
Computer Science

Thodsapon-Pete Kaewprathum

Architectural analysis of Retail

Omni-channel and integration of Cash IT

Point-Of-Sale software with E-commerce

platform

Master Thesis

Architectural analysis of Retail

Omni-channel and integration of Cash IT

Point-Of-Sale software with E-commerce

platform

Thodsapon-Pete Kaewprathum

c© 2018 The author(s) and Karlstad University

This report is submitted in partial fulfillment of the requirements

for the Masters degree in Computer Science. All material in this

report which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Thodsapon-Pete Kaewprathum

Approved, June 21, 2018

Advisor: Sebastian Herold

Examiner: Karl-Johan Grinnemo

iii

Acknowledgements

First of all, I would like to thank Robert for giving me the great opportunity to work with

Cash IT, who in turn provided the resources, tools and support required for this work. A

special thank goes to everybody at Cash IT who kindly welcome me and being so support-

ive throughout my time at the company.

I also would like to thank my supervisor Sebastian Herold for his excellent work in

providing guidance and knowledge during the thesis. The support you gave me during the

difficult time of this work had motivated me to improve and push the limits to the best of

my current abilities.

This work would not be possible without the support, knowledge, guidance and coop-

eration from both Karlstad University and Cash IT company.

v

Abstract

Omni-channel has become a major player in retail marketing today. It is steadily gaining

popularity among retailers because of its capability of providing consistent and seamless

customer shopping experience. Omni-channel allows sales to take place via the variety of

channels as it implements cross-channel business model. With the emergence of technolo-

gies like mobile devices, E-commerce and social media, the way of retailing as we used to

has changed significantly.Customers of today use different variety of channels and devices

on their shopping journey. Omni-channel provides retailers the opportunity to engage and

build strong retail relationship with customers, offering different retail channels for cus-

tomer to use. Store pickup is one of the strategies offered by Omni-channel as it presents an

unique way of purchasing to customers. However, selling on a single channel is not enough

due to the increasing demand in better shopping experience from customers. Such demand

has put retailers in a position to rethink and redesign their retail marketing strategies. We

believe cooperating online with offline channel is the response to the demand.

This work aims to find answers to the study questions regarding retailer requirements

and E-commerce platform to be integrated. The obtained analysis results provide answers

to the study questions indicating that retailers are looking for strategies to fulfill thier

customer requirements as their shopping demand continues to increase. The analysis re-

sults further show that WooCommerce as an E-commerce platform is most sutiable for the

integration out of the three considered platforms. The integration is part of the implemen-

tation phase that demonstrates the proof of concept of Omni-channel strategy. As a proof

of concept, a prototyp is developed and implemented. The implementation result provides

an integrated system that seamlessly combines online and offline channels in regard of store

pickup as part of Omni-channel strategy. However, the results of this work only provide

information and demonstrate an initial step towards completed Omni-channel and that a

lot of work is required in order to reach the full Omni-channel retail.

vi

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Objective . 3

1.3 Contribution . 3

1.4 Thesis structure . 4

2 Background 5

2.1 Omni-channel Retail . 5

2.2 E-commerce platform . 7

2.2.1 Magento . 11

2.2.2 WooCommerce . 14

2.2.3 Shopify . 15

2.3 Cash IT Point-Of-Sale (POS) . 18

3 Related work 19

4 Study protocol 29

4.1 Research questions . 29

4.2 Importance of research questions . 30

4.3 Methodology . 31

4.3.1 Data gathering . 33

4.3.2 Thematic analysis . 38

4.4 E-commerce platform architecture analysis 41

5 Results 47

5.1 Results from Thematic analysis technique of interview data 47

5.2 Results of E-commerce platform architecture analysis 52

vii

6 Prototype development and implementation 95

6.1 Design . 96

6.1.1 Cash IT REST API . 99

6.1.2 WooCommerce REST API . 102

6.1.3 Adapter . 103

6.2 Data transfer . 117

6.2.1 Product data transfer module . 119

6.2.2 Customer data transfer module . 123

6.2.3 Order data transfer module . 125

6.3 Data update . 127

6.3.1 Order data update . 127

6.3.2 Product data update . 127

6.4 Possible integration . 128

6.4.1 Integration platform as a service (iPaaS) 129

6.4.2 Enterprise Services Bus . 131

6.4.3 Microservice . 134

6.4.4 Integration platform: Mulesoft ESB 136

7 Implementation results 138

7.1 Result of product data transfer . 138

7.2 Result of customer data transfer . 138

7.3 Result of order data transfer . 139

7.4 Result of order data update . 140

7.5 Result of product data update . 141

7.6 Result of customer data update . 142

8 Discussion 143

viii

9 Conclusion 145

9.1 Future work . 147

References 148

ix

List of Figures

5.1 Magento architecture diagram . 56

5.2 Procedure for retrieving access token from Magento REST API 64

5.3 WooCommerce architecture diagram . 67

5.4 Procedure of generating API keys in WooCommerce 74

5.5 Shopify architecture . 78

6.1 Design architecture of the prototype . 99

6.2 The snippet of the product file . 121

6.3 ESB infrastructure . 132

7.1 Sequence diagram of WooCommerce order data update 141

x

List of Tables

5.1 Defining themes . 50

5.2 List of available Magento 1.x REST APIs 66

5.3 List of available REST APIs in WooCommerce 77

5.4 Weighted scenarios for Magento . 90

5.5 Weighted scenarios for WooCommerce . 90

5.6 Weighted scenarios for Shopify . 91

6.1 Response status code . 101

6.2 Headers inside CSV product file . 120

xi

1 Introduction

Omni-channel is arguably one of the most popular topics in retail marketing, with the emer-

gence of technologies such as Electronic commerce (E-commerce) that allows customers to

shop and purchase online. It can not be denied that the emergent of Omni-channel has

changed the way people used to shop. In the modern world of constant connectivity, infor-

mation search has never been so easy. Customers are constantly looking for products and

information to make better purchasing decisions.

Unlike traditional retail where physical store is the only way for customers to buy

products, Omni-channel offers the variety of shopping methods for customers to help them

making decisions and simplify purchasing process. Customers are given rich information

about the products such as price and recommendation. With that in mind, product and

price comparison are two of many key benefits provided by Omni-channel.

Unified, consistent and seamless customer experience has to be taken into account when

creating Omni-channel retail. Combining online with offline retailing allows Omni-channel

to be created. Store pickup is an efficient method of selling offered by Omni-channel retail.

In this scenario, Omni-channel provides customers the possibility to create order online

and pickup merchandise at the local store. The use of E-commerce platform to establish

online store and Point-Of-Sale (POS) software is what make the scenario possible.

This work is divided into two phases, analysis phase and implementation phase. The

analysis phase focuses on finding answers to the study questions while the implementa-

tion phase provides the proof of concept of Omni-channel. We proposed and develop the

integration solution for POS software and an E-commerce platform in order to create an

Omni-channel retail with the purpose of providing seamless customer shopping experience.

Keywords: Omni-channel, Retail, Point-Of-Sale, E-coomerce, Seamless integration.

1

1.1 Problem statement

In the world of online shopping, customers are constantly looking for more convenient

way of purchasing products. Customers have more control in the online shopping world

than retailers have today, and the demand on enhancing customer shopping experience

has increased in recent years. Such demand leaves no choice for retailers but to look for

new way of satisfying customers and meet their demand and expectation. One of the

strategies to meet such demand is to create what is called Omni-channel. Omni-channel is

a relatively new topic in retail marketing, in some part of the world Omni-channel retailing

is not widely deployed but has managed to gain a lot of retailers attention in the past few

years.

Most retailers run their online stores as part of the strategy for increasing sale. But

this strategy proves to be not enough to meet the increasing demand of today customers.

As stated above, Omni-channel is one of the strategies to meet the customer’s demand.

Cooperating online store with physical store is the start of creating Omni-channel retail.

Electronic commerce or E-commerce is used as the platform to run the online stores, while

physical store uses what is called Point-Of-Sale (POS) system to register the transaction

that occurs inside the store. With that in mind, cooperating online store with physical store

means integrating E-commerce platform with POS software. This work will specifically

focus on Omni-channel and how to create such a channel using available technologies of

today. The problem statements of this work are provided below.

• To analyze retailers’ needs in retail marketing.

• To analyze candidate E-commerce platforms and select the suitable one for integra-

tion.

• To create integration between POS system and suitable E-commerce platform.

2

1.2 Objective

The main objective of this thesis work is to create an Omni-channel to be used in real world

retail marketing. In turn, the ultimate objective of creating Omni-channel is to provide

a more convenient way of shopping for customers which has been the challenge in retail

marketing. This ultimately leads to a seamless customer shopping experience.

The convenient shopping experience has become essential as multiple devices such as

mobile phones, tablets and computers provide shopping channels for customers to be used

whenever they want and wherever they are. Combining online store together with physical

store will provide the answer to the challenge.

This work aims to integrate a suitable E-commerce platform with Cash ITs POS soft-

ware. The E-commerce platform will be chosen based on the result of the analysis. Seamless

integration between these systems is another goal that this thesis work tries to achieve.

The successful integration between the POS software and E-commerce platform will result

in an Omni-channel that provides the seamless customer shopping experience.

1.3 Contribution

In this work, we development a prototype specifically for integrating an E-commerce plat-

form with POS software. The prototype enables the two systems to exchange data as part

of the integration. It also enables the mapping of data attributes inside different data en-

tities to be done for the integration. Currently, there are only three types of data involved

in the development of the integration prototype: customer data, product data and order

data. These data types are mandatory as they are used in completing retail transaction

process. In the future, more data types can be introduced and exchanged to allow for more

completed integration and extend functionalities.

3

1.4 Thesis structure

This work is divided into two phases: analysis phase and implementaion phase. The

analysis phase involves section 2 to section 5 and the implementation phase section 6 and

section 7.

Section 2 provides the background and history of the technologies involve in this work,

this includes the explanations of what the technologies are, how they work and why they

are created. Section 3 involves the similar works that had been previously done by

another person or group of people. These related works will touch the same or similar

areas as the work provided by this report such as Omni-channel retail, E-commerce

integration and customer shopping experience.

Section 4 is about the study protocol used to gather and analyze various types of data.

The section will describe how each step of the study protocol is carried out and what

techniques are included in the study protocol. This section is particularly important since

a lot of the work will be done on gathering and analyzing data that are required to

answer important questions. Section 5 provides the results of the study protocol

performed in section 4. The results will be given for each of the topics that are being

studied in section 4 and will be explained in details. Section 6 involves the prototype

development and implementation. The section includes details of how the prototype is

created and what design decisions are made and why they are chosen. Implementation

details will also be provided in the section.

Section 7 presents the results of the design and implementation from section 6. The

section describes the results of each implementation step. Section 8 discusses some of the

results obtained from the analysis and implementation phases as well as interesting

aspects of Omni-channel retail and section 9 presents the conclusion of the work being

done with the future work presented in sub-section.

4

2 Background

In section 2.1, a background and history of Omni-channel retail is provided. The section

involves the technologies that make Omni-channel retail possible and how the retail mar-

keting pattern has changed over the years. The section will also include the explanation

of what make Omni-channel retail so different from other retail channels and how it helps

retailers in retail marketing.

A background on E-Commerce platform will be described in section 2.2, this section

includes a short history of the technologies that are used to create the platform and how

retail marketing has evolved as these technologies grow. The general building blocks of

E-commerce platform will also be explained in the section. The section also includes the

descriptions of the factors and categories provided by each platform that make them one

of the most widely used platforms in retail marketing.

Next, section 2.3 will describe the POS software which will be integrated and how it

functions in general.

2.1 Omni-channel Retail

Since the internet became popular in the 1990s, the world has been easily connected. This

opens the opportunity for enterprises to provide online services for people to use. The

era of the World Wide Web (WWW) emerged which lead to the establishment of many

websites. This also presented the opportunity for retailers to approach customers in a new

way in which the bricks and mortar1 retailing cannot match. Bricks and mortar is a way

of retailing which focuses on offline marketing. Retailer would place the products inside

the store and customer would have to make the visit to the physical store if they want

to purchase something. Since selling as bricks and mortar does not offer other ways for

customer to purchase the products, this has become both inconvenient and time consuming

1https://www.thebalance.com/brick-and-mortar-what-does-it-mean-315467

5

for customers.

