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Abstract

Symbiosis is defined as the mutually beneficial living together of two dissimilar organisms in close proxim-
ity. We adapt that term to refer to the increase in throughput that can occur when two or more applications
are executed concurrently on a multithreaded computer. In this paper, we give a formal definition of symbio-
sis, make observations about its nature, and present experimental results on two multithreaded architectures,
the Tera MTA and (via simulation) a Simultaneous Multithreading machine.

1 Introduction

Multithreaded architectures such as SMT (Simultaneous Multithreading) [8] and the Tera MTA (Multi-
Threaded Architecture) make use of multiple threads of execution to keep the processor highly utilized in
the face of latencies. When one thread of execution has to wait for the result of an operation such as a
memory reference, another thread with a ready-to-execute instruction can use the processor. There are,
in general, two sources of threads for these machines; 1) threads resulting from the parallel decomposition
of a single program and 2) threads from different programs. On the SMT and on the MTA, programs
from a multiprogrammed environment become a source of instructions which can be used to hide latencies.
However, because these architectures can execute instructions from different threads each cycle, there is
no fundamental difference (from the CPU scheduler’s point of view), whether latencies are covered with
instructions from the same or different processes. Of course, the actual runtime of a multithreaded process
likely depends on whether latencies are being filled from that same process or not.

An interesting feature of both the SMT and the MTA is that, if resources such as functional units (in
the case of the SMT) or issue slots (in the case of the MTA) are unused by one program’s threads, they can
be used by another program’s threads possibly without adversely affecting the first program. In general, if a
program is not fully utilizing the resources of the machine, it leaves an opportunity for a contemporaneously
executing program to use these left-over resources. If the O/S knows or can predict that a group of jobs may
make progress without hindering each other it can increase system throughput by co-scheduling these jobs.
Information about a job’s resource usage, obtained statically or dynamically, could thus be used by the job
scheduler to make good choices about what jobs to run together.

Symbiosis is defined as the mutually beneficial living together of two dissimilar organisms in close proxim-
ity. We adapt that term to refer to the increase in throughput that can occur when two or more applications
are executed concurrently on a multithreaded computer. We define symbiosis in terms of throughput rate
where throughput rate is given by

TR = (t1 + t2... + tx)/SimultaneousExecutionTime(program;, programs, ..., programy)

and t; is the execution time of program; when program; is executed alone. Intuitively, symbiosis exists if the
time to execute a batch of programs all together is less than the sum of the times to execute them separately.
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We think of symbiosis as being potentially positive (beneficial) or negative (harmful). If the throughput rate
is greater than one we have positive symbiosis. So we define symbiosis as

Symbiosis = (TR - 1)/(TM — 1)
where
TM = (t1 + t2... + tx)/MaximumOfExecutionTimes(program;, programs, ..., programy)

TM is a measure of how good symbiosis could possibly be (at least in any probable scenario); at best all
the jobs run together in the same time as the longest of their individual runtimes. If TR = TM (that
is, the longest job does not slow down at all despite coscheduling) we have positive symbiosis of 1. Zero
symbiosis occurs when TR = 1 (no speedup is achieved through coscheduling), and negative symbiosis occurs
when coscheduling on a multithreaded machine actually lowers overall throughput. Note that symbiosis is
a characteristic, not of individual jobs, but of groups of jobs in execution. We expect symbiosis on a
multithreaded machine to be between 0 and 1; however, it could be arbitrarily negative. This could be due
to high rates of interference between the jobs on a particular resource, such as instruction or data caches.
Symbiosis can also be degraded because of the extra overhead required for swapping between jobs.

2 Observations on the Nature of Symbiosis

Symbiosis as defined above is certainly not unique to multithreaded architectures. It has long been
known that for programs that make substantial use of I/O devices or virtual memory, concurrent execution
can lead to a total execution time that is less than the sum of the individual execution times of the programs.
While one job is stalled waiting for an I/O request to be satisfied, another job can make use of the processor.
This example of symbiosis is a result of the fact that computers have two resources, the CPU and the I/O
processor, that can be independently and concurrently scheduled. However, the benefits of such multitasking
is limited to coarse-granularity scheduling, since the context switch time is many thousands of cycles.

