖

𝑁
)𝑣𝑖̅

𝐿
𝑖  is chosen. This test 

value of shared costs yields a calculated 𝑣𝑥
∗ for each species according to Equation 6. 

Inserting the calculated 𝑣𝑥
∗ and 

1

𝐿
∑ 𝑃 (

𝐼𝑖

𝑁
) 𝑣𝑖̅

𝐿
𝑖  into Equation 2 yields a calculated 

𝐼𝑥

𝑁
 for 

each species. Finally, the calculated shared costs using the calculated 𝑣𝑥
∗ and 

𝐼𝑥

𝑁
 can be 

compared to the original, test shared costs. Equilibrium occurs where the calculated and 

test shared costs match. Given the equilibrium values for infection frequency and 

virulence, Equation 1 then yields the equilibrium host population size. Using a script 

written in Perl we found equilibria by exhaustively evaluating possible values of total 

shared costs to an accuracy of 10-5. Stability of each equilibria was then determined by 
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examining the sign of 
𝑑𝐼𝑖

𝑑𝑡
�and 

𝛿

𝛿𝑣
𝑤𝑖�at slightly higher and lower virulence and infection 

frequencies; 
𝑑𝐼𝑖

𝑑𝑡
 and 

𝛿

𝛿𝑣
𝑤𝑖 is negative both above and below in a stable equilibrium where 

𝑑𝐼𝑖

𝑑𝑡
 and 

𝛿

𝛿𝑣
𝑤𝑖�are positive to one side of an unstable equilibrium. In cases where the 

equilibrium falls outside of the boundary conditions (b > 0; I > 0; 0 ≤ s ≤ 1), the symbiont 

is either determined to go extinct or reach a state of mutualistic non-equilibrium where s 

is 0. 

 

Results 

Two observations can be made regarding Equation 4 without considering the 

exact shape of the propagule production (b), probability of entering a non-reproductive 

state (s), or mortality (m) functions. First, because c is not a term in Equation 4, the exact 

shape of the function describing the probability of contacting a susceptible host has no 

effect on virulence at equilibrium under single infections. Second, if the three functions b, 

m, or s, are not functions of virulence, the values of these parameters have no effect on 

virulence at equilibrium because the derivative with respect to v is zero.  

We focus on three scenarios: single infections, multiple infections of the same 

species, and co-infection of two species, a potential pathogen and a potential mutualist. In 

all cases, we assume b and s are linear functions of virulence, M is constant, and c is 

density-dependent function as shown in Equations 5.1 through 5.4 above. 

Single Infections.  
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In the special case of single infections where 𝑃 (
𝐼

𝑁
) = 0, the system can be solved 

explicitly giving virulence at equilibrium:  

 

𝑣∗ =
−𝑠0 ± √𝑠0 −

𝑎𝑠𝑏0
𝑎𝑏

𝑎𝑠
 

(7) 

As can be seen in Equation 7, increasing the fecundity payoff for virulence, 𝑎𝑏, leads to 

greater levels of virulence at equilibrium.  Conversely, increasing the penalty for 

virulence, 𝑎𝑠, as the switch to a non-reproductive state (s), leads to lower levels of 

virulence at equilibrium. A key finding is that a greater basal probability of being in a 

non-reproductive state, 𝑠0, leads to the evolution of greater virulence. Because we are 

modeling virulence as the net cost to the host, negative v corresponds to a mutualistic 

symbiont that reduces host mortality, thus prolonging infection duration at the cost of 

decreasing symbiont transmission. When 𝑏0 <
𝑎𝑏

𝑎𝑠
(𝑠0 ± 𝑠0

2), 𝑣∗ is less than zero, and 

mutualism will evolve. Thus, incorporating symbiont reproduction while in a commensal 

state with no virulence (b0 ) allows for the evolution of mutualisms.  
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Figure 1.2: Virulence evolution for single infections. The top panel depicts the 

effects of varying the basal probability of entering a non-reproductive state, s0, on 

the host population size N (Equation 1), the number of infections, and equilibrium 

virulence over time (b0=0.3; rH=8; as=1; M=1). The bottom panel depicts the effect of 

varying the basal propagule production rate, b0, for the host population size, 

number of infections, and equilibrium virulence over time (so=0.05; rH=8; as=1; 

M=1). Positive virulence indicates parasitism, negative virulence indicates 

mutualism, and zero virulence indicates commensalism. Mutualisms may evolve 

when so is low and b0 is relatively high. 

 

Figure 1.2 depicts the results of a discrete time series analysis where the host 

population size and the symbiont infection frequency begin small relative to K and 

change according to Equations 1 and 2, and where virulence evolves according to 
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Equation 3. At each time step, t, the population reaches local equilibrium where 
𝑑𝐼

𝑑𝑡
= 0 

for the average virulence during the previous time step, t-1. Additionally, average 

virulence evolves to the evolutionary stable state given the infection frequency at t-1. In 

all cases, immediately upon entering a population of susceptible hosts, high virulence is 

advantageous and we find a spike of virulence even among potential mutualists. As the 

symbiont spreads throughout the population, susceptible hosts are harder to find and 

lower virulence is more advantageous. If b0 is sufficiently high and s0 is sufficiently low 

(s0 =0.05 and b0> 0.1 in Figure 1.2), the symbiont evolves negative virulence and acts as 

a mutualist, and the host population approaches K. In cases of positive virulence 

(parasitism), the host population equilibrates below the carrying capacity. Interestingly, 

stable commensal states (virulence near 0) may be obtained at intermediate values of b0 

and s0.  However, most ranges of parameter values have a cost to host population size, 

suggesting selection for host resistance if we had allowed the host population to evolve.  

For the evolution of virulence, the two results shown with s0 = 0.05 (top panel) 

and b0 = 0.3 (bottom panel) are special cases where the term under the square root in 

Equation 7, 𝑠0 −
𝑎𝑠𝑏0

𝑎𝑏
, is negative and equilibrium is never reached. Here optimal 

virulence occurs where s < 0. Because this violates the boundary condition that s must be 

positive, the system enters a non-equilibrium state where virulence evolves as low as 

possible, −
𝑠0

𝑎𝑠
, and the infection frequency approaches unity. By separating transmission 

affected by the virulence tradeoff, 𝑎𝑏𝑣, from the basal transmission rate, 𝑏0, and 
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incorporating ecological feedbacks of the host population size, these equations allow the 

full spectrum of mutualistic to parasitic interactions with the host to evolve. 

 

Multiple infections by a single species.  

To find solutions for multiple infections by different strains of a single species, we make 

𝑃 (
𝐼𝑥

𝑁
) = 𝑝

𝐼𝑥

𝑁
, where 𝑝 represents fractional shared costs, or the fraction of virulence that 

affects other symbionts via effects on mortality of the shared host. Also, we have 𝑎𝑠𝑥 =

(1 − 𝑝), the fraction of a strain’s virulence that affects its own probability of being in a 

non-reproductive state. Thus, this is a special case where the deleterious effect of a 

strain’s own virulence decreases as the effect of other strains’ virulence increases and the 

total cost of virulence is independent of p. The parameter p thus changes the manner in 

which each strain is affected by its own virulence and that of co-infecting strains. 

Additionally, as the level of shared costs is strongly affected by the infection frequency 

(
𝐼𝑥

𝑁
), the results now depend upon c, the probability of infection defined by Equation 5.4. 
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Figure 1.3: The effects of shared costs on the evolutionary stable state for 

virulence (A), total symbiont mortality (B), number of infections (C), and host 

population size (D). Grey lines indicate equilibrium states for an obligate parasite 

(b0=0), and black lines indicate equilibrium states for a potential mutualist (b0=0.7). 

Solid lines indicate stable equilibria, and dashed lines indicate unstable equilibria. 

Guide arrows illustrate the dynamics of the potential mutualist (black) and the 

potential pathogen (grey). 

 

The results of the model depend strongly on the degree of cost sharing and the 

basal production rate of infectious propagules (b0). If b0 = 0 (shown by the grey lines in 

Figure 1.3), symbiont reproduction always increases host mortality and the symbiont is 
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an obligate parasite. Virulence will increase as shared costs increase, pushing the 

symbiont total mortality rate (sm) towards one (Figure 1.3B), and both the parasite 

(Figure 1.3C) and the host (Figure 1.3D) go extinct, a tragedy of the commons. However, 

if the symbiont is a potential mutualist (black lines in Figure 1.3), one of three states may 

emerge. If cost sharing is sufficiently low, the system moves to a state of mutualistic non-

equilibrium. Virulence decreases until s reaches the lower boundary condition at s=0, and 

infection frequency and host population size both increase to carrying capacity (K). As 

shared costs increase, stable and unstable states emerge and the system becomes sensitive 

to initial conditions. If starting from a mutualistic state at values below those of the 

unstable equilibrium, shown by the dashed black line in Figure 1.3A, symbionts evolve 

ever decreasing virulence. However, if starting from a less mutualistic state defined by 

values above the dashed black line in Figure 1.3A, selection favors greater virulence and 

symbionts evolve to the parasitic stable state. As with the obligate parasite, as shared 

costs increase virulence increases hyperbolically and ultimately the host and symbiont go 

extinct as total mortality approaches one.  

Figure 1.3 depicts a scenario in which both public and individual costs of 

virulence increase with multiple infections and result in a classic tragedy of the 

commons. However, not all biological systems with shared costs experience a tragedy of 

the commons (Rankin et al. 2007). In the results above, the costs of an individual strain's 

virulence to itself (𝑎𝑠) decreases as the cost of co-infecting strains virulence (𝑝) 

increases. The total cost of virulence among all symbionts remains constant but the costs 
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are shifted from an individual strain that would receive the reproductive benefit of its 

own virulence to other co-infecting strains. 

 

Figure 1.4: Dissecting the effects of individual and public shared costs among 

multiple infections of the same species.  Starting parameter values were chosen that 

yield a commensal symbiont (v*=0) under single infections (p=0, b0=0.18; ab=2; 

s0=0.1; M=1). With these parameter values, total mortality (sm) above 0.1 indicates 

parasitism, total mortality at 0.1 indicates commensalism. Stable equilibria for sm 

are shown for the case in which the public cost of virulence changes with shared 

costs (s = v + pIv + s0; dotted line), where individual costs of virulence change with 

shared costs (s = (1-p)v + s0; dashed line), and where both individual and public costs 

change together with shared costs (s = (1-p)v + pIv + s0; solid line). All other 

parameters remain the same for the three conditions. Shared costs result in a 

tragedy of the commons (solid line where sm→1) only when symbionts 
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simultaneously experience lower costs of their own virulence and greater public 

costs from co-infecting strains. 

A strength of our approach is that we can decouple the effects of individual and 

shared costs by changing 𝑎𝑠 independently from p. We refer to 𝑎𝑠 as the individual cost 

of virulence and 𝑝 as the public cost of virulence and choose a parameter set that 

produces a commensal symbiont under single infections (see Figure 1.3). Because 

virulence reaches very large values if 𝑎𝑠 is small, but total symbiont mortality (sm) stays 

between zero and one, we illustrate the effect of manipulating public costs independently 

from individual costs of virulence by examining change in total symbiont mortality 

(Figure 1.4). If public costs of virulence increase while the individual costs remains 

constant, the commensal state is maintained until public costs become very high 

(p>0.65), at which point the symbiont adopts a more parasitic strategy (Figure 1.4, dotted 

line). Conversely, if the individual costs of virulence decrease and public costs of 

virulence remain constant, the commensal state is lost immediately and total mortality 

increases much more quickly than when public costs increases alone (Figure 1.4, dashed 

line). Furthermore, public and individual costs have non-additive effects on virulence 

when changed in concert. When public costs increase at the same time as individual costs 

decrease, virulence increases much faster than the previous two cases. Total mortality 

approaches one hyperbolically as p→1, resulting in a tragedy of the commons (Figure 

1.4, solid line).  

 

Co-infection by multiple species.  
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We are primarily interested in the evolution and maintenance of mutualisms in the face of 

co-infecting parasites and model this by using starting conditions that yield a mutualist 

(𝒂𝒃𝒎 = 𝟐, 𝒃𝟎𝒎 = 𝟎. 𝟒, 𝒔𝟎𝒎 = 𝟎. 𝟏) and a parasite (𝒂𝒃𝒑 = 𝟒, 𝒃𝟎𝒑 = 𝟎, 𝒔𝟎𝒑 = 𝟎. 𝟏) when 

shared costs are zero. When evolving alone, each symbiont is affected only by the 

average virulence of its own species, whereas under coevolution each symbiont is 

affected by the average virulence of its own as well as the other co-infecting species. 

 

Figure 1.5: Coevolution of a parasite and a mutualist. The evolutionary stable state 

at ecological equilibrium is shown for virulence (A) total mortality of symbionts (B) 

and total shared costs (
𝟏

𝑳
∑ 𝒑

𝑰𝒊

𝑵
𝒗𝒊̅

𝑳
𝒊 )�among symbionts (C). The status of potential 

mutualists is shown in black and obligate parasites in grey.  To compare results 

under coevolution and single species evolution, results are shown for the single 

species, shared cost model (dashed lines). The basal probability of entering a non-

reproductive state is indicated by a grey dotted line (s0 = 0.1) in panel B. Symbionts 

exhibiting virulence below zero and total mortality less than s0 = 0.1 are mutualists, 

and those exhibiting virulence greater than s0 = 0.1 are parasites. 
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As shown in Figure 1.5, the level of shared costs is critical; if shared costs are 

sufficiently low, the presence of a mutualist can mitigate some of the damage done by a 

pathogen. The decrease in host mortality mediated by the mutualist selects for less 

virulent pathogens and leads to lower equilibrium levels of virulence for both species 

than if both species had been evolving alone (Figure 1.5A). As shared costs increase, total 

mortality for both symbionts sharply increases (Figure 1.5B), the mutualist switches to a 

parasitic state. As the host is now subject to two parasites, total shared costs are higher 

than expected in the case of each species was evolving independently (Figure 1.5C). As 

shared costs increase further, the differences between coevolving and evolving alone 

disappears as both symbiont’s virulence increases hyperbolically and lead to a tragedy of 

the commons. 