Online retailing however, offers a new way of selling and purchasing. Most of these

retailers make the most out of the internet technology. By having online stores established,

retailers present an alternative way for customers to shop, either by going to the store and

buy product or make the purchase online. This approach is known as multi-channel

retailing2 where retailers present multiple shopping channels to customers. The new

retail paradigm then emerges and the power has shifted from retailers to customers [20].

Customers now have more power and control over their own shopping. The reason of this

power shift is the combination of internet and mobile device.

Nowadays, pretty much everybody has mobile phones and that the internet accessibility

is available almost everywhere we go. This combination is so powerful that customers can

make their purchase whenever they want and wherever they are. Customers are able to gain

a bunch of product information such as prices and other competitive offers from different

retailers [20]. It is not a surprise that customers who gain a lot of product information will

make product and/or price comparisons offered by different retailers before finally making

their purchase.

However, since the customers requirements has significantly increased, retailers felt

more pressure in satisfying the needs of their customers. This has lead to a new approach

in retail marketing called Omni-channel retail. Omni-channel retail is an evolution

on multi-channel retail but in contrast to multi-channel retail, Omni-channel retail offers

multiple channels that work together seamlessly for customers. The physical store is still

part of this omni-channel since it can be used as shipping method known as store pickup

or local pickup where customers are able to pick up the products after buying online. It

can also be used as the showroom for showing the products, even though customers might

later buy the products online later.

According to [39], more customers are interacting through multiple touch points such as

2https://www.bigcommerce.com/ecommerce-answers/what-is-multichannel-retailing

6

stores, websites, application, call center and less interaction happen through multi-channel

as it is not convenient compared to omni-channel. As supported by [39], this restriction

is what makes multi-channel retail fall behind and become obsolete as the days go on.

Needless to say, the seamless integration of omni-channel retailing is a huge advantage

over multi-channel retailing.

Omni-channel retail presents a unique shopping experience, by having online shops

established, customers can now make their shopping and purchase the product in front

of the screens instead of going to the physical store. Using multiple channels that are

seamlessly connected and integrated with each other makes the customers much more

satisfied which leads to customers shopping experience improvement.

2.2 E-commerce platform

In the past, most of the people did not know the terminology internet, they neither knew

what it was or how it worked. For retailers, the only way to sell products was to have a

physical store set up for the customers to have a look at the products inside the store and

buy them. This method of retailing is called bricks and Mortar.

As the popularity of the internet significantly continues to grow in the 90s, more than

120 000 domain names were registered in 1995 followed by more than 2 millions three years

later [36]. As the internet is often seen as the world at your fingertips, retailers started

to look at alternative way to increase their sell. Selling as bricks and mortar is no longer

good enough. The game changing moment for retailers was when the internet became

worldwide available, it presented an opportunity that retailers cannot overlook. The era

of Electronic commerce (E-commerce) has changed the perspective of retail marketing. A

good example of E-commerce store is Amazon, Amazon is the worlds largest online retailer

established in 1995. By being an online store, the capability of Amazon is extended far

beyond what the bricks and mortar stores is able to achieve. This is one of the reasons

retailer started to consider and take the concept of online retailing seriously.

7

The capability of selling online allows Amazon to be more flexible and scalable, it sells

not only books but also digital media such as music, CDs, DVDs, video games, computer

software, electronics and many more [37]. As the online retailing emerged, it quickly gained

popularity and grow at a rapid rate. Enterprises and developers feel the needs of retailers

who want to run online stores in order to increase their sell. They therefore created the

platforms that will fulfill retailers requirements.

The general building blocks which can be found in almost every e-commerce platform

are the design, usability, security, integration, scalability, easy configuration and Search En-

gine Optimization (SEO). If the platform is well-designed, then it already has an advantage

over the complex designed platform. With good design comes good usability. Good design

makes it easy for users to navigate though the online store site, a well-designed and clean

theme also makes it pleasant for the users to look at. A step-by-step process of purchasing

on the online site will more likely improve customer experience as it is easier for customer

to used the sites.

Security is one of the top priorities that all front-runner platforms must have. Some

platforms include the security feature within their package and some that offer the option

of buying it from the providers. This plays an crucial roll in online store, since nobody

wants to give their credit card and other sensitive information to the site that has poor

security and data protection. SSL (Secure Socket Layer) is the most common security

mechanism used by most of the platforms. SSL protects all sensitive data being transferred

between the users web browser and the retailers online store. High level of security will

also benefit the online store site in another way. The sites with high level of security

will get found a lot easier than the sites with no or poor security. Google as the worlds

largest search engine will prioritize the sites based on the level of security, it will place the

high security sites over the non-secure sites at the top of the search result [21]. Thus, by

having high security applied on the online store, the search engine will be automatically

optimized. Clean URLs also improve and optimize the search engine, complicated URL

8

such as mystore.com/products/some-product/ is a bad URL choice which will make

the search engines task of finding the URL more difficult.

The platforms should come with a relatively easy configuration. This is the case for

most of the top E-commerce platforms. Easy configuration is one of the key features that

responses to the retailers requirements in making changes to the system. Complicated

configuration not only causes frustration but also valuable time and resources for doing

business.

Since the use of mobile phone becomes more popular and important in daily basis. An

E-commerce platform that is mobile friendly will gain a massive advantage over non-mobile

friendly platform. According to [17], the number of people who use their mobile devices

to shop online has increased. Even if they still make the purchase inside the physical

store, they probably used mobile devices to search and gather product information before

visiting the physical store. Thus, having a mobile friendly site enables customers to get

more knowledge and information about the products which becomes crucial nowadays

since it affects the customers decision making of whether to purchase the products from

the retailer or not, another benefit from using mobile friendly platform is the improvement

of the SEO.

Another important building block is the integration provided by the platforms. Most

of the platforms providers know and understand the needs of the retailers in increasing

the sell rate. By allowing the platform to be integrated with third party software, gives

the opportunity for retailers to achieve their goals. Take Shopify as an example, it allows

retailers to integrate their online stores with other giant retail markets such as Amazon and

eBay. Not to mention integration with social media like Facebook, Instagram, Twitter that

provides a huge advantage in selling online. One of many goals of doing online retailing is

to grow larger in market places and this is where scalability comes in handy. Scalability is

the quality attribute that allows the system(s) to grow without affecting the performance

of that system(s). Most of the platforms enable scalability to be applied inside the system,

9

the system is capable of handling a huge amount of loading such as a set of products to

be added into the system, and still it will not have negative impacts on the performance

of the system.

Today, there are many e-commerce platforms available for retailers to use and start

their own store and sell online. The platforms are divided into three groups, hosted non

open-source platform, self-hosted open-source platform and open-source hosted

platform.

Hosted platform means that retailers do not have to make any installation on their

server. This is automatically taken care of by the E-commerce platform provider. When

using hosted platform, retailers only have to pay the monthly cost for the platform opera-

tions and maintenance.

In contrast, self-hosted platform does not provide automatic installation on the providers

server. Instead, the installation of the platform must be made on the retailers server. Re-

tailers can either install the platform on their own server(s) or hire the server from the

hosting service such as Amazon Cloud. Depending on the retailers choice, the cost reduc-

tion when self-hosting the platform can be significant.

The open-source platform simply means the software source code of the platform is

available to use without costing the retailers/developers additional money. The source

code is provided to the developers when the installation of the platform has been made.

The source code is written in different programming language depending on the platform

being installed (for instance, PHP source code is provided when installing WooCommerce).

In contrast to open-source platform, non open-source platform restricts the access to the

software source code from the retailers. The source code belongs to the platform provider

and there is no possible way for retailers to gain access to the source code when choosing

non open-source platform. This means retailers are not able to use the source code to make

the modifications they want to their online stores.

In summary, the hosted non open-source platform allows the installation to be made on

10

the providers server and host the platform from there. Retailers only have to pay (often)

monthly for the platform operations and maintenance. However, this type of platform does

not provide the retailers access to the software source code since it is non open-source.

The self-hosted open-source platform requires the installation to be made on the re-

tailers server. Retailers have two choices of self-hosting the platform, either install and

host the platform on their own server or hire the server from the hosting service provider

and run the platform from there. Choosing to self-host the platform on owned server can

reduce the cost significantly.

As the same as the hosted non open-source platform, the open-source hosted platform

does not require the installation to be made on retailers server. Instead the installation is

made on the server of the provider and retailers pay for the hosted platform. What differs

this type of platform from the hosted non open-source one is that retailers get access to

the software source code and are able to use the code in order to modify and customize

the online stores.

The section below describes some background and technical details of the three E-

commerce platforms that are being considered in this work.

2.2.1 Magento

Before the emerging of Magento, there were some very popular e-commerce platforms

available. However, these platforms lack one of the most important characteristics in E-

commerce software application, the flexibility and stability. Flexibility and stability were

hard to achieve using these popular platforms which caused retailers to make some sacrifices

while running their online stores [37]. Due to these issues, a new platform was required in

order to achieve and further extend the flexibility and stability of the platform.

A new solution platform was then created in 2007 known as Magento. Magento is as

an open-source and self-hosted e-commerce platform that allows retailers to establish their

own online shops. By being an open-source and self-hosted platform, developers can gain

11

access to the software code. Magento not only solved the flexibility and stability issues,

it also offers great scalability that allows retailers to grow their businesses. Magento is a

powerful e-commerce platform suitable for medium- to large-size retailers who have a lot

more to offer their customers. Currently, Magento offers two versions of its platform, a

free version called Magento Community Edition (Magento CE) and a paid version called

Magento Enterprise Edition (Magento EE).

Magento CE is an open source, self-hosted and free platform that focuses on smaller

retail users. Being open-source and self-hosted means that developer has access to software

codes and is able to make modifications to the system. The features and capabilities of

Magento CE are less advanced than that of Magento EE. However, Magento platform is

not easy to use for beginners and it is therefore recommended that unexperienced users

should team up with experienced developers or IT firms [21]. Magento EE is an paid

and more advanced version compared to Magento CE. Its advanced capabilities makes it

powerful and is a suitable solution for giant e-commerce retailers. Magento EE users get

the support from Magento team and receive full customer services by phones or emails

[21].

Despite having two different versions, both Magento CE and EE share some common

capabilities. Firstly, both are open-source and self-hosted platforms which means software

codes accessibility is provided. The advantage of this is that developers can make mod-

ifications to the system if needed and that both version provide the API for integration

with different third party software. Both of these versions offer comprehensive features

necessary for retailers to run their online shops. However, Magento EE offers much more

features and is more capable than Magento CE, some of the features Magento EE has

cannot be found in Magento CE which makes it an even more powerful platform.

The section below lists the differences between the two versions of Magento platform

according to [21].

12

• Pricing: Magento CE is a free version while user needs to paid for Magento EE.

The pricing costs around $22000 per year.

• Functionality: Apart from the basic functionalities, Magento EE offeres more ad-

vanced functionalities such as segmentation with targeted offers, advertising cost

reduction, authorization management, enhanced catalog and CMS (Content Man-

agement System), call center software with assisted shopping and more.

• Performance: The performance of Magento EE is much better than Magento CE

despite being a larger version with more modules and features. The use of Enterprise

Cloud for Magento EE improves the performance significantly and the full page

caching which makes sure a better and smooth shopping experience for customers.

• Security: While Magento EE includes the security feature to protect sensitive infor-

mation, Magento CE does lack this security mechanism. Sensitive information such

as credit card information is not properly protected and Magento CE is not PCI

compliant.

• Scalability: Magento EE allows the online stores to quickly scale and provide the

support of running multiple databases which can used for executing different tasks

such as order management, checkout, product management etc.

