

 1

Identifying Invalid Social Security Numbers
Paulette Staum, Paul Waldron Consulting, West Nyack, NY

Sally Dai, MDRC, New York, NY

ABSTRACT
Do you need to check whether Social Security numbers (SSNs) are invalid? An SSN consists of a three-digit area number, a
two-digit group number and a four-digit serial number. A list of the valid group numbers for each area is available from a Social
Security Administration web page that changes monthly. This paper demonstrates automatic downloading of the list of area
and group codes, plus testing for out-of-range values and impossible combinations. The paper assumes knowledge of the
DATA step and PROC SQL.

INTRODUCTION
In the United States, most individuals are identified by a Social Security number (SSN) assigned by the Social Security
Administration (SSA). An SSN can be used as a common key for joining information from different sources. If SSNs are invalid,
joining different data sources is much more difficult, if not impossible. Therefore, one of the first steps in processing data with
SSNs is to identify invalid SSNs. This paper describes a process for checking SSNs.

An SSN consists of three sets of digits. The first set is the three-digit area number. The second set is the two-digit group
number. The third set is the four-digit serial number. Often these sets of digits are shown separated by hyphens, so an SSN
looks like this: 999-99-9999.

Obviously, instead of guessing which SSNs are invalid, we would like a systematic process for determining their validity. Vali-
dating SSNs is required for many different projects (often for each batch of new data), so it is worth investing some effort to
develop a good approach. There are several stages in creating a useful process. First, you need to determine what rules apply
to SSNs. The best resource is the SSA web site. (See the References section for more information.) Next, plan the checking
process and make decisions about the best techniques for each step in the process. Finally, develop static tests for whole
SSNs, static tests for each part of SSNs, and dynamic tests for the area and group numbers. These dynamic tests will adjust
as valid values for area and group codes change over time.

SAMPLE DATA
Here are some sample SSNs. So far as we know, these are all fake. Any resemblance to actual SSNs is completely coinciden-
tal. Can you guess which SSNs are valid? Some problems are obvious, but other problems are not.

123456789
MR1234567
666786543
800445678
45678AB90
772123456
987654321
234567890
123004567
000345678

WWW123456
567890000
086981234
010901234
010921234
011025678
011243456
050982222
044131234
221083456

206045678
248953456
349021234
130964321
007105678
150204321
148171234
163851234
163841234
735115678

06-648-1234
066-48-1234
0664-81-234
02468135
246813579
600981234
078051120

Applications Big and SmallNESUG 2007

Applications Big and SmallNESUG 2007

 2

STEP 1 – CHECKING THE BASICS
The SSA web site describes some very basic rules for SSNs. If hyphens are present in SSNs, there should be one between
the area and group numbers and another between the group and serial numbers. Without hyphens, an SSN should have nine
digits and nothing else. None of the individual parts should be equal to zero. The area number should not be 666. The
program below does these basic checks and a few additional checks that are described later. It assumes that the SSN is
stored in a character variable.

This program relies heavily on character functions. Some of them are relatively new. The PRXPARSE function defines a
pattern and the PRXMATCH function looks for the pattern in an SSN. The NOTDIGIT function searches a character string for
any character that is not a digit.

data Problems1;
 set TestSSN;
 length Message $80;
 retain hyphenre;
 * If hyphens are present, they match the pattern ddd-dd-dddd.;
 if _n_ = 1 then do;
 hyphenre=prxparse('/\d\d\d-\d\d-\d\d\d\d/');
 end;
 if index(SSN,'-') and prxmatch(hyphenre,SSN)^=1 then do;
 message = "Hyphen misplaced";
 output;
 end;
 * Remove any hyphens;
 SSN= compress(SSN,'- ');
 * Basic checks;
 if length(SSN) ^= 9 then do;
 message="SSN not 9 digits long";
 output;
 end;
 else if notdigit(trim(SSN)) > 0 then do;
 message="Non-digit in SSN";
 output;
 end;
 else if substr(SSN,1,3) in ('000','666') or
 substr(SSN,4,2)='00' or
 substr(SSN,6,4)='0000' then do;
 message="Invalid area, group or serial number";
 output;
 end;
 else if SSN in ("078051120","111111111","123456789","219099999") or
 (SSN >= "987654320" and SSN <= "987654329") or
 SSN='999999999' then do;
 message="Dummy SSN";
 output;
 end;
 drop hyphenre;

 3

The following Social Security numbers in the sample data were identified as invalid.