 

Discussion 

In this work we develop a model to address the paradox of the many diverse 

microorganisms that live within most eukaryotic hosts without causing disease. We place 

virulence on a continuum of positive and negative values to examine the evolution of 

symbiotic associations with the host in the context of multiple infections. In our model, as 

in classic models (Bremermann and Pickering 1983, van Baalen and Sabelis 1995, 

Mosquera 1998, Alizon 2009), co-infecting symbionts share the cost of each other's 

virulence. We modeled the shared costs of virulence on a quantitative scale to capture the 

myriad factors that may limit the degree to which costs are shared; spatial structure 
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(Lipsitch et al. 1995; Orians and Jones 2001; Kerr et al. 2006), kin selection (Frank 

1996), host sanctions (Wilkinson and Sherratt 2001; Kiers et al. 2003) and immunity 

(Antia et al. 1994). We then examined a system in which different symbiont species do 

not compete directly for infection sites or host resources but do affect each other 

indirectly through their impact on the shared host. Placing the virulence tradeoff in a 

community context, we are able to show that mutualisms can be stable under multiple 

infections and that commensalism is an unexpectedly stable state under a wide range of 

ecological conditions. 

 

Model setup  

The model examines the evolution of symbionts along the continuum of virulence 

from parasitism to mutualism under co-infection by multiple, diverse species. We use a 

tradeoff between transmission and the probability of a symbiont entering a non-

reproductive and potentially fatal state to model the evolution of symbiont virulence. For 

generality, we use a linear relationship between the costs and benefits of virulence in lieu 

of more specific mechanisms related to factors affecting host-symbiont interactions such 

as host quality (May and Anderson 1983), host sanctions (West et al. 2002), waste 

product utilization (Genkai-Kato and Yamamura 1999), retaliatory behavior (Wilkinson 

and Sherratt 2001), or vertical transmission (Foster and Wenseleers 2006). Coupling the 

probability of entering a non-reproductive state to virulence allows incorporation of the 

full spectrum of host-symbiont relationships; positive values of virulence represent 

parasitism, and negative values represent mutualism. Just as virulence exists on a 



   
 

43 
 

continuum, the degree to which virulence of one symbiont affects other strains' mortality 

also manifests on a continuum. Therefore, to model outcomes under multiple infections 

we introduce a term, p, which accounts for the fraction of costs of virulence that are 

shared among co-infecting symbionts; p can vary between zero (single infection) to one 

(multiple infections where all costs are shared). Using an explicit term of cost sharing 

enables an examination of coevolution between multiple symbionts that engage in very 

different relationships with their hosts, such as parasites and mutualists. 

 

Single Infections 

Results show that increased virulence evolves under conditions similar to those 

shown in classic models under single infections where selection for increased 

transmission causes selection for greater virulence and results in a lower duration of 

infection (Bremermann and Pickering1983, Gandon et al. (2001). For example, greater 

host mortality or a greater immune response may lead to a greater probability that the 

parasite switches to a non-reproductive state and the evolution of increased parasite 

virulence. Interestingly, under parameter values allowing symbiont reproduction at zero 

virulence (a commensal state), the tradeoff between transmission and virulence may 

allow the evolution of mutualism instead of parasitism. Further, in contrast to parasitism, 

mutualisms emerge from non-equilibrium states as well as from stable equilibrium states. 

These non-equilibrium mutualistic states are obtained with parameter values under which 

symbionts receive little benefit for virulence relative to their rate of reproduction as a 

commensal. Under these parameters, selection favors ever more mutualistic symbionts 
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with infection frequencies approaching 100%. These mutualistic non-equilibrium states 

may explain the common observation of mutualists exhibiting tight vertical transmission 

or in systems with host sanctioning against parasites (e.g. Kikuchi et al. 2007; Ferrari et 

al. 2011; Melkonian et al. 2013).  

 

Multiple infections  

As single infections are the exception rather than the rule, we expanded the model 

to incorporate multiple infections of the same species. Similar to the models developed in 

Antia et al. (1994) and Mosquera and Adler (1998), our results show that multiple 

infections with high levels of shared costs may cause selection for increased virulence 

and result in a tragedy of the commons. Here we contribute an examination of shared 

costs among symbionts in a quantitative, continuous framework. The results under low or 

moderate shared costs demonstrate that mutualisms may evolve and be stably maintained 

under multiple infections. Moreover, our model shows that a tragedy of the commons due 

to multiple infections requires increasing shared costs coupled with decreasing penalties 

for a strain’s own virulence. These results suggests that co-infection may not always 

cause an increased cost of a strain's virulence to itself and help to explain the common 

observation that runaway virulence is rare (Rigaud et al. 2010). Additionally, we show 

that commensalism might be particularly robust to the effects of shared costs. While 

under single infections virulence increases continuously as the basal probability of 

entering a non-reproductive state increases, with multiple infections, symbionts maintain 

virulence levels close to zero, and thus are commensals, over a wide range of shared 
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costs. The stability of commensalism suggests adaptation to the ecological context of 

multiple infections, rather than the latent stage of pathogens (as in Sorrell et al. 2009) 

held in check by host tolerance (as in Miller et al. 2006), or more simply, a category in 

which we place symbionts whose function is otherwise unknown. 

An unexpected outcome of incorporating both virulence and shared costs on a 

continuum of values is the emergence of stable and unstable equilibria. The unstable 

equilibria suggest that highly mutualistic, but fragile, communities could evolve if 

populations are founded by sufficiently mutualistic symbionts. As infection by 

mutualistic genotypes precludes infection by more pathogenic strains of the same species, 

invasion by a pathogenic strain would be successful only if accompanied by an ecological 

disturbance resulting in decreased mutualist infection frequencies. While our model 

predicts competitive exclusion of all but a single strain under direct competition within a 

species, the models presented in Bronstein et al. (2003) and Morris et al. (2003) have 

shown that spatial structure can also lead to ecological coexistence between mutualists 

and parasites. Our result that multiple infection can lead to either mutualistic or parasitic 

symbionts depending on the initial community composition confirm findings of Bronstein 

et al. (2003) and Morris et al. (2003) and demonstrate the importance of treating 

ecological context in models for the evolution of virulence. 

  The importance of transmission in virulence evolution is illustrated by the role of 

the function determining the probability of contact with susceptible hosts (c). Under 

single infections, the contact function affects the evolution of virulence away from 

equilibrium but has no effect on virulence at equilibrium. Under multiple infections 
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however, the contact function becomes important as it affects equilibrium infection 

frequency, which in turn affects virulence. Incorporating infection frequency into shared 

costs produces an ecological feedback in which higher virulence typically leads to lower 

infection frequencies, thus tempering the effects of highly virulent strains on total shared 

costs. 

 

Co-infection by multiple species 

We applied the virulence tradeoff to coevolution between a potential mutualist 

and an obligate pathogen interacting within a eukaryotic host. As in previous work, 

(Bronstein et al. 2003, Doebeli et al. 2004), our model incorporates the interaction 

between symbionts as the shared costs of virulence on a common host. Our model 

improves upon previous efforts to study infection by multiple species by treating both 

virulence and shared costs on a continuous scale. We are able to show that mutualisms 

may persist in the face of co-infection by more virulent symbionts.  Indeed, we show that 

when shared costs are moderate, the presence of a mutualist can lead to the evolution of 

lower levels of virulence in a parasite and therefore lower host mortality. Our unique 

approach to incorporating the effects of multiple infections by making virulence a public 

cost and modeling parasitism and mutualism on a continuum captures the full range of 

outcomes associated with co-infection by pathogens and mutualists. 

 

Future directions 
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 The model presented here is flexible enough to accommodate more complex 

systems because additional parameters can be incorporated into the additive framework. 

For example, host evolution could be included allowing examination of multihost 

symbionts (Woolhouse et al. 2001; Gandon 2004), and the evolution of host resistance 

(Roy and Kirchner 2000; Dybdahl and Storfer 2003; Restif and Koella 2004) or tolerance 

(Inglese and Paul 2006). Additionally, my model includes a single symbiont trait, 

virulence, and symbionts interact with each other only indirectly through the effects of 

their virulence on a shared host. In reality, symbionts engage in a multifaceted array of 

direct and indirect interactions with other symbionts and the expression of many traits, 

such as secondary metabolites, may depend on ecological context and host genotype 

(Bergstrom et al. 1999; Rooney and Klein 2002; Bronstein et al. 2003; Inglis et al. 2009; 

Jones et al. 2009; Dyszel et al. 2010; Rodriguez Estrada et al. 2012). Incorporating direct 

interactions and plasticity will add further depth to the investigation of the effect of 

community on symbiont virulence. 

Conclusion 

The results of my model show that understanding the manner in which co-

infecting symbionts interact is vital to explaining the diversity of interactions between 

these symbionts and their hosts. The results suggest that multiple infections do not 

necessarily lead to the evolution of increased virulence if there are mechanisms that limit 

the degree to which costs of virulence are shared among symbionts. Moreover, because 

symbionts within a host share the benefits of mutualism as well as the costs of parasitism, 

pathogens as well as mutualists will benefit from lower host mortality due to mutualists. 
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Thus, while co-infection by different parasites often leads to the evolution of more 

damaging parasites, co-infection by parasites and mutualists can result in lower virulence 

in the parasite. Together, results show that multiple infections by a diverse community of 

symbionts may temper the evolution of virulence rather than exacerbate it.  
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Chapter 2: Defensive symbiosis and the evolution of virulence 

ABSTRACT 

Chapter 1 of this thesis examines the effect of multiple infections on the evolution of 

virulence. We modeled mutualism and parasitism on a continuum and introduced the 

concept of shared costs of virulence. We showed that, while multiple infections can select 

for increased virulence, if shared costs are low, mutualism can evolve under multiple 

infections. These results were dependent on the assumption that symbionts only affect 

each other indirectly through their effects on a shared host. In Chapter 2 of this thesis we 

build upon the work laid out in Chapter 1 by examining the evolution of virulence in the 

presence of symbionts that defend their hosts from enemies. Defensive symbionts may 

protect their hosts from enemies while causing little to no damage themselves and 

express both low virulence and traits that repel, kill, or inhibit a host’s grazers, pathogens, 

or predators. While environments rife with enemies might cause selection for defensive 

traits, theory suggests that enemy rich environments also select for greater virulence 

because the most exploitive pathogens will reap the benefits of harming the host. Thus, 

co-infection of a defensive symbiont and an enemy of the host is predicted to select for 

both more virulent pathogens and for greater defensive traits.  In this chapter, we build a 

model that incorporates the evolution of defense and virulence as two independent traits. 

Symbionts can invest in defense that ameliorates the costs associated with co-infection 

with deleterious parasites. As in Chapter 1, a symbiont's direct effect on host mortality 

(virulence) is incorporated as a continuous trait, allowing symbionts to evolve between 

mutualism and parasitism. The model shows that, while defense can lead to higher 
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virulence when defensive traits are costly, defense largely leads to the evolution of lower 

virulence and facilitates mutualism. 

Introduction: 

 Symbiotic organisms are ubiquitous and can have an array of effects on their 

hosts, from deleterious disease-causing parasitism, to beneficial, mutualistic effects 

enhancing host survival (Oliver 2005; Roossinck 2011) or reproduction (Bronstein et al. 

2003). Most symbiotic interactions take place in the context of an entire community of 

diverse, symbiotic organisms (Stanton 2003; Rigaud et al. 2010; Thompson et. al 2013) 

with a single host often party to multiple symbioses. Multiple infections affect symbiont 

evolution in two ways. First, multiple infections can cause either deleterious (Ebert and 

Mangin 1997) or beneficial (Rumbaugh et al. 2012) effects that are shared among co-

infecting symbionts. Second, when multiple symbionts infect the same host those 

symbionts can engage in direct interactions and potentially inhibit each other’s growth or 

reproduction. When the costs of infection are shared between symbionts, selection is 

widely expected to favor increased virulence (Nowak and May 1994; May and Nowak 

1995). Conversely, when symbionts inhibit other, more damaging symbionts, selection is 

expected to favor less virulent symbionts (Fenton et al. 2011; Jones et al. 2011). In this 

work we ask whether the presence of defensive symbionts cause selection for the 

evolution and maintenance of low virulence under multiple infections.  

 Symbionts that defend their host have been observed in many systems (Carroll 

1988; Madden and Young 1992; Balmer et al. 2009; Jaenike et al. 2010; Vittecoq et al. 
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2012). For example, some fungal endophytes in cacao have been shown to protect the 

host against plant pathogens from the genus Phytophthora (Arnold et al. 2003). Studies 

of aphids have shown that endosymbionts can protect against parasitoid wasps (Oliver et 

al. 2008). Additionally, the fungal endophyte Neotyphodium, has been shown to protect 

its grass host from herbivores (Clay and Schardl 2002). While defensive symbioses have 

been documented in a number of systems, we know less about the evolutionary and 

ecological processes that maintain defensive symbioses (May and Nelson 2014). In this 

work we focus on defense of the host as a mechanism that protects the host from other 

symbionts and thereby decreases the shared costs of virulence. We lay out a model that 

synthesizes two important effects of symbionts on the evolution of virulence: the direct 

effects of the symbiont on the host, virulence, and the indirect effects of a symbiont 

killing or inhibiting co-infecting damaging symbionts, defense. 