• Dynamic marketing and search: Personalization, customer experience and ana-

lytics are the areas where Magento EE is focusing on. Targeted content, advanced

content staging, sophisticated customer segmentation and shopping cart reminder

notification are used in order to achieved the goals in those areas. Magento EE also

has more advanced search function than that of CE, the Elastic search function can

be used to locate the products more quickly and allows customer to narrow the search

result based on the set of requirements.

13

2.2.2 WooCommerce

WooCommerce is an E-commerce platform created and developed in 2011 by the WordPress

Theme development team called WooThemes. It enables retailers to set up stores and

sell online and is particularly suitable for inexperienced retailers because of its easy to

use features. WooCommerce is a WordPress plug-in that is seamlessly integrated with

WordPress. Like Magento, WooCommerce is an self-hosted open-source platform that

allows developers to gain access to the code. But compare to Magento, WooCommerce is

more suitable for small- to medium-size retailers but somehow has all the necessary features

and capabilities needed to run online stores. As the same as Magento, WooCommerce also

offers many plug-ins/extensions that makes the online store more powerful.

Most of the retailers have chosen WooCommerce as the platform to run their online

stores. In fact, WooCommerce is responsible for 29% of total online retail shops world-

wide, which corresponds to 1.1 million online stores [34]. WooCommerce is based on PHP

programming language. It is built on top of WordPress and is a lightweight E-commerce

platform which is also great for creating simpler sites with high content [23].

The following provides an overview of what WooCommerce can offer.

• Pricing: WooCommerce is an open-source platform and a WordPress plugin, this

means it requires WordPress to be installed in order to use WooCommerce. How-

ever, since both WordPress and WooCommerce are open-source, therefore they are

available to use for free.

• Functionality: Most of the basic features for operating online store are available in

WooCommerce. One of the strong functionalities from WooCommerce is the CMS

which enables retailers to customize their store-front and WooCommerce comes with

a large set of both free and paid themes. Store pick up is also available in WooCom-

merce which makes it a good platform to consider for any retailer who wants to start

creating an Omni-channel.

14

• Performance: The performance of WooCommerce depends mostly on the hardware

and server that hosts the platform. According to WooCommerce, the performance of

the platform is reasonably well for small to medium size online stores with approxi-

mately 100 000+ product in database.

• Security: WooCommerce does not include the security mechanism such as SSL

from the beginning. However, it does provide the option for retailers to purchase

and install SSL in order to secure their online web shop. Security is an essential

part of operating online store since the sensitive data being transferred between the

online store and the customer computer will be protected. This way, the customers

feel more protected and do not have to worry about their data being leaked into the

outside world. Using SSL or any kind of security mechanism will also benefit the

retailers since Google as the search engine will place the secured online store before

other sites with no security mechanism first.

• Scalability: The scalability of WooCommerce is reasonably high when hosting small

to medium size online stores. However, the scalability is decreased when the data

load is increasing and the store becomes large.

• Dynamic marketing and search: WooCommer does come with the search func-

tion which can be used to search for the products inside the store.

2.2.3 Shopify

Shopify is another E-commerce platform that allows retailer to establish their online stores.

In contras to Mageto and WooCommerce, Shopify is a hosted non open-source platform.

Retailers and developers do not have the access to the software codes since it is the non

open-source platforms.

However, despite being a hosted non open-source platform, Shopify does offer a

completed package. All the necessary features and functionalities such as SSL(Secure

15

Socket Layer) connection for security, store-front themes, social media integration,

integration with other markets like Amazon and eBay, several payment gateways, etc are

included in a single package. This simplifies the work for retailers so that they can focus

on a much more important business activities.

Despite this simplicity, the downside of Shopify is the restriction to the software code.

The section below presents an overview of what Shopify can offer.

• Pricing: Shopify is a non open-source platform which means retailer has to paid for

it in order to use the platform. However, Shopify does provide a 14 days free trial

for the user to experience the platform at first hand. There are three paid versions

provided by Shopify, the first version is Basic version with the pricing start at $29 /

month. The second version is Shopify version which costs $79 / month and the third

version which is also the most expensive and advanced version: Advanced Shopify

costing $299 / month.

• Functionality: Shopify is more or less a completed package at the start. Most of the

features and functionalities are included in the package from the beginning. Accord-

ing to Shopify, Shopify Advanced version offers more advanced features compared to

other versions, the advanced functionalities such as third party calculated shipping

rate, Shopify shipping and advanced report builder are offered only in Shopify Ad-

vanced. One of the interesting features of Shopify is that it allows retailer to integrate

with social media (social media integration) such as Pinterest, Instagram, Facebook,

Twitter, and Tumblr and enables selling the products on Facebook so that Facebook

users can take a look at the products and make the purchase while still being logged

in. Free shipping is also available which enables retailer to set the price where free

shipping applies.

• Performance: Shopify platform does have a good performance since the online store

is hosted at the providers server. The performance mostly depends on the hardware

16

and server which are provided by Shopify.

• Security: Shopify includes security mechanism SSL which is used to protected the

data being transferred between the online store and users computer. It is one of the

top priorities to establish a secure online store since customers will trust and do not

have to worry about their credit card information ends up at the wrong hands when

making the purchase on the website. All the sensitive data is protected by a free

256-bit SSL certificate with the same security level used in the banks.

• Scalability: According to Shopify, the platform provides high scalability. The server

and hardware that host the online store are provided by Shopify itself since it is the

hosted platform. Increasing the number of products in the store will not affect the

performance of the platform in a negative way since the Shopify can handle unlimited

number of products and product types.

• Dynamic marketing and search: As mention in the Functionality above, Shopify

enables retailer to integrate their shop with different social media platform such as

Pinterest, Instagram, Facebook, Twitter, and Tumblr. The integration will allow

retailers to sell products on these social media platform such as Facebook. In terms

of marketing, Shopify enables email marketing using MailChimp email marketing

application. The application notifies the customers via email when new products

arrive at the store or upcoming sales is available. Best practice in Search Engine

optimization (SEO) such as customizable H1, title, and meta tags are supported in

Shopify which makes it easy for new and potential customers to find the online store.

17

2.3 Cash IT Point-Of-Sale (POS)

Cash IT Retail is one of the leading POS on the market with high securiy and efficency.

POS is contantly updated providing flexibility and allows retailers to grow thier business.

POS system is normaly used in physical store to allow transactions of purchased products

or services made between the retailer and thier customers to be processed and recorded.

In this work, POS is one of the components that made the integration possible. Its

main responsibility is to allow in-store purchase work seamlessly and therefore making

offline channel purchase possible. In order to do so, various POS components are required

such as screen, cash register, credit card terminal, keyboard and barcode scanner. The

software used for POS contains several retail related functions that allow the transaction

process to flow continuously. With Cash IT REST API, it is poosible for any retailer,

customer or third party system to integrate with Cash IT POS system.

18

3 Related work

This section provides references to similar works that had been done in the past by other

individual or group of individuals. The works are involved in the topics of Omni-channel

retail, E-commerce integration and customer shopping experience.

Analysis on the Integration of ERP and E-Commerce

In a research article by Yongqing Wang and Yuliana Shi at Beijing University of

Technology [40], the analysis of the relationship between E-commerce and ERP

(Enterprise Resource Planning) systems was presented, analysis on the necessity and

feasibility of the integration and the discussion of integration strategies and technologies.

The main objective of the research paper was to analyze the integration of E-commerce

and ERP systems as Chinas modern economic construction has rapidly grown at an

astonishing rate with continuous economy development. At the time of writing, in China,

E-commerce and ERP were two systems at independent state, with single mode of

operation that failed to meet the requirements of enterprise development in the

environment of increasing fierce market competition. Therefore, the integration of these

systems was considered as a strategy of increasing competitiveness of enterprises.

XML (eXtensible Markup Language) and SOAP (Simple Object Access Protocol) were

the two technologies proposed by the paper. With XML as the technology for structuring

document and data in such a way that it can be exchanged between department,

customers and suppliers and SOAP as technology responsible for exchanging structured

data on the web which can be used with well known internet protocol such as Hypertext

Transfer Protocol (HTTP). The purpose of using XML and SOAP for the integration

being that XML and SOAP create the bridge for data transmission between E-commerce

and ERP systems which in the past was considered difficult and challenging since the two

19

systems have different data structures. The research paper described the advantages of

using these technologies for integration as high integration, high modularity, high

reliability and high security.

The conclusion given by the research paper was that integration of E-Commerce and

ERP systems is the need of Chinese enterprises in order to cope with high level of

competition in economic marketing and enterprise development. The sufficient and

effective integration of the systems will provide the enterprise the ability to response

rapidly to the dynamic market environment and obtain economic benefits, with

continuous development of strategies for E-Commerce and ERP integration in mind.

The research paper does provide the insight to the strategies and technologies being used

for integrating ERP system with E-commerce and discussed how these two systems are

related. In fact, the relationship between the systems are so close that the authors

suggested not to consider them as two independent systems. However, the paper does not

discuss the selection process of E-commerce platform to be integrated and therefore is not

directly related to our work.

20

Omni-Channel Retailing: Blurring the lines between online and

offline

In the paper by Malin Kersmark and Linda Staflund [38] they discussed the

Omni-channel implemented by retailers in Sweden. 15 Omni-channel criterias were

created and four retailers in Sweden were selected for the project with the aims of finding

out the current omni-channel initiatives implemented by retailers operating in Sweden,

how far have they come towards reaching an omni-channel, why are retailers choosing to

implement an omni-channel strategy and what are the challenges associated with the

implementation of an omni-channel strategy, and what are the sources of these?

BR leksaker, Intersport, Hemtex and Yves Rocher were the selected four retailers which

were interviewed face-to-face and/or via phone calls and semi-structured interview was

chosen as the interview technique to collect primary data. The findings were divided into

two categories: Moving towards an Omni-channel and Customer shopping patterns. The

finding revealed that three out of four retailers goal toward Omni-channel was to

integrate the physical store with the E-commerce instead of running the two separately

and independently. Implementing click-and-collect was Omni-channel initiative that

Intersport aim to attract customers to visit thier physical stores. Additionally,

click-and-collect was also aim that sales staff would make additional sales by providing

good personal touch to customers visiting the stores to pick up thier orders. The finding

also revealed that each individual case retailer differ in how far they have come towards

Omni-channel. Intersport, Hemtex and BR leksaker were the only three retailers with the

level of integration towards Omni-channel fufilling 7-9 out of 15 Omni-channel criterias

while Yves Rocher was the only retailer with the least integration and no

click-and-collect was implemented in thier business model. The authors concluded the

main reasons retailers choose to implement Omni-channel strategy were customer

demand, competitive advantage and a desire to optimize the channels. Intersport,

21

Hemtex and BR leksaker stated that thier customers have high expectation from retailers

to provide Omni-channel services and combining all channels with seamless integration

will enable retailers to make use of the advantages of individual channels to the

maximum. All three reatailers agreed that Omni-channel is the future and moving

towards this direction is essential to stay competitive in the future. The autor discussed

that by combining all channels will make all touch point more visible and accessible for

customers and potentially increase sales. All four case retailers in the paper had place the

importance on physical store, with Intersport stated the plan to use physical store as the

fulfillment center with high hope that Omni-channel will bring more customers to thier

physical store. The author argued that high quality services can be provided to customer

via offline (physical) channel with personalization service that cannot be achieved with

online channel. Return in store was another major discussion in the paper, convenient

in-store returns is one of the advantages with offline channel allowing online purchase to

be returned in physical store which further improves customer shopping experience.

The paper concluded that consistency, channel conflict, return management, change

management and technological investment were the challenges of Omni-channel strategy.

The sources of these challenges vary to some extent. With the source of consistency

challenge being the franchise business model, sales accreditation policies as source of

challenge for channel conflict, in-store return for return management, organizational

changes for change management and technological requirements for technological

investment. Since none of the four retailers in the study completely fulfill all 15

Omni-channel criterias, the conclusion was drew that these retailers were considered as

multi-channel retailers with different level of integration between the channels. With

Intersport, Hemtex and BR leksaker were the three retailers operating in Sweden with a

certain integration level towards Omni-channel while Yves Rocher having the lowest level

of Omni-channel integration.