On multithreaded architectures, there are many more resources that can be independently and concur-
rently scheduled. Furthermore, for all these resources, there is no runtime overhead associated with the
dynamic allocation of the resource. Zero cost context switching provided by the MTA and simultaneous
existence of contexts on the same cycle in SMT mean that these machines can cover short latencies with
instructions from other programs. Our study is motivated by a desire to understand how programs interact
on multithreaded architectures, why they do (or do not) achieve symbiosis and how symbiosis varies during
the execution of a group of programs.

If two equal-length programs run together in the same time that either would run by itself, the symbiosis
is 1. It is conceivable, but hard to construct real examples such that, the symbiosis of two programs is greater
than 1. A simple experiment demonstrates positive symbiosis; if a collection of programs on the Tera MTA
are compiled with threading inhibited (so each uses only one stream), then a number of programs equal to
21 times the number of processors run simultaneously in the same time as one program. This is because the
effective depth of the instruction pipeline is 21 cycles and each thread can have only one instruction in the
pipeline at a time.

If we observe symbiosis greater than 1 it indicates that two or more programs are somehow helping
each other along, perhaps by prepaging data or filling cache lines for each other on the SMT. They have to
be helping each other by a factor greater than they are hurting each other by competing for other shared
resources. We consider such conditions unlikely to arise in practice. In this study we have chosen not to try
to deliberately concoct programs that exhibit such behavior.

We expect that symbiosis has no practical negative limit. It is easy to imagine scenarios where competition
for limited resources degrades the performance of coscheduled processes. We suspect that symbiosis will be
best for programs that do not use the full resources of the machine and so leave windows of opportunity for
competing programs. This may imply that programs that are distinctly different (e.g. one is highly floating
point intensive and the other is integer intensive or one is very memory intensive and the other is not) will
be more symbiotic than programs that require similar resources.

For any architecture, there are multiple allocatable resources which can be cycle-shared (allocated per
cycle to any available user of the resource). When two or more programs are running, if one does not use



such a resource another can step in and use it. On the MTA and SMT many resources can be shared at the
granularity of a cycle. In fact the SMT can issue to functional units on behalf of more than one program on
the same cycle. Table 1 provides a subset of the cycle-shareable resources for the MTA and SMT.

Table 1: Cycle-shareable Resources
MTA | registers | fetch streams | memory i-cache instruction | TLB
add network issue slots
cache bandwidth
SMT | fpregs | int regs 1Q mem d&i-cache | functional | TLB
entries cache units
bandwidth
fetch
bandwidth

Symbiosis is likely to be a function of how well program requirements compliment each other. Notice
that this implies that threads from different applications are in some cases more likely to be symbiotic
than threads from the same application using loop-level parallelism (where each thread uses the execution
resources in the same proportion). This phenomenon has been observed in other SMT experiments [7] [8].
Knowing how much of the cycle-shared resources are being used by each program is a place to start for
predicting symbiosis. In the next section we detail symbiosis predictions and experiments on both the MTA
and the SMT.

3 Symbiosis Prediction and Observation

3.1 Tera MTA

As a starting place for the exploration of symbiosis we chose to run the five NAS 2.3 Parallel Bench-
mark [2] kernels in each of 15 possible pairings (including self pairings) on the Tera MTA at the San Diego
Supercomputer Center [5] and in an SMT simulator. As has been our method in previous work [1], we
started with the serial formulation of these kernels. The MTA’s compiler automatically parallelizes these
serial codes. For now, one must hand code thread decomposition for the SMT. However, because the SMT
can efficiently use only a few threads per processor [3], meaningful experiments can be done by competing
two single threaded benchmarks. We will be experimenting with multithreaded versions in the near future.