 Theory regarding the evolution of virulence is predicated on the assumption of a 

tradeoff between transmission rate and infection duration (West et al 2002; Alizon et al. 

2008). That trade-off can take the form that symbiont transmission requires harming their 

hosts (Alizon et al. 2008) or that symbionts pay a cost for aiding the host (West et al 

2002). Numerous studies have found a tradeoff between symbiont transmission and the 

degree to which a symbiont harms its host   (Messenger et al. 1999, Abedon et al. 2003; 

Ebert et al. 2004; Sachs and Wilcox 2006; deRoode et al. 2008; Mackinnon et al. 2008). 

For example, deRoode et al. (2008) found that strains of a protozoan parasite with higher 

transmission rates also killed their butterfly hosts faster than strains with lower 

transmission rates. For a castrating parasite of Daphnia, Ebert et al. (2004) found that 
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host and parasite reproduction faced a tradeoff as increasing parasite fecundity was 

associated with a decrease in host fecundity. In an example involving an algal symbiont 

of jellyfish, increased transmission of the algae between hosts was associated with 

decreased host fecundity and survival (Sachs and Wilcox 2006). Furthermore, malaria, an 

important human pathogen, has been shown to show a positive correlation between 

transmissibility and virulence in mice (Mackinnon et al. 2008). Additionally, Abedon et 

al. (2003) found that bacteriophage evolved shorter latency periods, and greater 

virulence, when bacterial populations were dense. The highly virulent strains were then 

out competed by less virulent strains when bacterial populations were less dense. 

Therefore Abedon et al. (2003) show that virulence provides a transmission benefit but at 

the price of decreased infection duration for the phage, indicating a tradeoff. While other 

studies have examined the effect of symbionts on host growth and reproduction 

(Messenger et al. 1999), in this work we focus specifically on a symbionts effect on its 

host’s mortality.  

 Because biotrophic symbionts require a living host for growth and reproduction, 

any change in the host’s mortality, or the mortality of host tissue, affects the symbionts 

mortality as well (Bremmerman and Pickering 1983). Therefore, a tradeoff between 

symbiont transmission rate and host mortality promotes the evolution of stable levels of 

benefits or harm to the host (Alizon et al. 2008; Barrett et al. 2011). The evolutionarily 

stable level of virulence towards the host depends on many factors, including the 

mortality rate of the host, host defenses, and symbiont transmission (Levin and Pimentel 

1981; Lenski and May 1994; Williams and Day 2001; Sorrell et al. 2009).  While 
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symbiont mortality is tied to host mortality, changes in host and symbiont mortality need 

not be symmetric. For example, a pathogen such as the rust fungus Puccinia eupatorii, 

may induce leaf senescence and thus kill its own substrate for growth,but the effects on 

its herbaceous host might be relatively minor (Goodall et al. 2012). Therefore, we 

construct our model to reflect evolutionary and ecological forces as they affect each 

symbiotic species, as opposed to the host. 

 Hosts rarely interact with a single symbiont exclusively, making multiple 

infections the rule rather than the exception (Arnold et al. 2003; Saikonnen 2007). When 

multiple symbionts infect the same host, they share costs and benefits associated with 

each symbiont.. Such shared costs can manifest in terms of resource competition (Choisy 

and deRoode 2010) or host mortality (Ebert and Mangin 1997). Multiple infections are 

predicted to select for more virulent and less beneficial symbionts when each symbiont 

receives individual benefits from its own virulence (Bremmerman and Pickering 1983; 

van Baalen and Sabelis 1995; Mosquera and Adler 1998; West et al 2002; Alizon et al. 

2008; Friesen and Mathias 2010). That prediction has been borne out empirically (Ebert 

and Mangin 1997). It is important to note that current models (e.g. Bremmerman and 

Pickering 1983; van Baalen and Sabelis 1995; Mosquera and Adler 1998; Alizon et al. 

2008; Friesen and Mathias 2010) only treat multiple parasites and implicitly assume that 

the costs of virulence are shared fully between symbionts. Thus, these models do not 

address the effects of multiple infection on the evolution of virulence in a quantitative 

fashion, and cannot incorporate the evolution of symbiotic defense of the host. When 

pathogen virulence itself becomes a shared trait, as with bacteriophage assembly (Turner 
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and Chao 1999) or siderophore production(Griffin et al. 2004), multiple infections can 

actually lead to decreased virulence by allowing cheaters that do not contribute to 

collective virulence (Alizon and Lion 2011; Rumbaugh et al. 2012). In this model we 

incorporate the shared costs of co-infection on a continuous scale in order to capture the 

varying degrees of interaction observed between symbionts in nature. 

When multiple symbionts interact within a host, defensive symbionts can gain a 

fitness advantage by inhibiting enemies relative to symbionts that do not defend against 

enemies, thereby decreasing the public costs associated with virulent coinfectors (Jones et 

al. 2011). When taken together, the evolution of defense and the evolution of virulence 

produce an evolutionary conundrum. On one hand, we expect diverse communities of 

interacting symbionts to promote the evolution of defense (Kerr et al. 2002; Kirkup and 

Riley 2004). On the other hand, diverse communities of interacting symbionts generate 

the same conditions under which more virulent symbionts are expected to evolve (Frank 

1996). Consequently, models regarding the evolution of defense predict that co-infection 

of the same or different symbiont species, will cause selection for defensive mutualists 

(Jones et al. 2007; Fenton et al. 2011) while models regarding the evolution of virulence 

predict the evolution of virulent pathogens (Mosquera and Adler 1998) under the same 

conditions.  

 We develop a model with the goal of reconciling the conflicting model 

predictions of damaging pathogens and defensive mutualists under the same conditions of 

multiple symbiont infections. First, we construct a model in which the direct effects of a 
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symbiont on host mortality (virulence) range from positive to negative values. The direct 

effects on host mortality produce a feedback on the symbiont, altering its mortality rate. 

The model is similar to that of West et al. (2002) in that it focuses explicitly on symbiont 

mortality and reproduction in lieu of focusing on the host population. Second, we expand 

the model to encompass multiple infections by allowing the costs and benefits of 

symbiont infection to be shared by co-infecting symbionts, similar to varying Hamilton's 

r as shown in West et al. (2002). Last, we incorporate symbiont-mediated host defense by 

allowing symbionts to invest in traits that decrease the shared costs associated with co-

infection. Throughout we examine the effects of defensive traits on symbiont evolution to 

determine whether host defense by symbionts can help resolve the paradox that we 

observe largely benign symbiotic communities while models predict increased virulence 

under multiple infections. 

 



   
 

56 
 

Methods: 

 In this work, we focus explicitly on the status and fitness of symbionts. Our 

approach contrasts with the many models that track changes of the infection status of the 

host population to understand symbiont evolution (e.g. Bremmerman 1983; Nowak and 

Box 1: Terms used. 

ab: Slope of the number of reproductive propagules produced per increase in symbiont mortality 

am: Slope of the increase in symbiont mortality per number of reproductive propagules produced. 

b(v,f): Rate of production of infectious propagules, a function of a symbionts harm to its host and 

its investment in defense 

b0: Basal rate of propagules production when virulence is zero 

c(I/N): Contact rate with susceptible host sites, a function of infection frequency 

f: Defense, decreases the shared costs of virulence at a reproductive cost 

gb: Slope of the decrease in the shared costs of virulence to symbiont reproduction due to defense 

gm: Slope of the decrease in the shared costs of virulence to symbiont mortality due to defense 

hb: Slope of symbiont reproduction rate per investment in defense  

Ix: Number of infections of species x throughout the host population 

m(v,f): Mortality rate of symbionts, a function of symbiont’s harm to the host and  investment in 

defense 

m0: Basal mortality rate of symbionts when virulence is zero 

N: Number of individual hosts in a population 

pb: Shared costs to symbiont reproduction associated with co-infection 

pm: Shared costs to symbiont mortality associated with co-infection 

v: Virulence, or increased host mortality due to symbiont infection and growth in the host 

s: average number of symbionts per host 
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May 1994; van Baalen and Sabelis 1995; May and Nowak 1995; Mosquera and Adler 

1998; Alizon et al. 2008; Jones et al 2011). We track the number of infections of each 

symbiont species, Ix and allow that there may be more than one infection per host. In our 

model infection success is a function symbiont infection frequency and not affected by 

absolute host population size, per se. Additionally, because this analysis focuses on 

symbiont virulence at equilibrium, the absolute size of host population has no effect on 

the results, as shown in Chapter 1, and is not explicitly defined in this model. Infections 

“die” within hosts at rate m infections per unit time and produce infectious propagules at 

rate b per unit time. These propagules transmit between hosts and establish new 

infections at rate c, making bc the rate of total effective symbiont transmission. Using this 

framework, we can distinguish symbiont processes occurring within a host population (b 

and m) from processes occurring between hosts (c). Together, the functions b, c, and m 

yield the expected change in number of infections for each strain i of symbiont species x 

(Iix): 

𝑑𝐼𝑖𝑥

𝑑𝑡
= 𝐼𝑖𝑥(𝑏𝑖𝑥𝑐𝑥 −𝑚𝑖𝑥)     (1) 

Where: 

𝑏𝑖𝑥 = (𝑎𝑏𝑥𝑣𝑖𝑥 + 𝑝𝑏𝑥
1

𝐿
(∑ 𝐼𝑗𝑣𝑗̅

𝐿
𝑗 )(1 + 𝑔𝑏𝑥𝑓𝑖𝑥)

−1 − ℎ𝑏𝑥𝑓𝑖𝑥 + 𝑏0𝑥)
𝐵

  (2.1) 

𝑚𝑖𝑥 = (𝑎𝑚𝑥𝑣𝑖𝑥 + 𝑝𝑚𝑥
1

𝐿
(∑ 𝐼𝑗𝑣𝑗̅

𝐿
𝑗 )(1 + 𝑔𝑚𝑥𝑓𝑖𝑥)

−1 +𝑚0𝑥)
𝑀

  (2.2) 

𝑐𝑥 = 1 −
𝐼𝑥

𝑠𝑁
      (2.3) 
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 First, starting with single infections, we incorporate basal rates of propagule 

production and mortality, b0 and m0, respectively. The parameters, b0 and m0, give the 

rates of reproduction and death when a symbiont is commensal (v=0) and exhibits no 

defensive traits (f=0). Next we incorporate a tradeoff which increases both reproduction 

(bx) and mortality (mx) by incorporating the genetically variable trait virulence, v, into 

each term. In order to model symbiont interactions, we are translating virulence, typically 

defined as symbiont-induced host mortality, to symbiont mortality in order to track the 

costs of virulence between symbionts. The total costs and benefits of virulence are 

determined by the coefficients, amx and abx, which modulate the effects of virulence on 

symbiont mortality respectively. Here amxv and abxv represent the costs and benefits of 

virulence to a single symbiont genotype. 

 We next incorporate the indirect effects of a symbiont on its host by incorporating 

terms for shared costs under multiple infections and for defense of the host. Instead of 

focusing on specific mechanisms by which symbionts interact, we use the parameters pb 

and pm to encapsulate the shared costs associated with co-infection to symbiont 

reproduction and mortality, respectively. The shared costs of co-infection (pb and pm) 

include the maximum number of co-infections per host and the degree to which co-

infecting symbionts interact and affect each other’s reproduction or mortality. If both pb 

and pm are zero, symbionts have no effect on each other, and the model becomes a single 

infection system. If pb is positive, co-infecting symbionts compete for resources and one 

symbiont can affect reproduction in another symbiont. If pm is positive, symbionts affect 

each other’s mortality and highly virulent parasites increase the mortality rates of co-
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infecting symbionts by increasing host mortality. The coefficients pb and pm are 

multiplied by the average virulence over all L symbiotic species infecting a host 

population, weighted by the infection frequency of each species to give the total effect 

that co-infecting symbionts have on each other’s reproduction and mortality. It is 

important to note that we are assuming, for simplicity, an even distribution of symbionts 

across the host population. Therefore the virulence of one symbiont directly affects 

mortality of other symbionts on the same host. 

 Finally, we incorporate defense with both costs and benefits to the symbiont. The 

costs of defense are determined by the parameter hb. If hb is positive, defense comes at a 

metabolic cost which decreases symbiont reproduction. Defense of the host indirectly 

benefits the defending symbiont by decreasing the costs associated with a co-infecting 

deleterious parasite. Therefore, we divide pb and pm by values for the strength of the 

defensive trait, multiplied by a coefficient gb and gm, plus one. If both gb and gm are zero, 

investment in defense yields no benefit and defense is not evolvable. It is important to 

note that we are focusing on the effects of defense on the shared costs of virulence. We 

are neglecting the effects that direct interference competition between symbionts may 

have on these symbionts’ reproduction, mortality, or infectivity. 