It was a surprise to find out that Omni-channel in Sweden has not been widely adopted

22

into the business model in retail marketing as expected. Not even big retailer such as

Intersport was being considered as Omni-channel retailer. More surprise was the fact

that retailers operating in Sweden still have a long way to go before reaching comletely

Omni-channel integration but at the same time some could argue that Omni-channel is a

relatively new topic in retail marketing and time and resources are required in order to

reach the level of other retailers operating in another countries such as America or UK

who already had Omni-channel fully implemented into the business model.

The paper by Malin Kersmark and Linda Staflund shared some similarities with my own

work such as semi-structured interview technique used to collect data and the

Omni-channel research in general. Some findings from the paper were similar to my own

findings which strengthen and suport this work in several ways, examples include that

Omni-channel is the future of retailing and that customer demand was one of the reasons

retailers start implementing Omni-channel.

23

Integrating Bricks with Clicks: Retailer-Level and Channel-Level

Outcomes of OnlineOffline Channel Integration

In another paper by Dennis Herhausen, Jochen Binder , Marcus Schoegel and Andreas

Herrmann [31] the outcomes of integrating online and offline channels were discussed. The

paper aimed to adress the study questions of whether or not customers value an integrated

Internet store? If online–offline channel integration lead to a competitive advantage for

a focal retailer, how does online–offline channel integration affect customer search inten-

tion, purchase intention and willingness to pay in both Internet and physical stores? How

strong are the cannibalization effects between the two channels? Does online–offline chan-

nel integration have the same effect on all customers? And how do individual differences

affect the outcome of online–offline channel integration? Three empirical studies were con-

ducted to investigate how online–offline integration affects customer behavior and potential

synergies and dissynergies across different channels. Four hypothesis were created which

mainly aimed at the perceived service quality and perceived risk of online–offline channel

integration with regards to retailer-related and channel-related customer.

The findings show that online–offline channel integration directly increases the per-

ceived service quality of the Internet store and that the perceived service quality of the

Internet store increases overall. Moreover, the findings also show that online–offline chan-

nel integration indirectly increases overall and Internet outcomes via the perceived service

quality of the Internet store, also the direct and indirect effects of online–offline channel

integration are moderated by customers Internet shopping experience. Lastly, the find-

ings revealed that online–offline channel integration does not negatively affect the physical

store. The conclusion of the paper stated that these findings have important implications

for multi-channel theory and practice.

24

Distribution systems in Omni-channel retailing

In the research paper by Alexander Hbner, Andreas Holzapfel and Heinrich Kugn [32], the

authors identified and systematized the forward and backward concepts in Omni-channel

retailing and revealed application and development areas for achieving excellence in Omni-

channel fulfillment and logistics. Further, they also showed the need for developing sector-

and context-specific Omni-channel distribution systems.

In total, three main research questions were created to adress the topics of distribution

system in Omni-channel retail. The research questions involved finding out the relevant

issues in Omni-channel distribution for achieving excellence in Omni-channel logistics sys-

tem, the existing structures and operating modes of Omni-channel distribution, how these

concepts can be structured, the reasons to why different forward and backward distribu-

tion archetypes are applied and finally what are the requirements, important contextual

differences, criteria, and development areas for implementing them.

The study was conducted by interviewing 28 major Omni-channel retailers in German

speaking countries. Moreover, the study was supported by market data research and dis-

cussions with field experts in the Omni-channel retailing. The author chose semi-structured

as the interview technique. The paper explored the forward and backward distribution sys-

tem in Omni-channel retail. Forward distribution system is characterized by the sources

(stores, supplier distribution centers retailer distribution centers) and destinations (home,

store) while backward distribution system or return process is characterized by the source

(home, store) and destinations (distribution center, return center, store).

As the results, the auhors findings revealed that five issuse associated with Omni-

channel distribution for achieving excellence in Omni-channel logistics system were found.

These issuses included the developing and optimizing modes of delivery, inventory trans-

parency, optimizing the cross-channel processes in ditribution centers and stores and inven-

tory integration and allocation. The authors discussed two types of distribution centers:

channel-specific distribution center and integrated Omni-channel distribution center. They

25

claimed that integration ensures greater product availability from customer service point

of view and that integrated distribution centers are recommended if the prerequisites for

the integration are fulfilled in terms of resources and capabilities. Further, they argued

that integrated distribution center can reduce the shipment cost in click-and-collect. To

summarize, separate distribution structures are an initiative concept in Omni-channel for-

ward distribution whereas integrated distribution centers are more complex and advanced

solutions.

The findings further revealed structural conditions have applied great dependencies

on the backward distribution system (return processes and locations processing) but only

the quality of reworking and fast reintegration are the two things that have great impact

on backward distribution system. The authors further revealed that offering customers

return options on all channels with quick reworking helps improving customer service

which is the target for Omni-channel retailers. Lastly, the authors concluded their work by

summarizing the results which indicated that expanding delivery modes, increse delivery

speed and service are the keys factors in achieving excellence in Omni-channel forward and

backward distribution and that most of direct-to-customer delievery are performed within

a central retail distribution center. In-store pickup and in-store return options are offered

by Omni-channel retailers and in-store inventory can be used for customer pickup center.

26

Omni-channel development within the Swedish fashion retail

industry

In another paper by August Ejnarsson [28], the investigation on the development of Omni-

channel within Swedish fashion retail was conducted. The author examines the current

development of Omni-channel in Swedish fashion retail industry and further explores differ-

ent attitudes and challenges towards Omni-channel transformation. The study was carried

out by condcuting interviews with 4 fashion retailers, field study with 25 multi-channel

retailers and a survey. The goal of the study was to explore and access the Omni-channel

development within the Swedish fashion retail and study question were created to get a

clerer vision of how far the Omni-channel retail in Swedish fashion industry had progressed

and what are the retailers attitudes towards Omni-channel retailing with regards to busi-

ness transformation, organizational influence and adoption of data analytics? To answers

the research questions, five stages of Omni-channel retail were provided which are solo

mode, minimal integration, moderate integration, full integration and new business model.

Furthermore, four different archetypes were provided in order to differnt aspects of Omni-

channel transformation. These archetypes are Omni-channel pioneers, Omni-channel fol-

lowers, Optimized pure player and challenged Multi-channel retailers, with Omni-channel

pioneers being the leading retailers in Omni-channel retail and challenged Multi-channel

retailers being the ones with lowest Omni-channel transformation.

The data were collected via interviews with 4 retailers, field research with 25 multi-

channel retailers and a digital survey with 12 multi-channel retailers. The collected data

was analysis and the results were divided into two main categories: current Omni-channel

development in the Swedish fashion retail market and attitudes towards omnichannel re-

tailing. The result from the current Omni-channel development category showed that on

average, the studied retailers fulflled 49% of the total Omni-channel criteria with 71% be-

ing the highest and 31% the lowest. 4 of 25 retailers were classified in solo modes stage

indicating the lack of integration development required in for Omni-channel transformation

27

while 5 of 25 retailers were at full integration stage indicating integration developement

was in place and thus leading towards Omni-channel retail transformation. Retailers in

solo modes and full integration mode were further classified as challenged Multi-channel

retailers and Omni-channel pioneers respectively. The rest of retailers were in between the

solo modes and full integration stages with some degree of Omni-channel development but

still had a lot of work to do to catch up with retailers in full integration stage.

The result from the category of attitudes towards omnichannel retailing revealed that

the majority of retailers shared the same view of substantial re-engineering of their busi-

ness was required in order to adapt to Omni-channel retailing and that bth strategy and

front- and back-end operations were affted by this. The greatest challenge in Omni-channel

transformation was the lack of digital maturity in internal organization, the management

of internal organization was considered as another big challenge in Omni-channel trans-

formation as it progress. Last but not least, the majority of retailers agreed that data

and analytics had great importance for their business as these allowed for gaining cus-

tomer data for planing business strategies and making better judement using data driven

business decisions.

The paper does provide great contributes on Omni-channel retailing for fashion retailers

who are looking to transform thier business model towards Omni-channel retail. The

study shared some similarities with my own work such as using semi-structured interview

to collect data although additional and different methods were also used to further collect

data which differ the type of data that the author aimed to collect. Nevertheless, there were

some findings that the two works shared. One of these being the stage of where Swedish

retailers currently are towards Omni-channel retail, the majority retailer in Sweden still

have not reach the level of full Omni-channel and more work are required. It is surprisely

to find Swedish retailers at this initial stage of Omni-channel retail despite Sweden being

one of the leaders in technology and development.

28

4 Study protocol

This section provides step-by-step procedures of how the study protocol is carried out.

The section consists of four subsections which describe in deep details the step of the

study protocol.

Subsection 4.1 provides and describes the research questions. These research questions

are essential in this work since they are the starting point which ultimately will lead to

the answers of finding the right tools to be used in the work.

Section 4.2 describes the importance of the research question from the previous

subsection. As the name suggests, the section will explain why the research questions are

important.

Section 4.3 involves the methodologies of performing data gathering and analyzing.

Various types of data are gathered and analyzed using the methodologies described in the

section. The information about REST APIs will also be provided in the section.

4.1 Research questions

Online shopping has been growing at a rapid rate, most of the retailers are feeling the

need of having their own online store with the aim of increasing sales. In retail marketing

today, creating online store has never been more easy, several E-commerce platforms are

available in both free and paid versions to be used. According to [11], it has been shown

that establishing online store helps retailers to increase their sales. However, it has been

discovered that selling online is not the only way of increasing sales. High customers

demand has rapidly increased which forces retailers to look for strategies to meet such

demand.

Using web shop to create Omni-channel retail is a decent and reasonable approach

29

toward increasing sell rate further. As most of the customers have their web shops es-

tablished, integrating the Point-Of-Sale software with the E-commerce platform to create

Omni-channel is another step forward in using recent technologies to satisfy customers and

create a unique customer experience, which is something the company have been focusing

and working on.

However, there are many E-Commerce platforms available today which can be used as a

starting platform in creating an online store and, ultimately an Omni-channel. Therefore,

in this work, the main study questions are

1. What are retailers looking for in retail marketing?

2. Which E-commerce platform should be used for the integration with POS

software?

4.2 Importance of research questions

Most of these platforms have the capabilities to perform the operations that are needed

on regular basis for an online store. Despite this, different platforms do offer the features

that make each of them unique. The different characteristics of the platforms are the main

factors in deciding which platform to use. Some platforms might even offer more advanced

features than others which can give the advantages to the store owners. However, it is not

necessary meant that the more advanced platform is always suitable for all tasks, including

integration with a certain system. In some cases, a less advanced platform might be more

suitable for the same task instead.

This demonstrates the importance of the research questions and therefore they must

be carried out in order to decide and find the right and suitable platform to be integrated

with POS software.

30

4.3 Methodology

In this sub-section, the methodologies used in answering the study question are described.

The first commonly used methodology in answering any kind of question is to gather

information about the topic of the question, in this study case E-commerce platform is

the topic. The methodologies used in gathering information will also be described in sub-

section of section 4.3.1. The interview is the information gathering methodology which will

be performed based on the interview technique called semi-structured interview which

in turn will be described in a step-by-step detail. The semi-structured interview technique

is used as part of the tool for finding and answering the first study question and will be

discussed in section 4.3.1.1.

The purpose of conducting the interviews is to gather the data from two main sources,

the employees at the company and the companys customers. From the employee interview

side, there are two major types of information that are of interest for the interviews, the

first type is the technical information which mainly includes the POS system data and

its functionalities. The employees will be asked about how POS system functions, the

architecture of POS system, how different types of data are used and what components

require what type of data in order for POS system to function properly.

The second type of information is the customer data with the main focus being on

customer experience. The questions that employees will be asked include: what are impor-

tant for customers?, the customers near and long term goals, how the company can help in

order for the customers to reach their goals? and how the system can be developed in order

to satisfy the customers further?