Table 2 shows dynamic execution profiles of the five NPB 2.3 kernels class size W running alone on one
cpu of the MTA. Table 2 reports these profiles for untuned benchmarks. Each benchmark has an initialization
section which is untimed when reporting benchmark performance and a timed grind section. Because the
initialization sections take different times for different benchmarks, and because the initialization sections are
often (but not always) serial, it is important to know the times of both sections when attempting to predict
symbiosis. Serial sections on the MTA can issue only once every 21 cycles (the effective depth of the pipeline)
and so provide ample opportunity for symbiosis. The MTA has hardware counters which can be used to
count phantoms and memory references. A phantom is an issue slot that could not be used by the program
due to dependencies and/or excessive operational latencies. We report, for each benchmark, the percentage
of issue slots in grind that were phantom. Counting memory references on the MTA is important because
memory network bandwidth is a finite cycle-shared resource. Two highly memory intensive programs may
hamper each other’s progress by flooding the network with traffic and increasing memory latencies. We
report the percentage of issues in grind that made references to memory.



Table 2: Time and Resource Utilization Profiles of NPB 2.3 Vanilla on MTA
Benchmark Tinit | Tgrind | Phantom % Memref %
Conjugate Gradient 5.2s 3.45s 17% 97%
Embarrassingly Parallel | .24s | 29.43s 63% 35%

Fourier Transform 3.7s 20.49s 4% 65%

Integer Sort 30.17s | .32s 53% 65%

Multigrid 1.62s | 5.93s 26% 79%

Figure 1 show symbiosis for each of the 15 possible pairwise combinations of co-scheduled kernels run on
one cpu of the MTA. All combinations are symbiotic. EP is highly symbiotic with all others benchmarks
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Figure 1:

and itself. This might have been predicted from its high phantom and low memory reference percentages.
IS is also highly symbiotic even with other memory intensive kernels. Note that IS has a long initialization
section. In the untuned version this is purely serial. Most other kernels, when co-scheduled against IS, run
to completion during IS’s initialization when IS is using only 1/21 of available issue slots. MG, a memory
intensive program with a short initialization is less symbiotic in general. CG is highly memory intensive but
has the second longest serial initialization section. This helps it achieve symbiosis with other kernels. FT
has the highest phantom percentage which leaves a competing program lots of issue slots.

Table 3 gives dynamic profile information for the highest level of tuning from [1]. A primary side effect
of tuning is to decrease phantom percentages.

Table 3: Time and Resource Utilization Profiles of NPB 2.3 Tuned on MTA
Benchmark Tinit | Tgrind | Phantom % Memref %
Conjugate Gradient 8.2s 3.23s 3% 87%
Embarrassingly Parallel | .23s 13.35 31% 18%

Fourier Transform 1.69s | 2.87s 12% 5%

Integer Sort 35.80s | .26s 43% 66%

Multigrid 2.9s 3.33s 17% 85%

Examination of Figure 2 below shows that symbiosis has been reduced for all self pairings except CG+CG.
Other pairings show reduced symbiosis except when paired with IS. We believe it to be a general principle
(also observed in [9])that programs which are highly tuned for instruction level parallelism, by utilizing
the resources of a machine more fully, present less opportunity for symbiosis with competing programs. In
tuning CG we used a bit packing optimization to reduce memory references [1]. The effect of this was to
lengthen the serial initialization time while decreasing grind time. This increases opportunities for symbiosis
during initialization and decreases it during grind. In the case of IS, the percentage of time spent in grind
has been reduced. IS still presents excellent opportunities for symbiosis during its long initialization phase.
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Figure 2:

Although the overlap between serial and parallel sections was not the primary effect we were looking for,
many real programs do have dynamically varying degrees of parallelism. The average amount of TLP and
its variability over time clearly is a factor influencing symbiosis.