 We complete expressions for b and m by raising the sum of the terms described 

above to the powers Bx and Mx, respectively. By making Mx > Bx, mortality will grow 

faster than reproduction as either v or f increase (m’>b’), allowing an evolutionary stable 

state to arise where: 
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     𝑐𝑥 =
𝑚𝑥

′

𝑏𝑥
′      (3) 

 Because we use a simple logistic function for the per-symbiont rate of 

establishing new infections (c), the probability of a new infection decreases as the 

number of current infections increases. Thus, Equation 1 produces a negative density-

dependent feedback similar to that in (Lenski and May 1994). This negative density 

dependent feedback results in an ecological equilibrium where: 

     𝑐𝑥 =
𝑚𝑥

𝑏𝑥
     (4) 

Therefore the system reaches an ecological and evolutionary equilibrium for each trait 

where: 

𝑚𝑥

𝑏𝑥
=

𝑚𝑥
′

𝑏𝑥
′       (5) 

Finding equilibria: 

 As closed form solutions can only be expressed under single infections, we used a 

search algorithm to find evolutionary stable state (ESS) solutions for the model under 

multiple infections. Initial values of virulence, defense, and infection frequency were 

chosen (vx=0.1, Ix=0.1, fx=0) corresponding to a pathogenic symbiont with no investment 

in defense at an initially low infection frequency. We initialize symbionts as pathogenic 

to provide a conservative view on the evolution of mutualism. Thus, we model the 

evolutionary forces that result in transitions from pathogenism to mutualism, as opposed 

to simply modeling the maintenance of mutualism. Assuming a constant supply of 
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genetic variation, we calculate selection coefficients for each trait and then, determine 

mean trait values in the next generation. A new infection frequency is then calculated 

using Equation 1. The process is repeated until virulence, defense, and infection 

frequency reach an equilibrium. A limitation of this approach is that as infection 

approaches one, c, as defined by Equation 2.3, may approach zero and thus limit selection 

on traits affecting b before the evolutionarily stable state is reached. To avoid this artifact 

and allow traits to reach evolutionary equilibrium, infection frequency is capped at a 

number close to, but not equal to, one (0.9995 for the results presented here).  

 

Results: 

 We examine the impact of multiple infections within a symbiont species and then 

between two species on the evolution of virulence, and do so with and without allowing 

the evolution of defense. One species in the model has a positive basal rate of propagule 

production (b0 > 0) and has the potential to act as a mutualist by decreasing the host 

mortality rate (negative virulence) The second species has a no basal reproduction (b0 = 

0) and is an “obligate pathogen” that must increase host mortality rate to reproduce 

(positive virulence).  The effect of each symbiont on other co-infecting symbionts is 

modeled through the shared costs of host mortality as this affects the mortality or 
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reproduction of all resident symbionts.

 

Figure 2.1: Evolutionary stable states under intraspecific shared costs as determined 

by Equations 1 and 2.1 through 2.3. Direct effect of a symbiont on host mortality (A 

and B), infection frequency (C and D), and evolved defense (E and F) at equilibrium 
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are shown for increasing values of shared costs to symbiont reproduction (pb; A, C, 

E) and symbiont mortality (pm; B, D, F).  The costs of co-infection are shared within 

species for either an obligate pathogen (grey, b0=0) or a potential mutualist (black, 

b0=0.3). Evolutionary stable states without evolvable defense (gm=0 and gb=0) are 

shown with dashed lines, and evolutionary stable states with evolvable defense (gm 

=1 or gb =1) are shown with solid lines. 

 

Intraspecific shared costs 

 The level of shared costs affects both the evolution of virulence (Figure 2.1 A, B) 

and symbiont infection frequency (I/N; Figure 2.1 C, D) at equilibrium. Panel A shows 

the evolution of virulence in an obligate pathogen (dashed grey) and a potential mutualist 

(dashed black) when shared costs affect symbiont reproduction. In Figure 2.1 A, results 

show that when shared costs are low, the potential mutualist (black line) evolves negative 

virulence, indicating a mutualistic relationship with the host. When shared costs are high, 

mutualism is lost and the potential mutualist evolves positive virulence or parasitism. 

Similarly, as shared costs increase among multiple infections of a pathogenic species 

(dashed grey line), more damaging symbionts evolve. Similar results for the evolution of 

virulence are obtained when shared costs affect symbiont mortality rather than 

reproduction (Fig. 2.1 B). When shared costs are low, the potential mutualist evolves 

negative virulence. Conversely, when shared costs are high, both the potential mutualist 

and the obligate pathogen evolve higher virulence. However, as shared costs increase, the 
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magnitude of the increase in virulence is much smaller when shared costs affect mortality 

than when they affect reproduction. 

 Virulence has costs for population size as well (Fig. 2.1 C, D). In the obligate 

pathogen (dashed grey lines) higher shared costs to symbiont reproduction always lead to 

lower infection frequencies. However, in the potential mutualist, low to moderate shared 

costs actually lead to increased infection frequencies, as co-infecting mutualists increase 

each other’s transmission rates by decreasing host mortality. Similar results are obtained 

if shared costs affect symbiont mortality; the obligate pathogen suffers lower infection 

frequencies and the potential mutualist may increase infection rates at low to moderate 

shared costs. By comparing Figure 2.1 panels C and D, one can see that infection 

frequencies decrease faster as shared costs increase when shared costs affect mortality 

(panel C) than when shared costs affect reproduction (panel D). This result is surprising 

given that, as mentioned above, virulence increases more slowly when shared costs affect 

mortality than when shared costs affect reproduction. However, a central assumption of 

the virulence tradeoff hypothesis is that mortality increases faster than transmission as 

virulence increases. Therefore, an increase in shared costs to symbiont mortality has a 

greater impact on infection frequency than the same change in the shared costs to 

reproduction. 

By comparing the evolution of virulence with defense (solid lines Figure 2.1 A, 

B) to the evolution of virulence without defense (dashed lines Figure 2.1 A, B), we show 

that evolvable defense tempers the effects of shared costs on both the potential mutualist 
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and the pathogen. Figure 2.1 E shows that pathogenic species (grey line) invest in defense 

at relatively low levels of shared costs while shared costs must be large before the 

potential mutualist (black line) invests in defense. This investment in defense in turn 

leads to the evolution of lower virulence in both species than when defense is not 

available. In the potential mutualist (Figure 2.1 A, B, black lines), the evolution of 

defense maintains mutualisms at higher shared costs than without defense. As shared 

costs continue to increase, defense allows the evolution of less damaging parasites even 

after the symbiont switches to a pathogenic strategy (v >0). It is important to note that an 

exception to the rule that defense leads to lower virulence arises when shared costs affect 

symbiont mortality. When shared costs to mortality are low, evolvable defense actually 

leads to slightly more damaging pathogens (Figure 2.1 B, grey lines, pm < 1). This 

unexpected result will be explored further below. 



   
 

66 
 

 

  Figure 2.2: Evolutionary stable states under interspecific shared costs. 

Direct effect of a symbiont on host mortality (A and B), infection frequency (C and 

D), and evolved defense (E and F) at equilibrium are shown for increasing values of 

shared costs to reproduction (pb; A, C, E) and mortality (pm; B, D, F).  The costs of 
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co-infection are shared within an obligate pathogen (grey, b0=0) or a potential 

mutualist (black, b0=0.3). Evolutionary stable states without evolvable defense (gm=0 

and gb=0) are shown with dashed lines, and evolutionary stable states with evolvable 

defense (gm=1 or gb=1) are shown with solid lines. 

 

Interspecific shared costs. 

 When costs are shared between symbiont species, both evolutionary processes 

within species and co-evolutionary processes between species may result. To compare the 

effect of interactions within species with interactions between species, we next examine 

the effects of multiple infection when the costs and benefits of virulence are shared 

between, but not within species. When costs are shared between species, the presence of 

a mutualist can lead to the evolution of decreased virulence in a pathogen.  

 Figure 2.2 A shows the evolution of virulence when intraspecific shared costs 

affect symbiont reproduction. Here, at low to moderate levels of shared costs, the 

presence of a mutualist species increases the reproductive rate of the pathogen, 

facilitating the evolution of lower virulence and even mutualism in the erstwhile 

pathogen. When shared costs are high, the potential mutualist evolves positive virulence, 

resulting in increased virulence in both species. Figure 2.2 B shows the evolution of 

virulence when intraspecific shared costs affect symbiont mortality. Again, the presence 

of a mutualist leads to the evolution of decreased virulence in the pathogen and can even 
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lead to commensalism in the pathogen (v=0). In contrast to Figure 2.2 A, when shared 

costs affect mortality, the erstwhile pathogen never evolves mutualism.  

Shared costs also affect infection rates of pathogens and mutualists differently 

(Figure 2.2 C, D). Results show that low to moderate shared costs to reproduction 

between a pathogen and a mutualist can result in increased infection frequencies (I/N) for 

the pathogen but decreased infection frequencies for the mutualist. When shared costs are 

high, both species suffer lower infection frequencies. Figure 2.2 D shows the effect of 

shared costs between species on infection frequency when shared costs affect mortality. 

When shared costs are low, co-infection with a mutualist (dashed black) leads to 

increasing infection frequencies in the pathogen (dashed grey). As shared costs increase, 

the deleterious effects of the pathogen lead to decreasing infection frequencies in the 

mutualist. Finally, when shared costs are high, infection frequencies in both species 

decrease. 

Figure 2.2 shows results comparing the evolution of virulence with defense (solid 

lines) and the evolution of virulence without defense (dashed lines). We show that 

evolvable defense leads to lower virulence in both the potential mutualist and the 

pathogen as shared costs increase. Additionally, Figure 2.2 A and B show that defense 

results in the evolution of mutualism at higher shared costs than when defense is absent. 

Figure 2.2 E shows that when shared costs are low and affect symbiont reproduction, 

neither the mutualist nor the pathogen invest in defense. As shared costs increase the 

mutualist invests in defense, and when shared costs are high the pathogen invests in 

defense. In contrast, Figure 2.2 F shows that, when shared costs affect mortality, the 
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mutualist invests in defense even at fairly low levels of shared costs. When shared costs 

are high, both the pathogen and the potential mutualist invest increasingly more defense. 

 

  

Figure 2.3: The evolution of mutualism and defense over time with shared costs 

affecting symbiont reproduction. To show how defense can facilitate the evolution of 

mutualism and then be lost, a time series shows the evolution of virulence in a 

potential mutualist (b0=0.3; pb=5) without defense (gm=0, dotted line) and with 

defense (gm =1, solid line), and the level of evolved defense (grey). The parameters 

used were: ab=4, am=1, m0=0.1; hb=0.1. 

 

Effects of evolvable defense on mutualism 
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 The results of intra- and interspecific shared costs shown above yield two 

unexpected outcomes. First, under intraspecific shared costs, evolvable defense facilitates 

the evolution of mutualism even though investment in defense is zero at equilibrium 

(Figure 2.2 A, E; black line where 4<pb<5.8). Second, when shared costs affect mortality, 

there is a small region where symbionts are more virulent with evolvable defense than 

without. This raises the possibility that under certain conditions, evolvable defense might 

lead to more damaging parasites and actually disrupt mutualisms. 

 Figure 2.3 shows a time series of the evolved levels of virulence to the host and 

for investment in defense, with a potential mutualist under a single value of shared costs 

(pb =5). Starting from a pathogenic, low infection frequency state, selection favors more 

damaging strains. Without evolvable defense, harm to the host plateaus and the potential 

mutualist evolves to a steady state of positive virulence, it is a parasite. In contrast, with 

evolvable defense, both the level of harm to the host and defense increase in concert, 

peak, and then decrease together. Once the population reaches a mutualistic state, defense 

evolves to zero. Therefore, defense can facilitate the evolution of mutualisms, and in this 

simple single symbiont system, defense will not be maintained as the mutualism 

stabilizes. 
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Figure 2.4: Defense payoff and the evolution of mutualism. To investigate the effect 

of return on investment in defense (gm and gb) on the critical value of shared costs at 

which a potential mutualist evolves parasitism (p*), we examine the ratio of p* with 

defense to p* without defense. Values above one indicate that evolvable defense 

facilitates mutualism, values below one indicate that evolvable defense hampers the 

evolution of mutualism. Four scenarios of shared costs are shown, shared costs 

within a species of mutualists (black), between a potential mutualist and an obligate 

pathogen (grey), shared costs affecting reproduction are shown in solid lines, and 

shared costs affecting mortality are shown in dotted lines. Unless otherwise specified 

ab=4, am=1, m0=0.1; hb=0.1. 
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 To determine if defense always facilitates mutualism, we broaden our approach 

and examine a range of payoffs for investment in defense. Thus far we have examined a 

single payoff regime where the costs of defense are relatively low compared to the 

benefits (hb=0.1, gm =1 or gb = 1). Because we are primarily interested in the effect of 

evolvable defense on the evolution of beneficial symbionts, we focus on the critical value 

of shared costs at which the potential mutualist evolves to a pathogenic state, which we 

call p*. In Figure 2.1A, for example, p* ≈ 5.8 with defense and p* ≈ 4 without defense. 

To illustrate how the costs of a payoff of investment in defense affects the evolution of 

mutualism, Figure 2.4 shows the ratio of p* with and without evolvable defense as costs 

of defense increase. Ratios of p* with and without evolvable defense greater than one 

indicate that the defense tradeoff allows mutualism to evolve at higher levels of shared 

costs. Values less than one indicate that evolvable defense can actually disrupt 

mutualisms and select for parasites. When shared costs affect reproduction, defense 

always preserves mutualisms. However, when shared costs affect mortality and gm is low, 

the defense tradeoff can actually disrupt mutualisms under both intraspecific and 

interspecific shared costs and lead to parasitism.  