From the customer interview side, the interesting data is mainly on their strategies to

increase sale and their opinion about combining physical store with online store.

The gathered data from the interviews will be used as the input data to the Thematic

analysis technique which is the analysis technique commonly used for the interview data.

The thematic analysis technique is a technique used for identifying, analysis and re-

31

porting patterns (themes) within the data [24]. Section 4.3.2 will present and describe the

technique of Thematic analysis which combine together with the semi-structured interview

technique, makes it possible to find the answer to the first study question.

The next methodology is purely used to answer the second study question which in-

volves architecture analysis of E-commerce platforms. This methodology is particularly

useful since the important characteristics and quality attributes of the platforms will be

pinpointed and revealed. The data about E-commerce platforms is collected from different

sources such as literatures, articles, blogs, videos and official E-commerce websites as it is

an essential part of analyzing the architecture of the platforms. Most of the collected data

is the technical data of the platforms such as the general building blocks and functionalities

of the components. The collected data of each candidate platform is used as the input data

to the architecture analysis method called Software Architecture Analysis Method

(SAAM). SAAM is a methodology used to analyze and evaluate the architecture of the

system with regards to the quality attributes before the actual implementation begins [22].

As mentioned earlier, SAAM is used to find the answer to the second study question and

will be described in section 4.3.3 the details of step-by-step instructions and how to carry

out the analysis method. The section will also provide the details of why the architecture

analysis is important and what are the benefits and advantages of performing the archi-

tecture analysis. The SAAM will be then applied to all three candidates of E-commerce

platforms in order to find the one suitable for the integration. A comparison of all three

candidate platforms will be performed to give the overview of the features offered by each

of the three platforms.

After gathering information from various sources, the next section will describe how

the analysis of the gathered data is carried out. Thematic analysis technique is used as the

analysis technique on the interview data that had been gathered earlier and each step of

the technique will be described in deep details in the section. The Microservices approach

as the integration architecture will be described and explained late in the section, the

32

details such as how it can be applied to create the integration between POS software and

E-commerce platform will also be provided.

4.3.1 Data gathering

During the analysis-phase, various information is collected. Information gathering is per-

formed by conducting interviews with the companys customers and employees from differ-

ent departments. Different set of questions are created for different interviewees based on

the desired information needed to perform the analysis.

A semi-structured interview is used as the interview technique. The reason for using

this interview technique is to allow interviewees to have the freedom in answering the

questions. This is the main goal of using the semi-structured technique since gathering as

much information as possible from various sources is crucial during the analysis-phase. In

the section below, semi-structured interview technique is described in more detail with the

step-by-step instruction on how they are performed.

As mention earlier, the interviewees who participated in the interviews are divided

in two groups, the employees at the company and the companys customers. The first

interviews were conducted with the employees from three departments who were selected

by my supervisor at the company based on their roles, skills and experiences within the

interested areas.

Two technical supporters from technical support department, a member from financial

department and a chief from development department were selected and participated in

the interviews.

4.3.1.1 Semi-structured interview

Semi-structured interview is the technique used to gather qualitative data during the in-

terview and is one of the most widely used and most efficient way of collecting information.

This interview technique is the in-dept interview which allows the respondents/intervie-

33

wees to respond to the open-ended questions and tell their stories in their own ways.

Semi-structured interview is typically used only once when conducting interview which

is extensively applied to the interview of an individual or group of individuals [24]. The

guidelines of how to perform the semi-structured interview will be provided in this section

which includes how the interviews questions are structured which is in contrast to the

unstructured interview.

The unstructured interview is the technique that gathers the data mostly through

observation. The technique is often seen as the conversation rather than the interview.

Normally, unstructured interview does not involve clear plans of how the interview will be

carried out in different stages and no interview questions are prepared beforehand. The

interview is mainly based on the unplanned questions and based on the answers from

the respondents, more unplanned questions can be generated. Informal conversational

interview, non-directive interview and focused interview are types of unstructured interview

[33].

In contras to the unstructured interview, the structure of the semi-structured interview

is to start with some simple questions that respondents can answer easily, but always avoid

the questions that only give a yes or no answer since this will not give the interviewer much

information. Starting with some simple questions will also allow respondents to build up

their confident in answering the questions which in turn can lead to better answers and that

interviewer gets good information from the interview. This is followed by a set of more

specific questions that require longer answers from respondents, because this is a semi-

structured technique, interviewer can ask follow up questions based on the respondents

answer. All the question are open-ended, neutral and understandable.

The semi-structured interview is used in this work because of its capabilities in allowing

interviewer to gather the data in deep details and at broader range. It is also easy to

perform since it enables the flexibility for interviewer in asking the questions. The structure

of the technique is also another reason to why the techniques is chosen, interviewer is able

34

to get the most out of the technique with each step consisted in the structure which will

be described next. Even though it is only semi-structured, it still provides good structure

in creating questions and allowing interviewer to obtain good answers from interviewees.

In this work, two separate sets of questions are created, one set for employees interview

and the other for customers interview. The first set of questions created for the employees

consists of specific questions aiming at the data about companys products, POS and the

customers experiences. While the second set of questions consists of questions that are

focused on the customers from their perspective about using the companys products and

the potential technologies such as E-commerce platforms that can be used to help increasing

sell rate, with the questions about long term goals also being included.

The following are the guidelines of how to conduct semi-structured interview [15].

1. Preparation for the interview: This includes planing for the interview and writing

down the interview questions based on the topics and information the interviewer

wants to obtain.

2. Inform the interviewees: Many interviewers often do not realize how important it

is to inform interviewees before conducting the interviews. Informing the interviewee

includes sending the interview questions to interviewee in a good time, explaining

how the collected data will be used and for what purpose and even asking the in-

terviewee for the consent. By informing the interviewees in a good amount of time

before conducting the interview, interviewees will have time to prepare themselves

for the interview which also benefits the interviewer since the answers from the in-

terviewees will be much better and often contains good amount of information that

the interviewer is looking for.

3. Recording interview: Sometimes it can be difficult to memorize every detailed

answers during the interview, especially when the interview takes up to hours to

complete, even writing down the answers can be challenging. Therefore, in the semi-

35

structured interview, it is important to record the interview using some kind of

recorder such as tape recorder or mobile phone. Recoding the interview will help

interviewer later when analyzing the data, the recorded data can be played as many

times as the interviewer wants in order to extract the interested information out of

the recored data. Also, interviewer should ask for permission to record the interview.

4. Start with warm up questions: It is not recommended to start the interview

by asking difficult or complicated questions. Instead, the interviewer should begin

the interview with warm up questions, examples of warm up questions may include

asking the interviewees about who they are, their roles within the organization or

their responsibilities. This will get the interviewee started and make them more

comfortable for the interview which potentially leads to good answers.

5. Continue with more specific questions: After the interviewee becomes comfort-

able with the interview, interviewer can then ask more specific questions or ques-

tions that will give the answers she/he wants. Due to the nature of semi-structured

interview, interviewer can ask follow up questions based on the answers from the

interviewees.

4.3.1.1.1 Customer interviews

The customer interview is an effective and appropriate way of collecting information as

they are able to provide the crucial piece of information. The consumers are also one of

the most important aspects of the thesis since some of the decision making processes are

based on the consumers requirements. The plan is to perform many interviews with various

customers, both ranking from small to medium size customers.

Before the interview can take place, some preparations are made. The preparations

include firstly asking the interviewees (customers) how they would like the interview to be

carried out, whether its face to face interview, via phone call or email interview. Secondly,

36

asking the interviewees whether or not they want their names to be disclosed in the report

or to remain anonymous and finally asking them how much of information they want to

be included in the report. The last step of the preparation is to send the list of interview

questions to the interviewees in order for them to prepare themselves for the interview,

this step is important because it is not only made the interviewees prepared but it also

benefits myself as the interviewer since the more prepared the interviewees are, the better

the information they can provide in the answers.

The following is the list of customers who are willingly to give me the interview. The

plan is to conduct the interviews with the customers whose identities are kept secret and

remain anonymous due to business reasons and will be labeled as Customer 1 and Cus-

tomer 2 instead.

The customers were both initially agreed to participate in the interviews. Unfortu-

nately, both were not able to participate in the interviews and therefore declined in short

notice due to busy schedule and business reasons. To avoid further delay, I decided that it

is best to continue the research and study with only employee interviews.

4.3.1.1.2 Employee interviews

Another appropriate way of collecting information is to perform the interviews with the

employees inside the company. The interviews are carried out with 4 employees from

three different departments: technical support, financial and development department.

Different set of questions were specifically created for each department aiming at the specific

interview goals. Before the interview, each department was given different set of questions.

The reason of doing this is the same as the customer interview, to give them time to prepare

themselves for the interview, which could result in better answers that contain good piece

of information.

All the interviews were recorded using tape recorder application inside the smart phone.

The interviews lasted between 12 - 40 minutes.

37

4.3.2 Thematic analysis

Thematic analysis technique is a technique used for identifying, analysis and reporting

patterns (themes) within the data [24]. A theme is something that captures important

piece of information from interview data in relation to the interview question. The initial

guidance to what is considered as a theme is that some flexibility must be retained [24].

Thematic analysis technique is commonly used in qualitative research to analyze the

interview data due to its methodology that best creates the themes within the study area.

Thematic analysis is also widely used due to its capability of interpreting various aspects

of the research topic.

Thematic analysis technique differs from other forms of analysis techniques such as

thematic discourse analysis, thematic decomposition analysis and grounded theory which

try to describe the pattern across the data. While Thematic analysis technique does not

require any theoretical and technological knowledge of the approach which means more

analysis accessibility are provided [24].

According to [24], Thematic analysis technique consists of 6 phases shown in the fol-

lowing:

Phase 1: Know the data

This includes reading and reviewing the collected data repeatedly, it is important for the

analyst to gain the deep knowledge of the data to the extent that she/he becomes familiar

with it. The repeated reading and reviewing can be done in an active way alongside

searching for meaning and patterns in order for the analyst to become familiar with the

collected data. This phase can take a little bit of time but it is important and critical for

performing the next phase, the initial coding.

38

Phase 2: Create initial codes

Once the analyst becomes familiar with the data, the initial coding process can begin. The

codes is the elements that identify the feature of the collected data which appears to be

interesting. The coding process involves organizing the data into groups of interested and

meaningful data, which differs from the themes since the themes involves interpretative

analysis of the data. The analyst can use highlighted pen to mark the interesting piece of

information or any potential patterns.

The advices giving by [24] when creating the initial codes are to create as many codes

as possible which can lead to potential themes/patterns since some codes might give inter-

esting data later and keep a small piece of relevant data to the surrounding data since the

data can be coded in many different themes.

Phase 3: Search for themes

The search for the themes begins when the analyst has all the initial codes that were

identified across the data set from the previous phase. This phase involves the analysis at

the broader level which includes sorting different codes into potential themes. The initial

codes are analyzed and being considered how some of them can be combined to form a

theme, it is recommended during this step to use some kind of tool to help visualize the

representations of different codes and sort them into themes, the analyst can use mind

maps or tables to do this.

Some initial codes might be combined to create main themes, some might create sub-

themes and other might be discarded. At the end of this phase, analyst will end up with the

collection of candidate themes and sub-themes which will give the significant importance

to the analyst.

39

Phase 4: Themes review

As the name suggests, the phase involve the refinement of the candidate themes and sub-

themes obtained from the previous phase. During the refinement, it will become clear that

some of the candidate themes are not really suitable as the themes if they lack enough data

to support them. It is also possible that some of the candidate themes might be combined

to form a theme.

The phase of reviewing the themes will be performed in two levels. In the first level,

the coded data extracts are reviewed which involves searching and finding for the coherent

pattern within the themes. If the pattern is found, then analyst can perform the second

level of reviewing. In the case where no pattern can be found within the themes, the

themes will be considered and analyst will determine if the themes itself is the issue or if

the themes simply do not fit. If this is the case, then the themes need some rework and

the analyst should be able to find the place for these themes to fit in, if the themes still do

not fit, analyst might discard them from the analysis.