To disambiguate the symbiotic effect of serial execution sections overlapping with parallel sections of
another kernel from the (presumably less symbiotic) effect of two kernels running parallel at the same time,
we created versions of the benchmarks which spend a much greater percentage of their time in grind. Figure
3 below shows symbiosis for tuned kernels that spend at least 90% of their time in grind and which, when
run together, spend at least 40% of their time in competition with the other kernel in parallel grind. Figure 3
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confirms that these highly efficient parallel programs run on one cpu of the MTA exhibit reduced symbiosis.
This is because nearly all of the available system resources are used by each program when run by itself.
There is reduced opportunity for co-scheduled programs to compute symbiotically. On the other hand,
symbiosis of 0.2 for two highly tuned parallel programs compiled to use the whole machine is not necessarily
"bad”. A further effect which can contribute to poor or even negative symbiosis when two parallel programs
compete on the MTA is that the first program to obtain streams may cause the second program to get
fewer than it requires for optimal performance. A program, during execution, asks for a sufficient number
of streams to satisfy the compiler’s estimate of latencies. A program needs at least 21 streams just to cover
the instruction pipeline latency. Still, if fewer streams are available the program will take what it can get.
A pathological case can arise when the first program to reserve streams actually only needs them for a short
time. Since stream allocation is not dynamic by default, the second program will continue to be throttled
by the insufficient number of streams it obtained even after more streams are actually available. This may
be the case with FT+IS for example; FT finishes shortly after IS goes parallel and thus affects the resource
available to IS.



3.2 Simultaneous Multithreading Processor

The SMT machine uses multiple threads to keep the functional units of a superscalar processor highly
utilized. A single program or thread often does not have sufficient instruction level parallelism (ILP) to issue
to all of the functional units of a superscalar processor on every cycle. The SMT uses instructions from a mix
of threads in an attempt to fill more of these functional unit issue slots [7]. A single thread with high ILP
does not need another thread to achieve high utilization of functional units (assuming that it also has a good
mix of instruction types). One might hypothesize that threads with low ILP or threads with complimentary
mixes of floating point, integer and load/store instructions would achieve symbiosis on the SMT. The SMT
machine as proposed, has a data memory hierarchy so that secondary effects with respect to caching become
a concern [4]. For the MTA simply characterizing the memory intensity of codes can give insight into how
they compete for cycle-shared memory bandwidth. On the SMT patterns of data reuse in cache may allow
positive symbiosis or lead to thrashing and negative symbiosis [3].

Our results should be interpreted differently for the SMT than for the MTA for at least two reasons.
Low symbiosis on the MTA for multithreaded programs may simply signify that each is able to use the
machine very efficiently by itself. Because we used single threaded programs for the SMT, a lack of positive
symbiosis between two programs does indicate that multithreading is ineffective. However, unlike the MTA,
a single thread on an SMT processor can use all of the execution resources of the processor and have negative
symbiosis with another single-thread program.

Our SMT simulator processes unmodified DEC Alpha executables and uses emulation-based , instruction-
level simulation to model in detail the processor pipelines, hardware support for out-of-order execution, and
the entire memory hierarchy, including TLB usage [4].

We first ran the five NPB kernels on our SMT simulator with direct-mapped L1 data and instruction
caches. Our experiments showed that self-pairings thrashed the L1 instruction cache. To gauge the impor-
tance of this thrashing on symbiosis, we performed the same experiments, this time with 2-way set associative
L1 caches. Table 4 and Figure 4 below give the results for this configuration. This change improved the
symbiosis of self-pairings in three of the five cases quite dramatically. However, for reasons we discuss below,
the symbiosis in four of the five cases remained negative.
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Figure 4:

All the self-pairings on the direct-mapped configuration suffer from thrashing. For example, the average
memory latency when pairing CG nearly doubles, and icache hit rates drop precipitously.

When we use 2-way associative L1 caches, the CG+CG pairing speeds up by 45%. However, the CG+CG
pairing remains negatively symbiotic. The problem is two-fold. First, L3 cache hit rates remain bad, at 3.95%.
Secondly, now that cache hit rates have increased, a bottleneck has been exposed in the floating-point queue:
in 60% of the cycles, the floating point queue was full.