 SSN Message

123456789 Dummy SSN
MR1234567 Non-digit in SSN
666786543 Invalid area, group or serial number
45678AB90 Non-digit in SSN
123004567 Invalid area, group or serial number
000345678 Invalid area, group or serial number
WWW123456 Non-digit in SSN
567890000 Invalid area, group or serial number
06-648-1234 Hyphen misplaced
0664-81-234 Hyphen misplaced
02468135 SSN not 9 digits long
078051120 Dummy SSN

You might be wondering why a few of these Social Security numbers are flagged as
invalid by this program. The SSNs 987-65-4320 to 987-65-4329 are reserved for use
in advertisements. The SSA used 219-09-9999 in a promotional pamphlet in 1940. In
1938, a wallet manufacturer inserted a sample Social Security card in each of its
wallets as part of a marketing effort. The sample was a copy of Hilda Schrader
Whitcher’s card, with the SSN 078-05-1120. Hilda (pictured at the right) was
secretary to the Vice President of Marketing of the firm. (Note that the Vice President
did not copy his own card.) According to the SSA, over 40,000 people have used this
SSN.

While this first step is a good start in identifying invalid SSNs, there is additional information from the SSA web site that can be
used to do more checking of SSNs.

STEP 2 - DOWNLOADING INFORMATION FROM THE SSA WEB SITE
The Social Security Administration web site has a text file of information about the currently valid ranges for SSN area and
group codes. SAS ® makes it easy to download files from a web site by using a FILENAME statement with the URL access
method. It works like magic.

filename ssn url 'http://www.socialsecurity.gov/employer/highgroup.txt';

Applications Big and SmallNESUG 2007

 The beginning of the web page looks like this.

 HIGHEST GROUP ISSUED AS OF 6/01/07

Anything with an asterisk (*) is a change effective 6/01/07.
This list shows the SSN area and group numbers that are in
the process of being issued as of the date at the top of this page.

NOTE: INDICATES GROUP CHANGE SINCE LAST MONTH.
001 06 002 04 003 04 004 08 005 08 006 06
007 06 008 90 009 90 010 90 011 90 012 90
013 90 014 90 015 90 016 90 017 90 018 90
019 90 020 90 021 90 022 90 023 90 024 90*
025 88 026 88 027 88 028 88 029 88 030 88
031 88 032 88 033 88 034 88 035 72 036 72
037 72 038 70 039 70 040 11 041 11 042 11
043 11 044 11 045 11 046 11* 047 08 048 08
049 08 050 96 051 96 052 96 053 96 054 96
055 96 056 96 057 96 058 96 059 96 060 96
…

Once you have downloaded the file, you will discover that the formatting of the file is a little bit messy. Sometimes tabs are
used as delimiters and sometimes spaces are used as delimiters. Also, the asterisks indicating recent changes are not
necessary for our purposes. The DATA step below reads the text file from the web site. It ignores the header lines and
converts the asterisks and tabs to spaces. It outputs a text file with a more regular structure.

data _null_;
 infile ssn length=len truncover;
 input a $varying200. len;
 file 'ssncurrgrp.txt';
 b=translate(a,' ','09'x);
 b=translate(b,' ','*');
 if _N_ > 9 then put b; * ignore header;
run;

The next DATA step creates a data set with one observation for each area number. Each observation has an area number and
the group number that is currently being assigned for that area. Some observations from the middle of the output data set are
displayed at the right.

Area Current Group
643 06
644 06
645 06
646 94
647 92

Now
ber

Applications Big and SmallNESUG 2007
data work.CurrentGroup;
 length Area $3 Group $2;
 infile "ssncurrgrp.txt";
 input Area $ Group $ @@;
run;
 4

648 44
649 42

 you have the information that will allow you to check the validity of the combination of an area number and a group num-
in an SSN. There are two ways to use that information – to check area numbers and to check group numbers.