Level two of reviewing the themes involves the validity of each theme in relation to

the data set. The entire data set will be re read in order to determine whether or not

the themes actually work in relation to the data set and to create additional codes that

might have been missed in the earlier coding phase. In case the themes do not work, the

re-reviewing and refinement are required for the coding until the analyst is satisfied with

the themes. In doing so, potential new themes might be discovered and needed to be coded

as well.

At the end, it will become clearer about different themes and analyst will have a strong

sense about each of the themes, what they are and how they fit together.

Phase 5: Define and name the themes

During this phase, the themes are further refined and defined. The themes will be identified

to find out what each theme is essentially about and what aspects of the data the themes

40

capture. Each individual theme will be analyzed in details and considered how well they

suit into the overall story in relation to the research questions. Each theme will also needs

to be identified in order to find out whether or not they contain sub-themes. It is important

at the end of this phase to have a clear vision of what the themes are and are not.

Phase 6: Create report

The task of this phase involves writing a Thematic analysis in order to tell the story of

the collected data in a way that the readers can understand. It is crucial that the analysis

provides an interesting point presented by the data across the themes and enough data

should exist in order to support the prevalence of the themes.

4.4 E-commerce platform architecture analysis

Analyzing software architecture can be difficult and challenging due to various architecture

analysis methods aiming at achieving different goals. It is therefore important to find the

right method for analyzing the software architecture that will allow the architects to achieve

their objective.

Why analyzing the architecture?

Developing quality software at the correct level is a challenging task for any developer.

Therefore, the goal of analyzing the software architecture is to ensure that the chosen

architecture is the right one that suites the goals and answers the requirements.

An incorrect and unsuitable architecture will prove to be disastrous in the project [5].

The system becomes complex during the development and planned quality attributes will

not be achieved.

Budget and time will increase and even exceed the planned limits. Changes made to

the system later are hard and in some cases impossible which leads to re-structuring the

41

entire system. For the enterprise, this of course means customers become impatient and

enterprise can potentially lose customers or get bad reputations.

On the other side, the advantages of performing architecture analysis in order to find

suitable architecture is the reduction in both time and cost. Early evaluation of architecture

allows developers and stakeholders to detect flaws early before any actual implementation

begins. Detecting flaws in the system at the end of the implementation phase can cost

the stakeholders significant amount of time and resources depending on how serious the

flaws are. Thus, evaluating the architecture is a cheaper way to pay compared to making

changes in the middle of the system development phase.

As mentioned in section 4.2, SAAM is chosen as an architecture analysis method.

SAAM is an architecture analysis method that is used to analyze and evaluate the archi-

tecture of the system with regards to the quality attributes [22]. It can also be used to

evaluate how the quality attributes are effected with changes being made to the system

later on. SAAM provides the approach of evaluating and performing architecture reviews

which includes early detection of flaws in the design of the system without potentially

causing high cost [27].

The capabilities of SAAM is not restricted to just analyzing the architecture and quality

attributes of a single software architecture, but it can also be used to compare different

quality attributes of several different architectures [27]. The decision of choosing SAAM

as the architecture analysis method was taken based on its capabilities of comprehensively

analyzing the architecture associated with a good set of quality attributes. This means

the method is capable of thoroughly identify and evaluate different quality attributes and

provides great insight of the architecture. SAAM was first developed and focused on

modifiability, but now it can be applied to different quality attributes. There are 6 different

steps in performing SAAM as shown below.

1. Scenarios development

2. Architecture description

42

3. Scenarios classification

4. Perform scenarios evaluation

5. Scenarios interactions assessment

6. Overall evaluation

Scenarios development

This step develops and lists the number of different situations such as usage situations or

changes relevant to each stakeholder with regard to the system [22].

Architecture description

In this step, the candidate architectures are presented. The descriptions of the architectures

should be well understood by all the stakeholders. The descriptions should include the data

components and their relevant interconnections.

Scenarios classification

Scenarios are classified into two classes: direct scenarios and indirect scenarios. Direct

scenarios are scenarios that can be clearly executed in the system architecture without any

problems while indirect scenarios are scenarios with uncertainty of whether or not they can

be directly executed in the architecture. The classification reduces the number of scenarios

that will serve as input scenarios for the next step [22].

Perform scenarios evaluation

In this step, indirect scenarios are evaluated in order to confirm whether or not they can

be considered as direct scenarios or indirect scenarios.

43

Scenarios interactions assessment

Different scenarios are related to each other to some extent and probably require changes

to the same component [22]. Thus, these scenarios are said to be interacted with the

component. If the scenarios semantic are closely related, then it indicates high cohesion and

low structural complexity, while if the scenarios semantic are unrelated and requires changes

to the same component, then it indicates low cohesion and high structural complexity, it

means problems.

Overall evaluation

is used when comparing the architectures, the overall evaluation is used to quantify the

results from the assessment [22]. All scenarios should be assigned the weight of importance.

The weighting is used to determine the ranking of the architectures.

44

The stakeholders in performing SAAM are as follow:

• Developer

• End user

Since SAAM is an architecture analysis method that is used to analyze and evaluate the

architecture of the system with regards to quality attributes. It is a good idea to give a

brief description of each quality attribute that are commonly existed in high quality soft-

ware in which many of these can be pinpointed using SAAM. The quality attributes are

described according to [8] and [5].

Reliability

The ability of the system to keep operating over a specified period of time under specific

conditions. Reliability is usually measured by mean time to failure.

Security

A measure of the ability of the system to prevent unauthorized attempts at usage and

denial of service, and is still able to provide the services to legitimate users.

Usability

Degree to how well the user can take advantage of system functionality or the measure of

a user ability to utilize a system effectively.

Maintainability

Modularity, re-usability, analysability, modifiability and testability are all include in main-

tainability quality attribute. This means maintainability is defined as the degree of effi-

ciency and effectivity to which a system can be improved adapted, or corrected.

45

Modifiability

Defined as the ability to make quick and cost effective changes to the system. Modifiability

can be measured using specific changes as benchmarks and to record how much those

changes cost.

Performance efficiency

Defined as the performance relative to available resources under defined conditions. This

includes time behaviors, resource utilization and capacity.

Scalability

Defined as the ability of the system to handle increase in load without causing any negative

impacts on performance of the system.

Portability

Defined as the ability to run under different operating environments, which could be hard-

ware, software or combination of both. A system is said to be portable if no changes are

required when moving/porting to other systems, otherwise the system is not portable.

Interoperability

Defined as the ability of a system or multiple systems to exchange data with other external

systems and continue to operate successfully. It allows for easier exchange of the data.

46

5 Results

This section provides the results from the data gathering and analysis in section 4.

5.1 Results from Thematic analysis technique of interview data

This section presents the results obtained from analyzing the collected data using Thematic

analysis technique. The results are presented for each step of Thematic analysis technique

as described in section 4.3.2.

Phase 1: Initial codes

Below are the initial codes extracted from the interview with each department.

• Technical support: Quality products, Helping customer, Solution to the issues,

ERP sync, Customer choice, POS, Software standard, Standardization, Database,

SQL, ERP (Enterprise Resource Planing), Data, Architecture, Data flow, Hardware,

Development, Profit, Quality, Simplicity.

• Financial: Customer, Completed solution, Integration, ERP, Helping customer,

Solving issue, Development, Simplicity, Easy learning, Reliability, Quality, Profit,

Strategies, Time saving, Good customer experience, Feedback, Continuous develop-

ment, ERP integration.

• Development: Database server, ERP, Network communication, Integration, API,

POS, Centralized database, Customer data, transaction data, Synchronization, Cash-

IO, JSON REST, Data transfer, Document data, REST API, GUI, Development,

Quality products, Architecture, Easy management, Standardization, Simplicity.

47

Phase 2: Themes search

The attempt to find potential themes is done in this step. The following result presents

potential themes derived from performing the search. The result is categorized into two

categories, main themes and sub-themes. Sub-themes are the set of themes that make up

and are related to the main theme.

• Data: Article data, customer data, transaction data, document, database, giftcard

data, receipt data, SQL data, data transfer

• Customer: Quality products, completed solution, feedback, simplicity

• Good customer experience: Easy learning, time saving, helping, solving issues,

reliability, easy management, simplicity

• Technology: API, REST API, cloud solution, ERP, server, Core, synchronizer,

Cash-IO, plug-in, marshaling

• Development: Centralized database, synchronization, standardization, integra-

tion, continuous development

• Goal: Larger customers, more customers, profit, continuous development

Phase 3: Themes review

This step presents the results of reviewing the themes. The results are based on those

results obtained from the themes search in previous step. The results of themes review are

presented below.

The Data and Goal candidate themes are not considered as themes since their data is

too diverse and also they do not have a strong relationship to other candidate themes. With

this in mind, they are discarded as potential themes. The candidate themes Customer

and Good customer experience do have common piece of data and are related to each

48

other. For this reason, both form a new theme called Customer experience. The same is

happening for candidate themes Technology and Development which are combined to

create a new theme called Technology&Development.

With the final two themes created, the following presents the sub-themes for each of

the themes.

1. Customer experience

Quality products, completed solution, feedback, simplicity, easy learning, time saving,

helping, solving issues, reliability, easy management, profit.

2. Technology / Development

Quality software, quality hardware, communication, centralized database, synchro-

nization, standardization, integration, continuous development.

Phase 4: Defining and naming themes

The step provides the result of defining and naming the themes with the attempt to

pinpoint the main story of the collected interview data. After carefully reviewing the

themes, the sub-themes on each of the main theme with strong relationship are combined

to form new sub-themes. Table 5.1 shows the result of defining and naming themes.

49

Main themes Sub-themes Combined sub-themes

Customer experience

Simplicity, Easy learning,

Reliability, Easy

management

Requirement

Profit, Completed solution,

Helping, Time saving,

solving issues

Satisfaction

Feedback, Quality product Brand representation

Technology/Development
Communication, Integration,

Continuous development, Synchronization
Software development

Standardization, centralized database Standardization

Quality software, Quality hardware Quality

Table 5.1: Defining themes

The first main theme provides sub-themes that indicate customers requirements, satis-

faction and brand representation. Reliability, simplicity, easy learning, easy management

clearly indicate customer’s requirements. Employees from both technical support and

financial departments provide the same crucial information about their customers require-

ments as the demand on running business increases.

The next four sub-themes are grouped together to create a new theme named satisfac-

tion. With that, one employee even stated that the company is willing to do everything in

their power to satisfy their customers. The same employee went on to explain that they

offer customers different solutions to different issues as part of their helping procedure. As

the interview continued, it became clear that satisfying customers is one of the companys

top priorities.

Brand representation is another sub-theme emerged from combining two sub-themes.

The interview data hinted that for some retailers brand representation is more important

50

than price. This seemed to be a new and incoming pattern in retail marketing trend.

In terms of software development sub-theme, continuous development plays a huge part

in software development today. It plays such huge roll that an employee stated that falling

behind the development is going to cause damage and that is not an option. The obtained

information strongly indicates that integration with other systems is one of the companys

strengths. The same employee also provided a piece of information about continuous

development which indicates that the company is planing to build a new POS software.

This clearly demonstrates the importance of continuous software development.

Making the products as standard as possible with high quality are two new sub-theme

that emerge. It becomes obvious that the company is trying to make their products as

standard as possible. According to the interview with an employee, creating standard-

ized products that are easy to use will help both their customers and themselves. From

customer’s perspective, an easy to use product with high quality does not require steep

learning curve which means anybody could easily use the product. This is often the case

since there are different store personal who operate the cashier machine (product) during

the day.

Based on the new results obtained from Table 5.1, the theme Customer experience

contains three sub themes: requirement, satisfaction and Brand representation. The

Requirement and Satisfaction sub-themes tell the story of the customers requirements

which need to be fulfilled in order for the customers to be satisfied. This indicates a strong

relationship to a certain degree between the two sub-themes. The Brand representation

sub-theme meanwhile provides a clue which indicates that retailers try to establish their

brands in order to attract and gain customers attention. Based on this information, the

Customer experience theme provides the crucial lead which indicates that retailer are

looking for strategies to fulfill their customers requirements and ultimately satisfy them.