 

Discussion: 

Many organisms are host to symbionts that protect them from biotic enemies 

(e.g., Arnold et al. 2003; Oliver et al. 2005; Gast et al. 2009; Jaenike et al. 2010; Pringle 

2014). Vertically transmitted symbionts exhibiting low virulence have generally been the 
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focus of research concerning symbiont defense of the host (Lively et al. 2005; Haine 

2008; Jones et al. 2011). However, the realm of defensive symbionts is not limited to 

vertically transmitted mutualists. Pathogens may also inhibit competing pathogens 

(Fisher and Mayor 1986; Gardner et al. 2004; Balmer et al. 2009) and some defensive 

symbionts are horizontally transmitted (Kaltenpoth and Engl 2014). In this work, we put 

forth a model that encompasses the evolution of defense in both parasites and mutualists 

with horizontal transmission. Symbionts affect each other through the shared costs of 

virulence as effects on host mortality that indirectly affect symbiont mortality or 

reproduction. We focus our analysis on the interplay between the evolution of defense 

and the evolution and maintenance of mutualism. Finally, we discuss some key 

assumptions underlying the model to point the way towards future research.    

 Many models for the evolution of defensive symbioses have assumed single 

infections within species (Lively et al. 2005; Sorrell et al. 2009), no variation in the level 

of protection provided by a defensive symbiont (Heithaus et al. 1980; Lively et al. 2005; 

Sorrell et al. 2009; Fenton 2011; Kwiatkowski and Vorburger 2012), and vertical 

transmission of the defensive symbiont (Jones et al. 2011; Jones et al. 2012). We expand 

upon this body of literature in three ways. First, we utilize the concept of shared costs of 

virulence developed in Chapter 1 to model multiple infection both within and between 

symbiotic species. Second, we expand on Fenton (2011) and Kwiatkowski and Vorburger 

(2012) by modeling the simultaneous evolution of two quantitative traits, symbiont 

virulence and symbiont defense of the host. In our model, the level of protection a 

symbiont provides its host is variable and subject to selection, allowing us better model 
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the role of natural selection in maintaining defensive mutualisms (Johnson et al. 1997; 

Nelson and May 2014. Third, we generalize Jones et al. (2011) and Jones et al. (2012) by 

incorporating horizontal transmission between hosts. Thus symbionts in our model can 

transmit horizontally and establish multiple infections, both of different genotypes within 

species and of different species. Our model synthesizes the evolution of defensive 

symbioses and the evolution of virulence to better reflect processes within the complex 

symbiotic communities observed in nature. 

Like established models such as Lively et al. (2005), Sorrell et al. (2009), and 

Jones (2011), our model seeks to understand how interactions between symbionts affects 

the evolution of virulence towards the host. Similar to our model, Jones et al. (2011) 

treats multiple infections through the shared costs of virulence. In both our model and 

Jones et al. (2011), defense allows symbionts to avoid shared costs associated with co-

infection. Consequently, both models concur with the empirical findings that defending a 

host can provide a selective advantage for symbionts (Jaenike et al. 2010; Fenton et al. 

2011). However, where Jones et al. (2011) assumes single infections within species, we 

model the effects of multiple infections on a continuum allowing for multiple infections 

both within and between species. Additionally, in Jones et al. (2011), defense explicitly 

prevents infection by parasites, whereas in our model we do not specify the mechanism 

by which defense decreases shared costs. Instead, we focus on outcomes and are able to 

show that defense is unlikely to evolve when interactions between symbionts are weak or 

multiple infections are rare. 
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Because models with vertical transmission are expected to lead to the evolution of 

benign, if not beneficial symbionts even without defensive traits (Lipsitch et al. 1996), 

previous models (Lively et al. 2005, Sorrell et al. 2009, and Jones et al. 2011) have 

examined the evolution low or avirulent defensive symbionts, neglecting the possibility 

of defensive pathogens.  In our model we make no assumptions regarding vertical or 

horizontal transmission. This added flexibility allows us to show that defense of the host 

can evolve in parasitic symbionts, especially under multiple infections by different strains 

of the same symbiont species. Additionally, we show that defense can lead to the 

evolution of mutualism under levels of shared costs that would otherwise lead to 

parasitism. Under intraspecific shared costs, we found that a transient investment in 

evolvable defense can facilitate mutualism in symbionts, despite little investment in 

defense at equilibrium. This counterintuitive result stems from the fact that virulent co-

infectors are required to maintain selection for defensive traits, while in turn defense 

selects for less damaging symbionts. As defense selects for less damaging strains, 

selection pressure on defense relaxes. Thus, defense allows for the evolution of beneficial 

symbionts, at which point selection purges the defensive trait. This result raises the 

possibility that transient periods of investment in defense may leave a legacy of 

mutualism behind.  

While our model shows that symbiont defense of the host can lead to lower 

virulence, by treating the shared costs of virulence as a quantitative trait, we find the 

counterintuitive result that defense can sometimes lead to the evolution of higher 

virulence in defending symbionts. Previous studies have shown that factors affecting 
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interactions between symbionts, such as relatedness and kin selection, can affect the 

outcome of virulence evolution under multiple infections (Koskella et al. 2006; Buckling 

and Brockhurst 2008). Whereas Koskella et al. (2006) and Buckling and Brockhurst 

(2008) invoke kin selection to explain the evolution of lower virulence, we show that 

symbiont defense of the host can also select for lower virulence. In our model the effect 

of a defense tradeoff on the evolution of virulence is dependent on the costs and benefits 

of defense. If symbiont investment in defensive traits entails little reproductive cost to the 

symbiont, the evolution of defensive traits lead to decreased virulence under multiple 

infections. However, if defense is costly, symbionts may compensate for the cost of 

investing in defense by harvesting more resources from their hosts, leading to an overall 

more pathogenic community than would be expected if defensive traits had not evolved. 

Thus, our model returns a result similar to Neuhauser and Fargione (2004) where the 

presence of a seemingly mutualistic symbiont can paradoxically lead to lower host fitness 

than if that symbiont were absent. 

Future directions 

  In examining these tradeoffs we have made a number of simplifying assumptions. 

Chiefly, we have neglected the origin of novel genetic traits required for the evolution of 

virulence and defense. We have also neglected non-deterministic elements, such as 

genetic drift or environmental disturbances, which will dominate when selection 

pressures or population sizes are small or populations are spatially structured (Prado and 

Kerr 2008; Nahum, et al. 2011; Verbruggen et al. 2012). Similar models addressing 
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evolution of the host symbiont relationship have shown that, given sufficient genetic 

variation, a species may evolve to parasitism or mutualism depending on the initial 

conditions (Grover and Wang 2014; Chapter 1 of this thesis). Therefore, non-

deterministic elements may be key in navigating between parasitic and mutualistic 

equilibria and are prime targets for future analyses. 

 We have also assumed no evolution on the part of the host. Host evolution is 

likely a key factor in the evolution of defensive symbioses and could interact with 

symbiont evolution in several ways. Hosts may evolve to minimize the costs associated 

with hosting defensive symbionts by evolving tolerance (Frederickson et al. 2012), 

resulting in lower virulence at no cost to the symbiont. Symbiotic defense of the host 

could also release a host from pressure to defend against enemies (Nomura et al. 2011). 

Additionally, diversity within the symbiotic community could lead to polymorphisms 

within the host population (Heil et al. 2009) in host traits such as investment in defense 

and tolerance of symbionts. As we have shown that evolution of just two traits in a 

symbiont can produce counterintuitive results, the outcomes of coevolution between 

hosts and defensive symbionts is likely to be particularly hard to predict. Including host 

evolution may further elucidate the mechanisms by which benign symbioses are 

maintained in symbiotic communities.  

Conclusion 

 The ubiquity of seemingly harmless, and even beneficial symbionts infecting 

plants and animals is one of the greatest puzzles facing evolutionary biology. We have 
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put forth a model in which symbionts can affect their hosts in two ways, directly through 

the effect on host mortality, and indirectly through defending the host against other 

symbionts. We have demonstrated that defense largely leads to less damaging pathogens 

and preserves mutualisms under co-infections. However, the availability of a defense 

tradeoff can lead to more deleterious pathogens and disrupt mutualisms if the costs and 

benefits affect different life history stages of the symbionts. Thus, while defensive traits 

in symbionts may be key to maintaining benign symbioses, understanding how defensive 

traits affect the host and symbiont is vital to understanding the evolution of the host 

symbiont relationship. 
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Chapter 3: Genetic variation for pathogen virulence and interactions with a defensive 

symbiont of maize. 

ABSTRACT 

In Chapters 1 and 2 of this thesis we model the selective forces that shape the evolution 

of symbiont virulence and defense of a host. In this chapter, we determine evidence for 

genetic variation for in pathogen and symbiont populations. We used a model system of 

maize, a pathogen Ustilago maydis, and a benign symbiont, Fusarium verticillioides to 

determine evidence for variation in virulence by the pathogen, and defensive traits of the 

symbiont. We found that U. maydis strains from two populations exhibited significantly 

different levels of virulence towards the host. In addition, we found evidence for genetic 

variation in F. verticillioides populations for antagonism toward U. maydis, a defensive 

trait. Contrary to expectations, we found that U. maydis growth was enhanced by F. 

verticillioides, suggesting that F. verticilloides may sometimes facilitate, rather than 

antagonize, pathogen growth. Because both symbionts have free-living life history stages, 

we evaluated evidence for pleiotropy in U. maydis between virulence toward the host and 

growth as a saprophyte. Results showed a negative correlation between virulence and 

growth, suggesting that countervailing selection may act on these traits. 
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Introduction: 

 Fungal symbionts commonly occur in plants and have a range of effects on host 

fitness from pathogens that harm their hosts, to mutualistic symbionts involved in 

nutrient acquisition (Mazancourt and Schwartz 2010), environmental tolerance (Márquez 

et al. 2007) or protection against biotic enemies (Arnold et al. 2003). The body of theory 

addressing symbiont evolution suggests that host genotype plays an important role in the 

evolution of symbiont traits (McLean, 1995; Gupta and Anderson 1999; Magori and Park 

2014). Indeed, many studies have found evidence of genetic variation in symbiont species 

both within (Oono et al. 2014) and between host populations (Capelle and Neema 2005; 

Heath and Tiffin 2007; Johnson et al. 2010; Covarelli et al. 2012). Disease causing 

symbionts, in particular, show population level differences in traits such as infectivity and 

virulence (Thrall and Burdon 2003; Boots et al. 2004; Fischer and Foitzik 2004; Springer 

2007; Alshareef and Robson 2014; Bruns et al. 2014; Stefansson et al. 2014; Voyles et al. 

2014). Throughout this paper we define virulence as symbiont induced harm to host 

growth. Here we examine evidence for genetic variation in virulence in populations of a 

pathogen and of defensive traits in a benign symbiont of plants to determine evidence for 

microbial interactions causing selection on virulence and defense traits.   

 While previous studies have shown population level variation in pathogen 

virulence (Kniskern et al 2007; Pan et al. 2008; Carvalhais et al. 2013), less is known 

about variation in traits that affect interactions between symbionts (May and Nelson 

2014). Co-infecting symbionts interact through mechanisms such as excreted metabolites, 

effects on host gene expression, alterations of host physiology, or effects on host 
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mortality rates (Saunders et al. 2010; Laine 2011; Ferrari and Vavre 2011; Larimer, 2012; 

Meija et al. 2014; Panaccione et al. 2014). Interactions between symbionts can range 

from facilitation (Cattadori et al. 2008) to inhibition and affect the infection, growth, or 

reproduction of co-occurring symbionts (Borowicz 2001; Al-Naimi et al. 2005). Of 

particular interest are defensive symbionts that inhibit pathogens, thereby protecting their 

host from enemies (Jaenike and Brekke 2011). Indeed, theory predicts that the presence 

of a virulent pathogen may cause selection for symbionts that may prolong their own 

infection growth in the host by inhibiting pathogens that harm the host (Thompson et al. 

2002; Jones et al 2011; Chapter 2 of this dissertation). In this study, we examine evidence 

population level variation in virulence by an important pathogen of maize, Ustilago 

maydis. To determine evidence for genetic variation in symbiont mediated host-defensive 

traits, we examine inhibition of different U. maydis genotypes by a common symbiont of 

maize, Fusarium verticillioides.  

 This study focuses on interactions of two common fungal symbionts of maize, the 

pathogen U. maydis and the endophyte F. verticillioides. The basidiomycete U. maydis 

causes damaging infections in stem, ears, anther, and leaf tissues of maize and its wild 

relative teosinte (Bölker 2001). Additionally, U. maydis alters the metabolism of infected 

tissue, changing infected leaves from a carbon source for the plant into a carbon sink 

(Doehlemann et al. 2008; Horst et al 2010). While genotypes of F. verticillioides may 

cause disease in ears (Desjardins and Plattner 2000), other genotypes grow 

asymptomatically in other tissues as endophytes (Pan et al. 2008; Lee et al. 2009; Pan and 

May 2009; Saunders and Kohn 2009). Importantly for this study, F. verticillioides acts as 
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a defensive symbiont by inhibiting U. maydis growth, thereby decreasing damage done to 

the host (Lee et al. 2009). In addition to the infectious life history stages in maize, both 

fungi have free living stages in soil or plant debri (Bӧlker 2001; Cavaglieri et al. 2005; 

Vollmeister et al. 2011; Funnell-Harris and Pedersen 2011), making them ideal for 

studying microbe-microbe interactions with potential impacts on host fitness. Moreover, 

F. verticillioides detoxifies the host defense compound 2-benzoxazolinone (BOA) 

(Richardson and Bacon 1995; Cambier et al. 2000; Glenn et al. 2002; Saunders and Kohn 

2009), and in doing so, facilitates infection of maize by diverse fungi (Glenn et al 2001; 

Saunders and Kohn 2009). BOA is especially likely to affect interactions between these 

two fungi given that both F. verticillioides and U. maydis are sensitive to BOA but F. 

verticillioides degrades BOA (Glenn et al. 2002).  Consequently, we can use in vitro 

assays with BOA to determine if the outcomes of symbiont interactions are affected by 

the host context. 