STEP 3 – CHECKING AREA NUMBERS
Before looking at the current group numbers, let’s do something simpler and look at the area numbers by themselves. The
data set that was created from the web site contains a list of valid area numbers. It can be used to check for invalid area
numbers. This is a standard lookup problem, and there are several standard solutions to it:

• Use a DATA step merge

• Use PROC SQL

• Generate a format with PROC FORMAT and use it in a DATA step to flag valid and invalid codes

• Load the valid codes into a hash object in a DATA step

Based on previous experience, we know that the SQL solution is reasonably efficient. Since SAS programmers are usually
more familiar with SQL than with hash objects, we’ll show a SQL subquery approach. The invalid SSNs in our sample data are
shown to the right. Note that some of these problems were also found by the static tests.

 SSN Message

000345678 Invalid area number
06-648-1234 Invalid area number
666786543 Invalid area number
735115678 Invalid area number
800445678 Invalid area number
987654321 Invalid area number
MR1234567 Invalid area number

Now
cate

STE
At fi
num
orde

Thu
simp
num
alwa

Applications Big and SmallNESUG 2007
proc sql;
 create table Problems2 as
 select *, "Invalid area number" as Message
 from TestSSN
 where substr(ssn,1,3) not in
 (select area from CurrentGroup)
 order by ssn;
quit;
 5

WWW123456 Invalid area number

 consider the problem of determining whether a group number is valid for an area. This next check is a bit more compli-
d and will require some preparation.

P 4 – UNDERSTANDING THE ORDER OF ASSIGNMENT FOR GROUP NUMBERS
rst glance, it looks as if you can interpret the group number associated with each area number as the highest valid group
ber for the area. Alas, life is not so simple. The SSA web site explains that group numbers are not assigned in sequential
r. Instead, they are assigned (one number at a time) in the following, somewhat unusual order:

Odd Numbers 01 – 09
Even Numbers 10 - 98
Even Numbers 02 - 08
Odd Numbers 11 – 99

s, the group numbers are used in the order 01,03,05,07,09,10,12,14,16,…,96,98,02,04,06,08,11,13,15…,97,99. The
lest way to think about this is to give a sequential “group rank” to each group number as it assigned. Although group
bers are not assigned in consecutive order, the group ranks will be in order. You can expect that a group with rank 1 will
ys be assigned before a group with rank 2, etc. The code below produces the ranks displayed at the right.

What is a
Group da
in contras

STEP 5
Finally, w
can be do

The SQL
SSNs to t
converted
compared

The WHE

• F
s

• N
s

• F
a
g

Applications Big and SmallNESUG 2007
data GroupRank;
 rank=1;
 do group = 1 to 9 by 2;
 output;
 rank = rank + 1;
 end;
 do group = 10 to 98 by 2;
 output;
 rank = rank + 1;
 end;
 do group = 2 to 8 by 2;
 output;
 rank = rank + 1;
 end;
 do group = 11 to 99 by 2;
 output;
 rank = rank + 1;
 end;
 format group z2.;
 6

 good way to use these group ranks to check group numbers? Let’s start
ta set, with the current group numbers for each area. Note that the gener
t with the character group number from the SSN.

 – CHECKING GROUP NUMBER RANKS
e need to check that the group rank in each SSN is not higher than the cu
ne using any of the lookup methods that were described for the area num

step below is deceptively short, but it is remarkably powerful. It joins thre
est. The second data set provides the group ranks for each group numbe
 to a group rank. The third data set provides the currently assigned group
 with the SSN group number’s rank.

RE clause has three parts:

irst, it links the SSN area number with the group rank that is currently be
ubstr(test.ssn,1,3) = currRank.area

ext, it also links the SSN group number with the rank for that group num
ubstr(test.ssn,4,2) = put(grpRank.group,Z2.)

inally, it limits the output to cases where the SSN group number rank is
ssigned group rank.
rpRank.rank > currRank.currRank
Group
Number Rank
01 1
03 2
05 3
07 4
09 5
10 6
12 7
… …
98 50
02 51
04 52
06 53
08 54
11 55
13 56
… …
by adding the group ranks to the Current-
ated rank and group variables are numeric,