Therefore, the first study question is automatically answered.

51

5.2 Results of E-commerce platform architecture analysis

The section presents results obtained from performing SAAM. The results are presented

for each step consisted in SAAM.

Phase 1: Scenarios development

Below are all scenarios that have been identified with regards to the system of E-commerce

platform as described in section 4.3.3.

The scenarios are divided into two groups, functionality and development. These sce-

narios are created based on the requirements of customers/retailers, with the mandatory

requirements of the online store in mind, this includes basic functionalities an online store

should be able to provide. Stakeholders put themselves in a position of customer and vi-

sualize the scenarios where online shopping occur, what services should exist inside online

store that will serve and provide good customer experience. Stakeholders also discuss the

advanced functionalities that will further improve the online shopping experience for cus-

tomers. The platform should enable these functionalities to be introduced to the online

stores system and provide basic functionalities such as create, retrieve, update, delete dif-

ferent types of data, refund and account registration. In the case where a large collection of

products is to be added into the stores database, adding those products manually requires

hours of working time. Instead the platform should provide functionality for importing

a product file in JSON or XML formats containing large amount of product data. Also

export functionality should exist inside the platform.

Plug-ins/extensions are play huge roll in enhancing services of online store. Retailers

should be able to improve their store by adding more functionalities an services based on

their own requirements. Therefor, plug-ins/extensions repository should be provided by

the platform for store owner to purchase or download for free. Such requirements have

proved to be fundamental changes toward better customer shopping experience in recent

52

time. The importance of brand representation has grown and becomes more important

than price itself. One important functionality that provide good customer experience is

order history where registered customers is able to view their orders that have been created

in the past on website.

As part of answering the second study question, developer created scenarios which will

serve as the main elements to expose the potential answer to the question. Since the task of

this work is to integrate an E-commerce platform with POS software, the obvious scenario

is the integration with another system which, in this case is POS software. RESTful APIs is

part of the integration scenario due to its capability of transferring data from one system to

another, therefore the platform should provide and enable the use of RESTful APIs which

is considered as development scenario. Other scenarios classified as development scenarios

are creating customer themes and plug-ins/extensions.

53

The following shows number of scenarios created in SAAM. Scenarios:

Functionality

1. Create, retrieve, update and delete products

2. Create, retrieve, update and delete customers

3. Create, retrieve, update and delete orders

4. Import products using product file

5. Export products

6. Product search should be available

7. Checkout and payment gateways

8. Customers are able to place an order online and pick up in store

9. Provide security mechanism to protect sensitive data

10. Allow selling on social media platforms

11. Customers are able to log in and see their order history

12. Refunds should be possible

13. Add advanced functionalities using software code

14. It should be possible to extend the functionalities of the store by adding modules/plug-

ins

54

Development

15. Integration with another system

16. Data transfer using REST APIs

17. Adding custom themes

18. Adding additional custom functionalities to the system

Phase 2: Architecture description

The architectures of all three candidate E-commerce platforms are described in this step.

1. Magento

In this part, the architecture of Magento platform will be described. Architecture

diagram of Magento can be seen in Figure 5.1.3

Magento architecture consists of the core product code and the modules [28], a mod-

ule is a code that changes or extends the functionality/feature of Magento application

to provide specific product feature. The modules are optional which can be used to

enhance or replace the basic product code [1].

The modules work together with Magento product code which is structured in four

different layers (presentation, service, domain and persistence) each in turn consists

of various components as well as the supported database, third parties libraries and

Magento framework.

3http://devdocs.magento.com/guides/v2.1/architecture/archi perspectives/arch diagrams.html

55

Figure 5.1: Magento architecture diagram

56

• Presentation layer: The user interaction with Magento web interface takes

place via the presentation layer. Presentation layer is the top layer of all four

layers in Magento architecture. This layer contains the view elements such as

layouts, blocks and templates, it also contains the controllers. The code inside

the presentation layer is responsible for controlling the user interaction with

Magento application.

The Magento user interface can be customized by modifying CSS, HTML and

PHTML files which contain the elements inside the presentation layer.

The interaction between the users and presentation layer takes place in the

components of the presentation layer which initiate the call to the underlying

layers. When the users select the actions to be executed via the presentation

layer, the components make the calls to the Service layer which in turn makes

the calls to the domain layer [13].

• Service layer: Service layer is the layer between the presentation layer and

the domain layer, it is the bridge between the presentation layer and the model

in the domain layer. It contains the service contracts which define the behavior

of the implementation and also provides an easy access to SOAP/REST API

framework code cite30. Stable API is provided inside the service layer in which

other modules can make calls to it. Service layer is used as a route when calls

from web service interfaces or storefront are made [16].

It is also possible for external application to make request calls to the domain

layer using SOAP and REST API calls, the PHP API of service layer can be

accessible via SOAP and REST by exposing it using XML and JSON [16].

• Domain layer: The models contain business logic layer of the Magento module.

It is responsible for defining Magento data object that contains business logic.

This logic defines what type of operations that can be performed on a particular

57

data type [3]. Domain layer allows applications to make request calls for data

from the models using SOAP or REST endpoints.

Each model is able to retrieve the data from the underlying database (typi-

cally MySQL) using MySQL call together with the reference to the resource

model that each of these models has, this is possible because the resource model

contains the logic for connecting to the database and a resource model is only

required by a model if the model data must persist.

The modules in the domain layer can be accessed by either using service con-

tracts which are recommended for most modules to access another module due to

its loosely coupled solution, by directly calling another module which is tightly

coupled and is therefore not recommended or by embedding itself into another

module [3].

• Persistence layer: In this layer, an active record pattern is used for persistence

in Magentos persistence layer [12]. The model object in the system contains a

resource model which is responsible for CRUD (Create, Read, Update, Delete)

requests and it also contains SQL code which is used to complete the requests.

The resource model also performs additional business logics such as data vali-

dation or other database operation [12].

A collection is a resource model that can be implemented for retrieving multiple

data items when making a database query. It is able to retrieve multiple models

and store them inside a structure that is similar to the structure of an array

[12].

In term of basic of the architecture, Magento platform does provide the following

list of architectural basics.

• Extensibility and modularity: Extensibility means that the system is able

to easily expand its features, this capability allows the users to expand their

online store as their business grows. Magentos extensibility allows for enriching

58

current features and integration with other third-party systems [6]. Magento

development has been focused on maximizing extensibility in order to allow

users to expand the features of the online store by installing the modules created

by the users themselves or from third-party providers. [33]. In case the user

wants to remove the feature, this can be done by simply deleting the module.

The extensibility of Magento platform is effected by the architectural princi-

ples that guide the product structure, the open-source software which is used

to created and manage extensions, the coding standard and the strategies for

upgrading and versioning the product [6].

• Easy front-end customization: The front-end in Magento is specifically de-

signed for optimizing the store-front customization with tools that can be used

to customize the store-front including Magento Blank Theme, Magento UI Li-

brary components and Magento Admin Pattern Library [4].

• Extensibility supported by global features: Modularity is the heart of Ma-

gento extension development [7]. Self-contained modules provide loosely cou-

pled solution which means the modules can be modified or replaced without

affecting other modules and therefore reducing the ripple effects through the

entire system. The self-contained modules are also less dependent on external

dependencies.

By using the popular and well known architecture and programming structures,

the learning curve required for new developer can be significantly reduced [35],

making finding development issues easier for developers. Well known architec-

tures and patterns are incorporated inside Magento architecture such as MVC

(Model-View-Controller) is the main development focus for extension within

Magento [7].

Coding standard is another important feature that supports extensibility. The

59

following are coding standards in Magento.4

– Code demarcation standard

– PHP coding standard

– PHP code sniffers

– JavaScript coding standard

– jQuery widget coding standard

– DocBlock standard

– JavaScript DocBlock standard

– LESS coding standard

– HTML style guide

I decided not to describe these coding standards in details since it will not

add vital information related to the architecture. If interested, I refer looking

at Magento development documentation for more information, the link to the

documentation is provided under the footnote.

Magento ecosystem provides marketplace for downloading or buy third-party

modules and themes which offers more extensions to be used inside the online

store. Web APIs in Magento allows third-party applications such as ERP (En-

terprise Resource Planinng) CRM (Customer Relationship Management) and

CMS (Content Management System) to be integrated with Magento [7].

Service contracts is a new way of accessing public API endpoints as it provides

the clients robust and stable extension points that clients can use to connect.

The dependency injection in Magento works alongside service contracts, the de-

pendency injection is responsible for changing the behavior of a module without

affecting the client and supports the architectural principle of modularity and

easy extensibility inside Magento [7]. Another important part of Magento ex-

4https://devdocs.magento.com/guides/v2.0/coding-standards/bk-coding-standards.html

60

tensibility is plug-ins. Plug-ins itself works in a similar way as modules. It is

responsible for adding features to Magento core and allows changes to be made

that affect the behavior of the public method in a Magento class.

• Security: In terms of security, Magento manages the password by using the

hashing algorithm SHA-256 [14]. It regulates the escaping of the data in output

in order to improve the prevention of Cross-Site Scripting (XSS) attacks. The

flexible ownership of file system and permissions is another way of improving

the security in Magento. Magento protects the online store from click jacking

attack by using X-frame-Option HTTP request header which allows users to

specify whether a browser should be allowed to render a page in a frame, iframe

or object [14].

Magento provides a random Admin URI in order to prevent the site from being

targeted for the attacks since a regular Admin URL is an easy target for the

attacks. The CLI is also provided which user can use to change the URI and

see the password.

• Store-front customization strategies: User can extend the CSS files pro-

vided by Magento in order to customize the store-frint. When installing Ma-

gento, the default themes will come with the installation. The changes made to

the store-front can be made by using CSS only [18].

Another way of customizing the store-front is to replace the Magento-provided

CSS files all together. User can get rid of all the default CSS files that come

with the installation and create their own CSS files to be used instead.

The final strategy of customizing the store-front is to replace the CSS, HTML

and JavaScript files provided by Magento. This will provide the store-front that

is completely different from the default one of Magento and provides a whole

new shopping experience to customers. In terms of the technologies, Magento

61

uses the following technology stack which is also open-source.5.

– Web servers: Apache, Nginx

– PHP: Composer (dependency management package for PHP)

– Database: MySQL, MySQL Percona

– HTTP accelerator: Varnish

– Cache Storage: Redis, Memcache

– Search: Solr (Only in Enterprise Edition version), Elasticsearch (only in

Enterprise Edition version 2.1.x)

– More technologies: HTML5, CSS3 (LESS CSS pre-processor), jQuery

(primary JavaScript library), RequireJS (library which helps load JavaScript

resources on demand), Knockout.js, Zend Framework 1, Zend Framework

2, Symfony, Coding standards PSR-0, PSR-1, PSR-2, Coding style guide

PSR-3, PSR-4.

– Optional stack components: Varnish, Redis, Solr, Elasticsearch

• Magento REST API: Magento provides a powerful REST API that allows

developers to access data from Magento API server by sending HTTP request.

The API server will response to the request with the response status code and/or

the requested data, the status code indicates whether or not the request is

successful. The response formats are provided in either JSON or XML which

developer is allow to specify. The URL path to request the resource using

REST API is https://yourhost/api/rest where yourhost is the domain of

users online store [9].

Magento REST API is a powerful tool with the capabilities of managing a

number of features such as managing inventory, customers, customer addresses,

products and sale orders. According to [9], in order to use Magento REST API,

5https://devdocs.magento.com/guides/v2.0/architecture/tech-stack.html

62

authentication protocol OAuth 1.0a is used to authenticate the request before

it is allowed to access the services. Three types of users exist in Magento REST

API: Admin, Customer and Guest.