 The presence of a virulent pathogen like U. maydis should put selection pressure 

on other symbionts, such as F. verticillioides, to invest in defensive traits that lead to 

inhibition of those pathogen’s infection or growth within the host (Thompson et al. 2002; 

Jones et al 2011; Chapter 2). To measure variation in antagonism between these two 

species as a proxy for a defensive trait, we paired U. maydis and F. verticillioides strains 

in vitro and compared colony growth rates of each organism alone and in co-culture. We 

evaluated whether the presence of BOA, a maize defensive compound, alters outcomes of 

these U. maydis and F. verticillioides interactions. To determine if interactions of these 

two fungal symbionts of maize might cause selection for increased antagonistic traits, we 
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used the results of a field study to evaluate correlations between co-occurrence and 

antagonism. Finally, because U. maydis has both parasitic and saprophytic phases, 

selection on life history traits important for the saprophytic phase may constrain the 

evolution of virulence towards the host. Therefore, we compared the growth of U. maydis 

strains in vitro with virulence in vivo to determine evidence that tradeoffs between 

saprotrophic and symbiotic traits constrain the evolution of virulence. 

 

Methods 

Fungal strain isolation and collections 

 We sought fields that had been continuously planted with resistant maize or 

susceptible maize, and thus provide differing selection on U. maydis virulence, by 

consulting with seed providers and farmers in southern MN and the UM field station on 

the St. Paul campus. We sampled from one field that has been historically planted with 

disease resistant, commercial, hybrid maize (Field corn), and the other with a disease 

susceptible, inbred variety (W22) commonly used in research (Candela and Hake 2008; 

Santiago et al. 2013). Plants in both fields were sampled along the natural transects of 

planted rows for both U. maydis and endophytic fungi. In each field, we assessed the 

spatial distribution of U. maydis and determined the rate of co-occurrence of the two 

fungal species by sampling two adjacent plants at each of 20 sampling locations, one with 

a U. maydis gall and an adjacent plant without obvious U. maydis infection.  For the plant 

with the U. maydis gall, the gall containing U. maydis spores was removed to a sterile 50 
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mL Falcon tube and an approximate 1 cm square tissue sample was taken from each of 

four cardinal points approximately 1 cm from the gall location.  From the adjacent plant 

without U. maydis, four similar samples were taken from similar locations in the plant 

tissue.  

 In the Field corn plot, the frequency of U. maydis galls was very low (ca. 1.4 %). 

Plants were examined exhaustively and each plant located with a U. maydis gall was 

sampled along with an adjacent, uninfected plant as above.  In the W22 plot, disease 

incidence was very high (ca. 76%) and we searched for plants that showed no symptoms 

of U. maydis disease and then sampled the adjacent plant with U. maydis galls. The 

spatial distribution of sampling points in the two fields was made similar by pacing 

approximately the same distance between uninfected plants in the W22 field as that of 

infected plants in the Field corn. 

Endophyte isolation  

 Most samples were removed from stem tissue because U. maydis galls occur there 

most frequently.  Falcon tubes containing sampled tissue segments were placed on wet 

ice in the field and returned to the lab. Within 24 hours of collection, tissue samples were 

surface sterilized by rinsing with sterile, deionized water, submerging in 10% EtOH for 1 

min, 10% bleach for 30 seconds, 10% EtOH for one minute, and rinsing again in sterile 

water (Arnold et al., 2003). Each surface sterilized tissue segment was then split in half 

with half retained at -80C for metagenomic analyses, and the remaining half placed in 

antibiotic water agar with kanamycin (50 µg/mL)and ampicillin (100 µg/mL) (AWA). 
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Fungal colonies growing out from the tissues were then transferred to potato dextrose 

agar on 80mm plates and finally stored as water vouchers at room temperature. Water 

vouchers place small 1 cm3 agar blocks with cultured fungi into small sealed tubes 

covered with sterile water. Fungal cultures can be stored for several years in this manner 

(McGinnis et al. 1974).  

U. maydis isolation 

 Only the haploid yeast-like phase of U. maydis can be grown in axenic media 

whereas the dikaryotic phase (two n nuclei per cell) formed after mating of two 

compatible haploid yeasts, is obligately dependent on a living plant. Consequently, we 

obtained haploid cells and re-constituted dikaryon genotypes that represent each U. 

maydis gall. To obtain haploid yeast cells, U. maydis galls were crushed using mini 

pestles and the resulting diploid teliospores soaked in sterile 1% Copper (II) Sulfate for 

three days. Teliospores were then rinsed in distilled H20 (diH20) by suspension and 

centrifugation and spread on water agar amended with kanamycin (50 µg/mL) and 

ampicillin (100 µg/mL). Diploid telisospores germinate and produce haploid sporidia on 

the plate, and these haploid cells were collected and streaked on PDA plates (Zahiri et al. 

2005) to obtain single spore isolates. Single spore colonies were then tested for mating 

compatibility on charcoal plates (as cited in Banuett and Herskowitz 1989). Compatible 

pairs were selected and each grown separately in 50mL liquid potato dextrose broth 

(PDB; BD DifcoTM) shaken at 150 rpm for 48 hours at 25C.  Haploid cells were stored by 
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placing 1 mL of cultured cells (ca. 108 cells/mL) on sterile silica gels following the 

method of Perkins (1949). 

Endophyte identification 

 We used DNA sequence and morphology to identify fungal endophytes emerging 

from the sampled maize tissues. Total DNA was extracted from mycelia in agar plugs 

using a Qiagen DNA extraction kit and the ITS-LSU region of the rDNA used to identify 

the fungi as previously (Pan et al. 2008; Pan and May 2009). Sequences were trimmed in 

Sequencher and BLAST results against Genbank were used for species identification. 

The endophyte F. verticillioides was classified as co-infecting with U. maydis if isolated 

from one of the four tissue segments cut from a plant with U. maydis galls. U. maydis 

strains were classified as co-infecting with F. verticilloides if one of the four tissue 

segments yielded F. verticillioides. It is important to note that co-infection status of U. 

maydis only refers to co-infection between U. maydis and F. verticillioides as all plants 

were host to multiple endophytes. 

Virulence assay  

 To test for variation in virulence between U. maydis strains isolated from the two 

fields, we inoculated plants with compatible haploid pairs representing eleven dikaryon 

genotypes isolated from Field corn and twelve dikaryon genotypes from the W22 field 

(Table 3.2). Compatible U. maydis mating types grow as yeasts in vitro but form an 

infectious and filamentous dikaryon in the plant (Bölker 2001). Therefore, we assessed 

U. maydis virulence by inoculating the same two compatible haploid strains (dikaryon 
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type) into each plant with eleven replicate plants per treatment. As we explain below, we 

used the same compatible pairs or dikaryon types for interaction studies in vitro.  

We used the size of inoculated plants as a proxy for virulence. We utilized Jubilee 

sweet corn, which is susceptible to both U. maydis and F. verticillioides infection. Seeds 

were planted 4 cm deep in pasteurized soil in conical pots 3.8 cm diameter wide and 21 

cm deep and inoculated with U. maydis 8 days after planting. Inoculum was prepared by 

growing U. maydis haploid strains individually in PDB as described above for 48 hours. 

Haploid cells were concentrated and washed with sterile water. Cell concentration was 

then adjusted to 106 cell/ul as per (Rodriguez Estrada et al. 2012). Sporidia from each 

compatible mating type were mixed, and 80 uL of inoculum was pipetted into the whorl 

of each plant by pipette.  

Greenhouse conditions and measurements of plant growth 

 Plants were grown under natural lighting and supplemental light intensities at 

120–200 µEm-2.with a 15h/9h light/dark cycle. Plants were watered every other day and 

kept between 24-30⁰C at the University of Minnesota Plant Growth Facilities, St Paul. 

Measuring plant size and virulence 

 To measure virulence, plant size was used as a proxy. To measure plant size, all 

plants were photographed three weeks after inoculation at two different angles from a 

fixed distance against a white cardboard background with a meter stick for scale. 

Photographs were cropped to be uniform and black areas were removed using GIMP to 

ensure that the plant was the only object visible in the image. Photographs were then 
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converted to binary black and white making the plant solid black against a uniform white 

background. The average black value of each photograph was recorded as a measure of 

plant size using ImageJ.  

Experimental design to test fungal interactions 

 To determine if different U. maydis and F. verticillioides strains vary in their 

ability to inhibit each other’s growth, we measured colony size of each species when 

grown with each other and compared that to control growth of the same colonies grown 

alone. To test for ecological factors associated with genetic variation in inhibition 

between species, we tested the effect of three factors on the colony size of each strain; the 

field from which a strain was isolated, the co-infection status at isolation, and the plant 

defense compound BOA on in vitro growth of each species. We used a balanced full 

factorial for a total of 16 strains for each fungal species (see Tables 3.1 and 3.2 for strain 

designations). To make the results of the in vitro experiment as comparable to the results 

of in vivo measurements, we mixed the same two compatible haploids from the same 

germinated teleospore to represent each U. maydis dikaryon strain for both sets of 

experiments. To measure colony growth in co-culture, each U. maydis strain was paired 

with each F. verticillioides strain on two replicate plates with BOA, and two without 

BOA, for a total of 1024 plates. Fungi were inoculated 4 cm away from each other in the 

paired plates. To measure growth alone, each strain from each species was grown in three 

plates with BOA and three plates without BOA, yielding three full experimental 

replicates for 96 plates. To test effects of BOA on fungal growth and interactions, fungi 
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were grown in 1% Potato dextrose agar with a final concentration of 0.5mg/ml BOA and 

1% EtOH, or PDA amended with 1% EtOH as a control (Glenn et al. 2002). Plates were 

placed in a dark growth chamber at 22C. To ensure that F. verticillioides did not 

overgrow U. maydis, fungal growth was observed daily and the experiment has halted 

after the first F. verticillioides colony grew into the U. maydis colony. The first encounter 

between F. verticillioides colonies and U. maydis occurred after five days of growth, thus 

colony size was measured five days after inoculation. 

Measurement of fungal growth in vitro 

 Inoculated petri plates were photographed at a fixed distance from camera to plate 

after five days of growth after inoculation. All image processing and analysis was 

performed in ImageJ (Schneider et al. 2012). Photographs were cropped to a uniform size 

and scaled to the diameter of the plate (90mm) to ensure consistent measurements. Each 

fungal colony was then outlined by hand and the area calculated automatically using the 

“Measure” function in ImageJ. 

Statistical analysis 

This study utilized three separate statistical tests to evaluate variation in virulence, 

interactions in vitro with and without BOA added to the media, and to determine the 

correlation of U. maydis strain virulence and colony growth. We used an ANOVA to test 

the effect of U. maydis field of origin and co-infection status on virulence towards the 

host. Field of origin was treated as a fixed effect and tested using the between strain 
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variance in virulence to determine if strains from the two fields exhibited significantly 

different levels of virulence. Plant size was used as an indirect measurement of virulence. 

To investigate interactions between fungi in vitro, fungal growth was analyzed 

using a nested mixed linear model using the Lme4 package in R. We tested the effect of 

two strain factors: strain field of origin and strain co-infection status at isolation. We also 

tested the effect of strain field of origin and strain co-infection status of one fungal 

species on growth of the other species, which we call cross species factors. We also 

tested the effect of BOA on fungal growth, as well as statistical interactions between 

BOA, strain factors, and cross species factors.  

This experiment used three different levels of variation as error: plate variation, 

within species strain variation, and variation in cross species strain by strain statistical 

interactions. Plate variation had the highest number of degrees of freedom, followed by 

variation in cross species strain by strain statistical interactions, leaving within species 

strain variation with the least degrees of freedom. Strain level variation was nested within 

the strain factors and cross species factors. Thus strain level variation was used to test the 

significance of strain field of origin and strain co-infection status on strain growth. We 

tested the effect of the plant defense compound BOA on fungal growth using between 

plate variation as error. Additionally, statistical interactions between BOA and strain 

effects, and BOA and cross species effects, were tested using strain level variation as 

error. Finally, statistical interactions between strain factors and cross species factors were 

tested using variation in strain by strain statistical interactions, as were all third and 
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higher order statistical interactions. Thus, the nested mixed linear analysis had the highest 

power in third order and higher level statistical interactions, which are difficult to 

interpret. Therefore, because we are primarily interested in the effects on fungal growth 

of BOA, field of origin, co-infection status, and interactions between these three main 

factors, we limited the analysis to first and second order statistical interactions. To 

evaluate first and second order effects the mixed model was run using the following code 

in R: 

lmer(Farea~(BOA+Ffield+(1|FusStrain)+Ufield+(1|UstStrain)+Fco+Uco+Uarea)^2)) 

To test for significant differences between treatment means within statistical interactions, 

a Tukey HSD was performed on the linear mixed model for interactions that were 

significant in the full model. 

 To test for a correlation between in vitro growth and in vivo virulence, a 

parametric bootstrap was performed using parameters generated by the lmer function in 

R. The lmer function was used to determine strain means and variance for U. maydis 

growth while co-cultured with F. verticillioides, and for U. maydis virulence in maize. 