 Current Current
Area Group Rank

643 06 53
644 06 53
645 06 53
646 94 48
647 92 47
648 44 23
649 42 22

proc sql;
 create table CurrentRank as
 select curr.area, curr.group as CurrGroup,
 rank.Rank as CurrRank
 from CurrentGroup curr, GroupRank rank
 where input(curr.group,2.) = rank.group;
quit;

rrent maximum group rank for its area. This
ber lookup task.

e data sets. The first data set provides the
r, so that each SSN’s group number can be
 rank for each area number. This is

ing assigned for that area.

ber.

higher than the SSN area’s currently

proc sql;
 create table Problems3 as
 select test.ssn, grpRank.group, grpRank.rank,
 currRank.currRank, currRank.currGroup,
 "Group number not assigned" as Message
 from TestSSN test, CurrentRank currRank, GroupRank grpRank
 where substr(test.ssn,1,3) = currRank.area

 and substr(test.ssn,4,2) = put(grpRank.group,z2.)
 and grpRank.rank > currRank.currRank
 order by ssn;
quit;

These Social Security numbers in the sample data were identified as invalid.

 Curr Curr
 SSN Group Rank Rank Group Message

010921234 92 47 46 90 Group number not assigned
011025678 02 51 46 90 Group number not assigned
044131234 13 56 55 11 Group number not assigned
050982222 98 50 49 96 Group number not assigned
086981234 98 50 49 96 Group number not assigned
123456789 45 72 48 94 Group number not assigned
130964321 96 49 48 94 Group number not assigned
163851234 85 92 43 84 Group number not assigned
206045678 04 52 42 82 Group number not assigned
221083456 08 54 53 06 Group number not assigned

SUMMARIZING RESULTS
For reporting purposes, we can combine the separate data sets of problems. Here is code for this purpose, followed by the
output for the sample data.

Applications Big and SmallNESUG 2007
proc sql;
 create table AllProblems as
 select ssn, message from problems1
 union select ssn, message from problems2
 union select ssn, message from problems3
 order by ssn;
quit;

proc report data=AllProblems nowd;
 column ssn message;
 define ssn / order;
run;
 7

 SSN Message
 000345678 Invalid area number
 Invalid area, group or serial number
 010921234 Group number not assigned
 011025678 Group number not assigned
 02468135 SSN not 9 digits long
 044131234 Group number not assigned
 050982222 Group number not assigned
 06-648-1234 Hyphen misplaced
 Invalid area number
 0664-81-234 Hyphen misplaced
 078051120 Dummy SSN
 086981234 Group number not assigned
 123004567 Invalid area, group or serial number
 123456789 Dummy SSN
 Group number not assigned
 130964321 Group number not assigned
 163851234 Group number not assigned
 206045678 Group number not assigned
 221083456 Group number not assigned
 45678AB90 Non-digit in SSN
 567890000 Invalid area, group or serial number
 666786543 Invalid area number
 Invalid area, group or serial number
 735115678 Invalid area number
 800445678 Invalid area number
 987654321 Dummy SSN
 Invalid area number
 MR1234567 Invalid area number
 Non-digit in SSN
 WWW123456 Invalid area number
 Non-digit in SSN

There is one final question. Which of the SSNs in the test SSNs were NOT identified as invalid? Here is the code to answer
this question and the output for the sample data.

007105678
010901234
011243456
066-48-1234
148171234
150204321
163841234
234567890
246813579
248953456

Applications Big and SmallNESUG 2007
proc sql;
 create table OKSSN as
 select testssn.SSN
 from testssn
 where testssn.ssn not in
 (select ssn from AllProblems)
 order by ssn;
quit;
 8

349021234
600981234
772123456

 9

UNDETECTED PROBLEMS
Inevitably, there will be undetected errors, such as miskeying of single digits or transpositions of digits. When two data sets are
joined using an SSN as the key, some matches will not occur due to these errors. Evaluate whether an omitted match is more
problematic than a false match. If it is important to avoid omitted matches, consider a flexible and adventurous matching
criterion suggested in an article by Ian Whitlock (2001). This criterion is based on characteristic patterns in data entry mistakes.
If a single digit in an SSN is mistyped, then 8 of 9 digits would still match. If two digits are transposed, then 7 of 9 digits would
match. The WHERE clause below will match SSNs despite errors in one or two digits. Since there is a risk that some incorrect
matches will also be made, consider using other fields to check the accuracy of these approximate matches.