Table 4: Resource Utilization Profiles of NPB 2. 3 SMT with 2 way assoc. I-cache

Benchmark | IPC | instruction mix | queue | register | active-list | fu conflict cache DTLB
FP conflict | conflict | overflow or INT miss rate | miss rate
INT 1Q INT conflict FP I
LD/STOR FPQ FP LD/STOR DL1
DL2
DL3
CG 1.770 .255 .096 .014 .024 .009 8.97e-05 .06
342 .253 .295 .001 219
404 18 267
131
EP 1.011 374 .289 9.89e-05 .003 012 1.99e-05 .010
373 .503 ..0004 013 013
253 .008 968
.001
FT 2.629 .339 334 .008 .026 .060 1.26e-05 .04
.236 .184 .055 183 175
425 .097 233
334
IS 1.139 .098 272 .238 5.01e-05 .003 1.60e-05 A7
428 .286 5.5e-05 7.3e-05 175
479 .005 223
571
MG 3.063 .396 .066 .003 .001 .050 1.03e-05 .03
181 .103 370 .082 .042
423 132 .630
.007

IS+IS faired similarly to CG. While increasing associativity drops cache miss rates, it exposes the bot-
tleneck of integer registers. With 2-way associative L1 caches, the processor runs out of integer registers in
32% of the cycles.

MG sees almost no gain by increasing associativity: symbiosis drops only from -0.36 to -0.35 by doubling
associativity. The main bottleneck, regardless of associativity, is floating-point registers. For example, with
direct mapped caches, in 60% of the cycles the processor exhausts its pool of 100 floating point registers.
With 2-way associative caches, this figure increases to 65%.

EP, on the other hand, saw very good symbiosis in both machine configurations: 0.6 and 0.73 on direct
mapped and 2-way configurations. This symbiosis did not come about due to high cache latencies (which
would allow overlap of communication and computation). Instead, the major reason behind this result is
the low instruction level parallelism in EP. In both configurations, EP averaged 1 instruction per cycle
throughput, leaving many of the issue slots idle each cycle. When paired with itself, this figure increased to
1.42 and 1.51 in the two configurations.

The CG+MG pairing faired poorly in both configurations, with a symbiosis of -0.12. The problem was not
associativity: increasing associativity decreased the average memory latency by only 6.5%. The bottleneck
was floating-point registers. In both configurations, roughly 47% of the cycles saw an overdemand for floating
point registers. By themselves, CG and MG had floating point register overdemand in 29% and 37% of the
cycles.

FT+MG showed a symbiosis of near zero. The bottleneck in this case was a combination of floating
point registers and floating point issue slots. In 26% and 14% of the cycles, respectively, these resources
were constrained.

Interestingly, all applications, when paired with EP, show higher symbiosis than when EP is paired with
itself. The major reason for this disparity is due to the much higher L3 cache hit rates in the dissimilar
pairings. For example, while EP+EP had a 0.74% L3 hit rate, CG+EP showed a hit rate of 77%. A less
important reason is due to the slightly more equal instruction mixes. For example, the mix of instructions



on EP+EP was 37% floating point, 37% integer, 25% load/store. With CG+EP, the mix became 34%, 37%,
29%.
IS is not floating point intensive and exhibits positive symbiosis with floating point intensive codes.

4 Future Work

We have demonstrated that programs co-executed on multithreaded machines can exhibit positive sym-
biosis. In a multiprogrammed environment, a serendipitous choice of jobs to co-schedule could result in
improved system utilization and throughput. Alternately, an unlucky choice could lead to degraded through-
put. With more study, a clear picture of the factors likely to lead to symbiosis between two or more programs
executed on a multithreaded machine seems likely to emerge. If static predictions or dynamic profiles can
be used a priori to arrive at a symbiotic schedule for a batch of jobs, multithreaded servers may be able to
achieve superlinear throughput.

A feature of our definitions of throughput and symbiosis is that one can compute these for small intervals
of time, and combine them for aggregate periods using simple and familiar arithmetic. In particular, if the
throughput during an interval of s1 seconds is t1, and during the next s2 seconds it is t2, then the throughput
for the entire (s14s2) seconds is the weighted average of the t’s, i.e. t1(s1/(s1+s2) + t2(s2/s1+s2). This is
also true of symbiosis. This property will be useful when we perform experiments in which the jobs start and
complete at different times. We also wish to precisely characterize symbiosis during intervals when parallel
sections of one program overlap with serial sections of another and when parallel sections overlap. This will
be particularly interesting when dynamic thread allocation is done.
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