Due to the design of the experiment we had 64 observations per U. maydis dikaryon 

strain in competition with all F. verticillioides strains but only six observations per 

dikaryon strain of U. maydis grown in isolation. Therefore, we chose to use U. maydis 

growth data from co-culture, as opposed to growth alone, because the higher sample size 

yields a more reliable estimate of error. It is impossible to measure virulence in the plant 

and growth in vitro simultaneously for a single fungal culture, thus we obtained paired 

data points for U. maydis dikaryon genotype growth in vitro and virulence toward the 
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plant. We ran a correlation between mean strain growth and mean strain virulence for the 

10 strains for which we had both measurements. To account for within strain variance, 

we used a parametric bootstrap to generate simulated data sets of strain growth in vitro 

and strain virulence in plantae. Strain means and variances used in the bootstrap were 

obtained from a linear model with the gendata function from the package of the same 

name. Regression slopes for the simulated data sets were calculated using the lm 

function. Sample regression slopes were recorded and tested for difference from zero 

under 1000 resampled datasets. 

 

Results 

We conducted two types of experiments.  First, to assess genetic variation for U. 

maydis virulence towards the maize host, we inoculated maize plants with differing U. 

maydis dikaryon genotypes in greenhouse conditions.  Plant size at the end of the 

experiment was used as a measure of virulence, or harm to the host.  Second, to assess 

genetic variation for interactions between symbiotic microbes that commonly occur in 

maize, we measured and compared colony growth rates in vitro, in co-culture and 

culturing strains of each species alone.  In these experiments, we used BOA to determine 

effects of a plant defensive compound on the outcomes of fungal interactions in vitro. 

Lastly, we examined evidence for potential trade-offs between growth rates in vitro and 

virulence for U. maydis. 

Variation in U. maydis virulence towards the maize host 
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Figure 3.1: Population level variation in U. maydis virulence. Virulence is evaluated 

as the decrease in plant size due to infection with U. maydis relative to control plants 

not inoculated with U. maydis. U. maydis strains from the W22 field were 

significantly more virulent than strains from field corn (p< 10-8). Error bars show 

95% confidence intervals calculated from the pooled variance of the difference 

between infected and control plants. 

 The results of the two factor ANOVA (Table 3.3) showed that plants inoculated 

with U. maydis showed significantly less growth than did control plants, which were 

inoculated with sterile water. Additionally, mean virulence for strains isolated from the 

W22 field was significantly (p<10-8) greater than virulence for strains from the field corn 

site (Figure 3.1). To determine whether co-occurrence of the two fungal species might 

cause selection for greater U. maydis virulence, we asked whether co-infection status 

predicted U. maydis virulence.  Results showed no significant difference in virulence due 

to co-infection status at isolation (p=0.77). U. maydis strains that were isolated from the 
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same plant tissue as F. verticillioides showed similar virulence to strains that were 

isolated from tissues without F. verticillioides. 

Fungal interactions in vitro - U. maydis 

We cultured U. maydis and F. verticillioides strains in vitro to determine if F. 

verticillioides strains varied in their ability to inhibit U. maydis growth. In the co-

inoculation experiment, 62 plates were unmeasurable either due to bacterial 

contamination or colony shape that was difficult to measure. These missing data was 

replaced with the grand mean of the co-inoculation experiment, generating a conservative 

estimate of statistical significance.  

  
w/o BOA 
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Figure 3.2: Mean U. maydis strain growth after five days, alone and in co-culture 

with F. verticillioides, in the presence or absence of BOA. White bars show U. maydis 

colony growth when cultured alone. Grey bars show mean U. maydis colony growth 

when co-cultured with F. verticillioides. Error bars show standard errors. 

Lowercase letters above each bar show significant differences as determined by a 

post-hoc Tukey’s HSD test. These data show that mean U. maydis strain growth was 

greater in the presence of F. verticillioides than when U. maydis was grown alone.  

BOA restricts the growth of U. maydis although proportionally less so in the 

presence of F. verticillioides 

 

U. maydis colony growth alone and in co-culture with F. verticillioides 

We evaluate the effect of three factors on U. maydis colony growth using a linear 

mixed model; the defense compound BOA, field of origin, and the co-infection status of 

U. maydis at isolation. The defense compound BOA resulted in significantly smaller U. 

maydis colonies across all treatments (p<<0.05, Figure 3.2 white bars). In contrast, no 

significant effect of either field of origin (p=0.122; Field corn or W22) or of co-infection 

status (p=0.770) was detected for U. maydis growth in culture. In addition, we failed to 

find a correlation between U. maydis colony size and F. verticillioides colony size 

(p=0.92). 

Contrary to expectations that F. verticillioides would inhibit U. maydis growth in 

vitro, we found that U. maydis grew faster in the presence of F. verticillioides (p<10-5) 
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than when cultured alone. The linear mixed model analysis found no significant 

difference in growth of U. maydis due to the co-infection status of co-cultured F. 

verticillioides strains (see Table 3.4) suggesting that if co-occurrence of these two fungi 

causes selection for growth in competition, it is occurring on a population level rather 

than at the individual plant level. Results suggest that when co-cultured with F. 

verticillioides, the mean growth of U. maydis strains from field corn was greater than the 

mean growth of strains from the W22 field, however, the results were not strongly 

significant (p=0.052).  

 

Figure 3.3: F. verticillioides growth in vitro. In each panel, F. verticillioides colony 

growth in PDA media with 1% BOA (left columns) and PDA without BOA (right 

columns) is shown. Panel A shows the effect of F. verticillioides field of origin on 

growth. Panel B shows the effect of F. verticillioides co-infection status on colony 

growth. Error bars show the standard error of each mean. 

F. verticillioides growth in vitro, alone and in co-culture 
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 We measured growth in vitro of the endophyte of maize, F. verticillioides, to 

determine if F. verticillioides growth varied between field, co-infection status, and with 

their response to the plant defense compound BOA. As expected, BOA significantly 

inhibited F. verticillioides growth (p<<0.05). We saw no significant difference in F. 

verticillioides growth response to BOA due to the field of origin as a main effect 

(p=0.784). We also failed to detect a difference in growth of F. verticillioides strains due 

to their status as co-infecting and not co-infecting with U. maydis (p=0.133, see Table 

3.5). U. maydis had little effect on F. verticillioides growth and this was true regardless 

of the field of origin for the U. maydis strains (p=0.8). Likewise, there was no significant 

difference between F. verticillioides growth when partnered with U. maydis strains either 

co-infecting or not co-infecting the same tissue at isolation (p=0.95). 

 We tested for second order effects between F. verticillioides growth and the plant 

defense compound BOA to determine if the response of F. verticillioides strains to the 

plant defense compound depended on either co-infection status or field of origin. We 

found three significant second order effects. The mixed model showed significant 

interactions in F. verticillioides growth between strain co-infection status and the defense 

compound BOA (p<10-9). Additionally, we detected a significant interaction between F. 

verticillioides field of origin and the presence of BOA in the media (p<0.03) and 

significant interactions between BOA and the field of origin of the co-cultured U. maydis 

strain. A post hoc was performed using a Tukey HSD on linear mixed model for F. 

verticillioides growth. The post hoc analysis showed significant differences between 

growth and without BOA growth, as expected, but failed to detect significant differences 
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between F. verticillioides field of origin or co-infection status. That the post hoc Tukey 

HSD failed to find significant interactions that were detected by the linear mixed model 

may be because post hoc pairwise comparisons tend to be underpowered (Ruxton and 

Beauchamp 2008). We therefore focus on differences in means between treatment 

combinations within significant interactions affecting F. verticillioides growth as shown 

by the linear mixed model approach.  

F. verticillioides strains from the two fields grew at similar rates when plated with 

BOA, however strains from the W22 field grew faster than the field corn strains when in 

media without BOA (Figure 3.3A) suggesting that while strains from the W22 field grow 

faster, they are more sensitive to BOA. We also found a significant (p<<0.05) interaction 

of effects of F. verticillioides co-infecting status and the presence of BOA in the media 

(Figure 3.3B). When grown in media containing BOA, F. verticillioides strains co-

infecting the same plant tissue as U. maydis, grew faster than strains that were isolated 

from plant tissues without U. maydis. When grown in media without BOA we found the 

opposite, co-infecting strains grew slower than strains that were not co-infecting with U. 

maydis.  
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Figure 3.4: Effect of U. maydis on mean F. verticillioides growth in vitro. Panel A 

shows the effect of U. maydis strains from field corn (white bars) and W22 (grey 

bars) on the mean growth of F. verticillioides. Mean growth of colonies grown in 

media with BOA are shown in the left columns and media without BOA in the right 

columns. Panel B shows the effect of the U. maydis strain co-infection status on F. 

verticillioides growth. White bars show the mean growth of  F. verticillioides strains 

from field corn and grey bars show mean growth of F. verticillioides strains from the 

W22 field. Error bars show the standard error of each mean. 

 U. maydis’ effect on F. verticillioides growth was also dependent on the presence 

of BOA (Figure 3.4A). When grown in media containing BOA, U. maydis strains from 

the W22 field led to lower growth in the partnered F. verticillioides colonies than did U. 

maydis strains from field corn. However, there was no difference in the effect of U. 

maydis strains from different fields on F. verticillioides when grown without BOA. These 

results suggest that the U. maydis strains from the W22 field inhibit F. verticillioides 
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growth more on average than do U. maydis from field corn, but that difference is only 

detectible in the presence of BOA.   

 Finally, we saw a significant (p=0.035) interaction term for F. verticillioides field 

of origin and the co-infection status of the U. maydis strain on F. verticillioides growth in 

co-culture (Figure 3.4B). F. verticillioides strains from the W22 field grew faster when 

co-cultured with U. maydis strains that were isolated from the same tissue as F. 

verticillioides (co-infecting). However, important to note that the effect size was very 

small and that this is a potentially spurious result. 

 

 

Figure 3.5: Correlation between U. maydis growth during in vitro co-culture with F. 

verticillioides, and the virulence of the same strains in maize. Open markers indicate 



   
 

101 
 

results for strains from the W22 field and grey markers indicate results for strains 

from field corn. Error bars indicate 95% confidence intervals for each strain using 

the variance in growth and virulence for each strain. Analysis of the data generated 

by the parametric bootstrap showed that the regression slope differed significantly 

from zero (p<0.036) with a slope of -6.7 and an R2 of 0.4976. 

 We compared the growth in vitro virulence in vivo of the same dikaryon 

genotypes to determine if tradeoffs between saprotrophic and virulence traits might 

constrain the evolution of virulence. Results demonstrate negative correlation between 

strain virulence and strain growth in competition (Figure 3.5) suggesting negative 

pleiotropy between these traits. Thus, selection on virulence may be constrained by 

selection on saprotrophic traits, if growth rate is important to survival of U. maydis in the 

soil.  

Discussion   

This study assessed variation in a pathogen’s virulence and in an endophyte’s 

inhibition of that pathogen. We asked if populations of the pathogen U. maydis exhibited 

genetic variation in virulence, the degree of harm to the host. We also asked if 

populations of the fungal endophyte F. verticillioides showed genetic variation in the 

degree to which they inhibit U. maydis growth in culture, as a proxy for a host defensive 

trait. We found that strains of the pathogen U. maydis from a field corn population 

exhibited lower virulence than strains from the W22 field. Contrary to our expectations, 

we found that U. maydis growth in vitro increased in the presence of F. verticillioides, 
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which we had assumed acted as a defensive mutualist. U. maydis increased growth in the 

presence of F. verticillioides suggests that U. maydis facultatively increases its growth 

rate when it detects F. verticillioides. Finally, we detected a negative correlation between 

U. maydis growth in vitro and its virulence in the plant suggesting a tradeoff between 

saprophytic and parasitic life history traits. 

Pathogen virulence 

 We found U. maydis strains isolated from the W22 field exhibited greater mean 

virulence than strains isolated from field corn.  Given that just one field of each type of 

maize was sampled to obtain these strains, we are unable to attribute differences between 

the pathogen populations to differences in the host population. Two important ecological 

factors that influence virulence evolution are multiple infections within hosts and 

susceptible host density (Ebert and Mangin 1997). Under multiple infections, if one 

parasite kills its host all co-infecting parasites die as well. Therefore, selection favors 

virulent parasites that can transmit to new hosts before another parasite kills the current 

host (Ebert and Mangin 1997).  However, as plants from both fields were colonized by 

endophytic fungi and endophytic fungi are relatively benign in their effects on the host, 

co-infection with endophytes per se is unlikely to explain the difference in virulence 

between populations. Further studies would be needed to determine if other symbiotic 

species colonizing W22 are more virulent than symbiotic species colonizing field corn. 

We look to the second possibility, that transmission success rate may be affecting 

virulence evolution.  
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A wide body of theory deals with role of gene for gene interactions in the 

evolution of host pathogen systems (see review by Hulbert et al. 2001). In a gene for gene 

system, hosts can evolve “resistance genes” which prevent infection. Conversely, 

pathogens can evolve “virulence genes” which allow a pathogen to infect resistant hosts. 

In gene for gene systems host resistance is widely expected to select for virulence genes 

to evade host resistance genes (McDonald and Linde 2002). However, the term virulence 

in gene for gene systems only refers to a pathogens ability to infect its host. Thus, theory 

regarding gene for gene evolution is silent on the evolution of virulence as used in this 

study, the degree to which a pathogen harms its host. 