…
where sum (substr(a.SSN,1,1) = substr(b.SSN,1,1) ,
substr(a.SSN,2,1) = substr(b.SSN,2,1) ,
....
substr(a.SSN,9,1) = substr(b.SSN,9,1)
) >= 7
…

NON-SAS METHODS
All of this checking still does not assure that an SSN is valid for a specific individual. Other non-SAS methods are available for
verification of SSNs. Several online services verify individual SSNs. Also, the SSA has a Verification Service that will process
a file of SSNs and determine whether each SSN is valid or invalid. Unfortunately, its intended use is limited to verifying Social
Security numbers for new employees. See the References section for further information about these approaches. There is
also a SSA Death Master File that can be used to identify SSNs for people who have died since 1962. It can be ordered from
the SSA. Also, online access to the Death Master File for individual SSNs is available through genealogical web sites.

CONCLUSION
SAS provides useful tools for accessing Social Security Administration resources that facilitate identifying invalid Social Secu-
rity numbers. This project has used:

• String processing functions, including old friends like SUBSTR and TRANSLATE and new ones like NOTDIGIT,
PRXPARSE and PRXMATCH

• FILENAME URL access method for web resources

• INFILE and INPUT statements for reading text files

• PROC SQL joins and subqueries for implementing logical set operations to combine information and identify
exceptions

We hope that you will find some of these methods useful, both for this task and for other tasks.

REFERENCES
The Social Security Administration web site is an excellent source of information.

General information http://www.ssa.gov/
Numbering scheme http://www.ssa.gov/history/ssn/geocard.html
History of high groups for each area http://www.socialsecurity.gov/employer/ssnvhighgroup.htm
Current high group for each area http://www.socialsecurity.gov/employer/highgroup.txt
States and areas http://www.ssa.gov/employer/stateweb.htm
Order of issuance of numbers http://www.ssa.gov/employer/ssnweb.htm
Common invalid numbers http://www.ssa.gov/history/ssn/misused.html
Verification service http://www.ssa.gov/employer/ssnv.htm
Restrictions on using verification service http://www.ssa.gov/employer/ssnvrestrict.htm
SSA Death Master File (since 1962) http://www.ntis.gov/products/ssa-dmf.asp

The genealogical community provides some access to the SSA death master file.

http://ssdi.rootsweb.com/ Social Security Administration Death Index

Applications Big and SmallNESUG 2007

http://www.ssa.gov/
http://www.ssa.gov/history/ssn/geocard.html
http://www.socialsecurity.gov/employer/ssnvhighgroup.htm
http://www.socialsecurity.gov/employer/highgroup.txt
http://www.ssa.gov/employer/stateweb.htm
http://www.ssa.gov/employer/ssnweb.htm
http://www.ssa.gov/history/ssn/misused.html
http://www.ssa.gov/employer/ssnv.htm
http://www.ssa.gov/employer/ssnvrestrict.htm
http://www.ntis.gov/products/ssa-dmf.asp
http://ssdi.rootsweb.com/

 10

There are two SAS User Group conference papers that have some helpful ideas:

Whitlock, Ian. 2001, “PROC SQL - Is it a Required Tool for Good SAS® Programming?” Proceedings of the 26th Annual SAS
Users Group International Conference

Winn, Thomas J. Jr. 2006 “Fraud Detection – A Primer for SAS® Programmers” Proceedings of the 31st Annual SAS Users
Group International Conference

ACKNOWLEDGMENTS
SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc.
in the USA and other countries. ® indicates USA registration.

Images are from the Social Security Administration web site.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Many other methods could be used for this task. If you have sug-
gestions, please contact us at:

Paulette W. Staum Sally Dai
 Paul Waldron Consulting MDRC
 2 Tupper Lane 16 East 34th Street
 West Nyack, NY 10994 New York, NY 10016
 staump@optonline.net sally.dai@mdrc.org

Applications Big and SmallNESUG 2007

mailto:staump@optonline.net
mailto:sally.dai@mdrc.org