 Transmission success is determined by host and parasite population genetic 

structure (de Wit 1992).  Because field corn plants are more resistant to U. maydis 

infection than W22 plants, selection may be favoring low virulence strains that maintain 

longer, less damaging infections in field corn populations. That differences in U. maydis’ 

ability to infect its hosts may alter selection on virulence is especially interesting in light 

of U. maydis’ relationship with F. verticillioides. F. verticillioides has been shown to 

detoxify plant defense compounds (Richardson and Bacon 1995; Glenn et al. 2003) and 

might increase U. maydis infectivity. The potential for BOA to play a mediating role in 

interactions between U. maydis and F. verticillioides is of particular interest in light of 

our findings that F. verticillioides growth differed based on the field of origin and co-

infection status, but only in the presence of BOA. 

F. verticillioides growth in vitro 
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 BOA affected F. verticillioides growth in two ways. First, F. verticillioides from 

the W22 field grew significantly faster than strains from field corn, but this difference 

was only significant in the absence of BOA. Thus, while the W22 F. verticillioides 

strains may grow faster than field corn strains, our results show that they are not as 

tolerant of BOA. Additionally, we found that F. verticillioides that was isolated from the 

same tissue as with U. maydis grew significantly faster than strains that were isolated 

from plants without U. maydis, but only in the presence of BOA. Because BOA 

detoxification can facilitate growth of other fungi (Saunders and Kohn 2009), it is 

possible that F. verticillioides strains with higher rates of BOA detoxification facilitate U. 

maydis infection and are therefore more likely to be found co-infecting with U. maydis. 

Our result that co-infecting F. verticillioides grew faster than not co-infecting strains in 

the presence of BOA and slower in its absence, suggests that detoxifying BOA provides 

an advantage when BOA present but comes at a cost when BOA is absent. 

U. maydis growth in vitro 

We measured fungal growth in vitro to look for genetic variation in the degree to 

which F. verticillioides inhibits U. maydis growth. It is important to note that this study 

only examined growth before the fungi came into direct contact. F. verticillioides has 

been shown to significantly reduce U. maydis biomass when F. verticillioides mycelia 

grow over U. maydis colonies in vitro (Rodriguez Estrada et al. 2011) and to reduce U. 

maydis growth in the plant (Rodriguez Estrada et al. 2012). However, counter to our 

expectations, co-culturing with F. verticillioides actually resulted in increased U. maydis 
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growth compared to growth alone, although the increase was only significant in the 

presence of the defense compound BOA. This increase in growth could either be due to 

U. maydis being stimulated to grow faster in the presence of F. verticillioides, or more 

likely, F. verticillioides detoxifying BOA (Saunders and Kohn 2008).  The ability to 

detoxify BOA varies significantly among strains (Richardson and Bacon 1995; Glenn et 

al. 2003). One might expect then, that the amount of detoxification is proportional to the 

size of the F. verticillioides colony. However, we were unable to detect a correlation 

between U. maydis and F. verticillioides growth. Nonethess, given our demonstration of 

increased U. maydis growth in the presence of F. verticillioides, F. verticillioides may act 

as both an inhibitor and facilitator of U. maydis. While F. verticillioides inhibits U. 

maydis growth within the plant and reduces effects of disease (Lee et al. 2009), F. 

verticillioides may also help U. maydis evade plant defenses and facilitate infection. 

Alternatively, U. maydis may be stimulated to grow faster due to the presence of 

an enemy. Fungi have been known to increase growth in the presence of metabolites from 

other species (Heilmann-Clausen and Boddy 2005). Unicellular organisms face an 

inherent tradeoff between growth rate and efficiency (Molenaar et al. 2009). When faced 

with a competitor, U. maydis may be switching to a less efficient but more rapid growth 

strategy. It has been shown that U. maydis facultatively expresses a variety of compounds 

in the presence of F. verticillioides and that U. maydis growth is significantly impaired 

after being overrun by F. verticillioides (Rodriguez Estrada et al. 2011). While for us 

humans, the idea that a microbe may want to “run away” from a competitor is attractive, 

U. maydis colonies grow undirected and thus at least half of the cells are growing toward 
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F. verticilloides. Because we measured colony growth before the fungi came into direct 

contact, U. maydis may be detecting a diffusible compound, or a change in nutrient status 

of the media caused by F. verticillioides. 

Correlation between growth and virulence 

 We compared the growth of U. maydis strains in vitro with virulence in vivo to 

ask if the evolution of virulence might be constrained by a tradeoff between saprotrophic 

and symbiotic traits. If growth in vitro corresponds to virulence in vivo (Caraco and 

Wang 2007), we expect a positive correlation between strain growth in vitro and strain 

virulence. Contrary to expectations, results show that U. maydis strains that grow faster in 

vitro cause less damage to their hosts than slower growing strains. This results suggests 

support for a tradeoff between growth in vitro (saprophytic) and virulence. Many 

symbionts are subject to tradeoffs between traits affecting different life history stages 

(Woodhams et al. 2008; Morris et al. 2009). Rust fungi, for example, have been shown be 

subject to tradeoff between infectivity as determined by classic gene-for-gene virulence 

factors and a quantitative effect of an increasing number of virulence factors on the latent 

period between initial infection and sporulation (Bruns et al. 2012). Among symbionts 

with a free-living life history stage, it is sometimes assumed that high survival rates 

during the free-living stage allows for the evolution of greater virulence (Bonhoeffer et 

al. 1996; Gandon 1998). However, most studies have focused on parasites with non-

replicative free-living forms (Caraco and Wang 2007) or opportunistic pathogens (Brown 

et al. 2012) that do not need a host to complete their life cycle. Less attention has been 

http://www.sciencedirect.com/science/article/pii/S0022519304003261#bib1
http://www.sciencedirect.com/science/article/pii/S0022519304003261#bib1
http://www.sciencedirect.com/science/article/pii/S0022519304003261#bib15
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paid to pathogens that can grow and replicate outside of the host. Because U. maydis can 

grow as a free living yeast but requires a host for sexual reproduction (Bölker 2001; 

Pérez-Martín 2006), this study provides insight into an overlooked life history strategy. 

The negative correlation between growth in vitro and virulence suggests that virulence in 

U. maydis may come at a double cost, first by potentially killing the host (Lenski and 

May 1995), and second by reducing growth in the saprophytic stage. 

Conclusion 

The goal of this study was to determine evidence for genetic variation in pathogen 

virulence and symbiont mediated host-defensive traits. We found significant differences 

in in the levels of virulence between two populations of the smut fungus U. maydis. 

Additionally, our results show that virulence to the plant is correlated with slower growth 

rates in vitro. Therefore, selection on virulence may be a function of the ecology and 

community composition during a symbiont’s free living stage, as well as the conditions 

within the host. Furthermore, we show that interactions between organisms may change 

significantly depending on the environmental conditions under which the interactions 

occur. These data show the importance of examining a symbiont’s entire life history, as 

well as its host and symbiotic community context, when attempting to elucidate the 

evolutionary and ecological forces that shape its relationship to its host.  
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Table 3.1: F. verticillioides strain designations 

  

 

  

F. verticillioides strain 

ID 

Isolated with 

U. maydis? 

Field of 

origin 

GF11 Yes Field corn 

GF110 Yes Field corn 

GF15 No Field corn 

GF2 Yes Field corn 

GF40 No Field corn 

GF46 No Field corn 

GF49 No Field corn 

GF80 Yes Field corn 

GSP105 Yes W22 

GSP125 No W22 

GSP134 Yes W22 

GSP194 No W22 

GSP24 Yes W22 

GSP260 No W22 

GSP345 No W22 

GSP50 Yes W22 
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Table 3.2: U. maydis strain designations 

U. maydis strain ID 

Isolated with F. 

verticillioides? 

Field of 

origin 

In 

vitro 

In 

vivo 

IV-F-11-13E No Field corn X X 

IV-F-1-21E Yes Field corn X X 

IV-F-13-6W Unknown Field corn  X 

IV-F-16-15E No Field corn X X 

IV-F-1-7W Yes Field corn X X 

IV-F-18-13W Yes Field corn  X 

IV-F-3-3W No Field corn X X 

IV-F-6-14W Unknown Field corn  X 

IV-F-6-3E No Field corn X X 

IV-F-6-3W Yes Field corn X  

IV-F-7-13W Yes Field corn  X 

IV-F-9-10E Yes Field corn X X 

V-SP-W22-1 No W22 X X 

V-SP-W22-13 Yes W22 X  

V-SP-W22-17 Yes W22 X  

V-SP-W22-18 No W22 X  

V-SP-W22-25 No W22 X  

V-SP-W22-3 No W22  X 

V-SP-W22-31 No W22  X 

V-SP-W22-32 Yes W22  X 

V-SP-W22-33 Yes W22  X 

V-SP-W22-34 No W22  X 

V-SP-W22-35 No W22  X 

V-SP-W22-37 No W22  X 
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V-SP-W22-39 No W22 X  

V-SP-W22-4 Yes W22 X X 

V-SP-W22-5 Unknown W22  X 

V-SP-W22-6 No W22  X 

V-SP-W22-7 Yes W22 X X 

V-SP-W22-8 No W22  X 
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Table 3.3: Results of ANOVA analysis of U. maydis virulence in vivo. This table shows 

the effect of two qualities of each strain, the strain field of origin (field), and co-infection 

status at isolation (co-infect) on U. maydis growth. This analysis shows that U. maydis 

strains from the two fields differed significantly in virulence toward maize.  

 d.f. SumSq MeanSq F p value 

Field 1 207 207.33 29.705 7.51E-08* 

Co-infect 1 1 0.61 0.088 0.767 

Residuals 567 3957 6.98   

* significance p < 0.05  
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Table 3.4: Results of linear mixed model analysis of U. maydis growth in vitro. We tested 

for variation in growth of U. maydis strains and the effect of partnered F. verticillioides 

colonies (FV) on U. maydis growth. This table shows the effects of the field of origin 

(field), and co-infection status at isolation (coinfect) on variation in U. maydis growth. 

Additionally, we tested the effect of the plant defense compound BOA and the size of the 

co-cultured F. verticillioides colony (partner area) on U. maydis growth in vitro.  

 U. maydis colony size 

 Estimate 

Std. 

Error t value 

p 

value   

BOA 0.25 0.12 2.11 0.035 * 

FV field -0.14 0.07 -1.94 0.052   

UM field -0.13 0.09 -1.55 0.122   

FV coinfect 0.01 0.07 0.18 0.859   

UM coinfect -0.03 0.09 -0.29 0.770   

Partner area 0.00 0.00 -0.10 0.923   

BOA:FV field 0.10 0.07 1.51 0.130   

BOA:UM field -0.05 0.06 -0.81 0.419   

BOA:FV coinfect -0.02 0.07 -0.30 0.764   

BOA:UM coinfect 0.07 0.06 1.03 0.303   

BOA:Partner area 0.00 0.00 0.23 0.821   

FV field:UM field -0.02 0.03 -0.60 0.549   

FV field:FV coinfect 0.03 0.04 0.81 0.420   

FV field:UM coinfect 0.00 0.03 -0.07 0.941   

FV field:Partner area 0.00 0.00 0.11 0.912   

UM field:FV coinfect -0.01 0.03 -0.47 0.641   

UM field:UM coinfect 0.10 0.09 1.17 0.240   

UM field:Partner area 0.00 0.00 0.61 0.544   

FV coinfect:UM 

coinfect -0.04 0.03 -1.39 0.165   

FV coinfect:Partner area 0.00 0.00 0.46 0.646   

UM coinfect:Partner 

area 0.00 0.00 0.20 0.844   

* significance p < 0.05  
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Table 3.5: Results of linear mixed model analysis of F. verticillioides growth in vitro. We 

tested for variation in growth of F. verticillioides strains due to effects of partnered U. 

maydis colonies on F. verticillioides (FV) growth. This table shows the effect of two 

qualities of each strain, the strain field of origin (field), and co-infection status at isolation 

(coinfect) on F. verticillioides growth. Additionally, we tested the effects of the plant 

defense compound BOA and the size of the co-cultured U. maydis colony (partner area) 

on F. verticillioides growth in vitro.  

 F. verticillioides colony size  

 Estimate 

Std. 

Error t value 

p 

value   

BOA 599.37 54.49 11.00 0.000 * 

FV field 27.64 100.93 0.27 0.784   

UM field 12.53 49.47 0.25 0.800   

FV coinfect -134.27 89.38 -1.50 0.133   

UM coinfect 3.25 51.85 0.06 0.950   

Partner area 0.58 0.38 1.53 0.127   

BOA:FV field 59.73 27.74 2.15 0.031 * 

BOA:UM field 69.84 27.76 2.52 0.012 * 

BOA:FV coinfect 168.74 27.16 6.21 0.000 * 

BOA:UM coinfect 40.08 27.47 1.46 0.145   

BOA:Partner area -0.13 0.32 -0.41 0.683   

FV field:UM field -11.73 23.47 -0.50 0.617   

FV field:FV coinfect 107.64 124.64 0.86 0.388   

FV field:UM coinfect -49.25 23.40 -2.10 0.035 * 

FV field:Partner area 0.07 0.32 0.22 0.826   

UM field:FV coinfect -36.93 23.30 -1.58 0.113   

UM field:UM coinfect 29.74 39.93 0.74 0.456   

UM field:Partner area -0.47 0.32 -1.45 0.147   

FV coinfect:UM 

coinfect 4.93 23.28 0.21 0.832   

FV coinfect:Partner area 0.31 0.32 0.99 0.323   

UM coinfect:Partner 

area -0.22 0.32 -0.68 0.498   

* significance p < 0.05  
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