Admin: Logged in user at the backend

Customer: Logged in user at the frontend

Guest: Non-logged in user at the frontend

To access the data inside API server from third-party application via Magento

REST API, first the application must be registered in the Magento Control

Panel, then the application will have to send the request for the consumer key.

This key is then used to make another request for the access token which will

finally be used for accessing the data inside the API server as shown in Figure

5.2.6

6http://devdocs.magento.com/guides/m1x/api/rest/introduction.html

63

Figure 5.2: Procedure for retrieving access token from Magento REST API

64

As many other REST API providers, there are four HTTP methods used in

Magento REST API (GET, POST, PUT , DELETE) described as follow.

– GET allows developer to retrieve the data from Magento API server.

– POST allows for creating data inside Magento API server.

– PUT allows for updating the existed data inside Magento API server.

– DELETE allows for deleting existing data inside Magento API server.

Table 5.2 briefly describes the entities and services provided by Magento 1.x

REST API [9].

65

REST API entities Description

Products
Allows developer to get the list of products,
create, update and delete a product

Products categories
Get the list of categories assigned to a product.
Assign and unassign the category to or from specific product

Products images
Get the list of images assigned to a product.
Add, update and delete an image to or from the specific product

Product websites
Get all list of websites assigned to a product.
Assign and unassign a website to or from the specific product

Customers Get the list of customers. Create, update and delete a customer

Customer Addresses
Get he list of customer addresses. Create, update and
delete customer address

Inventory Get the list of stock items, also update the required stock items
Sale orders Get the list of sales orders and the specific order information
Order items Get order items for the specific order

Order addresses
Get the order billing and shipping addresses information for
the specific order

Order comments Get the order comment for the specific order

Table 5.2: List of available Magento 1.x REST APIs

2. WooCommerce

WooCommerce is a WordPress plugin and requires WordPress as the main platform,

it is therefore suitable to describe the architecture of WordPress. Figure 5.3 shows

the architecture diagram of WooCommerce platform which consists of three layers:

presentation layer, application layer and data layer.

Presentation layer: Top layer which is responsible for presenting the information

related to the services to the user. Presentation layer enables user interaction between

user and the services. It takes user input such as request for browsing a merchandise,

and communicates with other layers to response to the request by presenting the

merchandise page. The user request is sent to the web server using suitable protocol

such as HTTP or HTTPS. The layer responses to the request by providing HTML

code which is rendered by the users web browser.

66

Figure 5.3: WooCommerce architecture diagram

67

Application layer: The layer between presentation and data layers and is respon-

sible for performing details processing of the data received from the presentation

layer. It contains the core functionalities for processing the users request. Web

server can be used to support the layer, it identifies the action to be taken based on

the users request and enables provides support for concurrent users, multi-threading

and caching. WordPresss functionalities can be extended by adding plug-ins to the

application layer. It identifies and evaluates the input received from the presentation

layer, makes logical decision and retrieves data from the data layer underneath to be

returned to presentation layer.

Data layer: The lower layer of the three and consists of data access layer and data

persistence mechanism such as database server which is responsible for storing all

data. The access to the data inside the database is done using standard language

such as SQL. The data structure such as table is defined, the standard language is

used to perform action on the data inside the tables. Insert, retrieve, update and

delete are the common operations used on the data inside the tables. The data layer

communicates with the application layer by providing the requested data based on

the queries sent from the application layer. Thus, WordPress and WooCommerce

are database-driven software applications which query the database for the data and

contents.

WordPress is run at application layer which mainly consisted of plug-ins including

WooCommerce. As the application, WordPress contains an essential PHP file called

wp-config.php and three main repositories named wp-admin, wp-content and wp-

includes.

68

wp-admin: this repository contains all the administration information and content

for the WordPress Dashboard which is the admin panel for controlling and managing

the actions occur in WordPress.

wp-content: contains the installed and uploaded content by the administrator which

include plug-ins, themes, upload and media.

• Plug-ins: contains the number of plug-ins being installed for extending the

functionalities of WordPress, this also includes WooCommerce which enables

WordPress site to run as the online store and selling stuff.

• Themes: contains the number of installed or uploaded themes to be used

for WordPress website. Each theme consists of PHP files included HTML,

JavaScript, CSS and images that create the unique look for the website.

• Uploaded: contains the uploaded files such as images, video, audio etc.

wp-includes: contain core functionalities which enable WordPress to function prop-

erly. Such functionalities include the core to power administration function. Since

wp-includes contains all core functionalities that make WordPress run, is so impor-

tant and crucial that it rarely had been modified by users or developers.

The section below describes WooCommerce in terms of functionalities and features

that are enabled by WooCommerces architecture.

Extensibility

WooCommerce provides a great set of plug-ins that can be purchased or get for free

from WooCommerce respository. WooCommerce plug-ins work in the same way as

WordPress plug-ins, a WooCommerce plug-in is a program or set of PHP functions

that can be added into WooCommerce platform in order to create new feature and

functionality for the online store.7

7https://docs.woocommerce.com/document/create-a-plugin/

69

The system allows developers to create their own plug-ins that can be used to ex-

tends functionalities of their online stores. The custom plug-ins should follow the

WordPress plug-in coding standard and the best practice guidelines for harmonious

existence within WordPress alongside other WooCommerce plug-ins [39]. Also the

plug-in should have a single main purpose with no attention of performing malicious

activities.

Store-front customization

The default theme is provided when installing WooCoomerce platform. The store-

front of WooCommerce can be modified by either installing new theme from the

repository and activate it or by creating own custom theme. This flexibility enables

developers to customize the store-front based on their needs and business require-

ments.

Product and inventory management

WooCommerce is able to handle small to large set of products depending on the

hosting capacity. The feature allows for quickly adding products into the stock using

WooCommerce product importer which is able to import different types of product

offered by WooCommerce such as simple, variation, grouped, external and download-

able products. Inventory can be managed easily by allowing user to track the stock

level, holding stock level for a period in case an order is cancelled [45] and get notified

when stock level is low or out of stock via email.

Payment gateways and checkouts

Number of payment gateways can be seamlessly integrated with WooCommerce.

WooCommerce does provide pre-installed payment gateways including Direct Bank

Transfer, Cheque payment, Cash on delivery, Credit card payment with PayPal etc.

70

Additional payment gateways can be integrated to the system to enable suitable and

alternative payment gateways based on the store owners requirement. For instance,

a certain payment gateway is only available in certain countries, but store owner can

choose alternative payment gateways that are available to used in the store location.

The integration between WooCommerce and the payment gateways enables the test

mode to be used for the checkout procedure so that the transaction and checkout pro-

cess can be simulated without any actual transaction taking place. The architecture

of WooCommerce allows most of the popular payment gateways such as Amazon

payments, Stripe, PayPal etc. to be integrated easily and seamlessly. WooCom-

merce enables guest checkout which provides the possibility for non-registered user

to purchase and checkout from the store.

Customers address can be detected by WooCommerce which uses the address to au-

tomatically calculate shipping cost and tax easily. The automatic tax calculation for

store pickup shipping option is performed based on the store location. Tax calcula-

tion is based on either customers shipping address, customers billing address or store

location. Default is Customers shipping address.

Shipping

One of WooCommerce strong features is shipping. WooCommerce offers number of

shipping options to be used when processing checkout such as free shipping, flat rate,

international shipping, local delivery, and store pickup [2]. Either customers ship-

ping or billing addresses can be used as shipping destination which provides shipping

flexibility. With shipping capacity, store owner can create the shipping zones and

apply different shipping options for customers. For instance, store owner can create

a shipping zone for only customers based in Sweden and offer either free shipping

and/or store pickup as shipping options.

71

Customer Relationship Management (CRM)

Many features are built into WooCommerce to help managing the relationship with

the customers. WooCommerce enables customers to register the account on either

checkout page or account page [2]. Customers can choose to create account by allow-

ing their email to be used as username and let WooCommerce automatically create

the password. In case where customer wants to refund, WooCommerce is designed to

handle this by either making refunds manually or by API of the payment gateways

assuming that the gateways offer this option.

Analysis and report

WooCommerce has Google Analytic built into its system which provides basic report

and analysis capability [2]. The report provides sales information with the amount

that have been sold. The analytic will provide important product and order infor-

mation with tracking sales and growing trends to help store owner plan sale strategies.

WooCommerce REST API

WooCommerce provides a good collection set of APIs. The REST API are used to

send requests to WooCommerce database and get the responses back in JSON format.

Each of the endpoints is listed in Table 5.3 which will be used as the communication

path to database together with the lightweight REST APIs. There are several HTTP

methods provided but in this project, only four of those are required and they are

GET, POST, PUT and DELETE. These methods are used to make and send the

requests made by the services to the database. WooCoomerce REST API version 2

is used in this work and requires at least OAuth 1.0 as authorization protocol for the

security.

The REST API is used as the communication mechanism between the services and

WooCommerce online store. The REST API is enabled via the settings page on the

72

WooCommerce Admin Panel before it can be used and the consumer key and secret

are created to be used for authenticating the requests. The services get the endpoint

from the configuration file and use it together with the URL, HTTP method and

the key pair (consumer key and secret) to make the requests. WooCommerce REST

API enables developers to access data created inside WooCommerce platform. In

order to use WooCommerce REST API to access data, a key pair of consumer key

and consumer secret is required. The key pair can be created and retrieved inside

the WordPress Admin panel, the user name and access level must be specified before

creating the key pair. The user name indicates the user that the key pair is created

for and the access level indicates what operation(s) are granted to the user. The

user can either have read or write access or in the best case both read and write.

HTTP protocol is used in WoooCommerce REST API in order to send requests for

accessing the services provided by WooCommerce. WooCommerce REST API allows

developer to manage a set of entity data and services such as coupons, customers,

products, orders etc. The procedure of how WooCommerce REST API keys are

generated is shown in Figure 5.4.8

8http://woocommerce.github.io/woocommerce-rest-api-docs/#authentication

73

Figure 5.4: Procedure of generating API keys in WooCommerce

In terms of structuring the request to be sent via REST API, the following describes

the request structure of WooCommerce REST API.

http://yourhost/wp-json/wc/v2

Where yourhost is the name of WooCommerce online store and /wp-json/wc/v2

is WooCommerce’s path to the endpoint. The four commonly used HTTP methods

in WooCommerce REST API is the same as the ones used in Magento REST API

which are GET, POST, PUT and DELETE as described below.

• GET allows developer to retrieve the data from the server.

• POST allows developer to create data inside the server.

• PUT allows developer to update the existed data inside the server.

• DELETE allows developer to delete existing data inside the server.

74

In terms of response formats, WooCommerce REST API supports both JSON and

XML. Table 5.3 shows the set of WooCoomerce REST APIs.

REST API is used together with endpoints in order to access the resources inside

the database. It is not unusual that each entity has multiple endpoints that can be

used together with HTTP methods to specify the action to be performed on the data

set. The section below shows the list of WooCommerce available services with the

general structure of endpoints described.

The endpoint for every entity starts with /wp-json/wc/v2 follows by the entity name.

For example the product entity will have the general endpoint /wp-json/wc/v2/products,

then depending on the operations, the endpoint might contain the id of the item of

the entity. There are commonly three cases where the endpoint must contain the id,

the first case is when an item of an entity needs to be removed, the second case is

when an item of an entity is to be retrieved and the last case is when the the item

needs to be updated.

To make it more understandable, again take the product entity as an example, if

a product is to be removed, then the id of that particular product item must be

specified in the endpoint. Otherwise there is risk of accidentally removing all the

products in the database which is not very desirable. Let say a product with id 9

is to be removed, the endpoint then becomes /wp-json/wc/v2/products/id where

the id is replaced by 9 in this case.

75

REST API entities Description

Coupons
Allows developer to create, view, update,
and delete individual, or a batch, of coupon codes

Customers
Allows developer to create, view, update
and delete individual or a batch of customers

Orders
Allows developer to create, view, update
and delete individual, or a batch, of orders

Orders notes

Allows developer to create, view, and
delete individual order notes. Order notes
are added by administrators and
programmatically to store data
about an order, or order events

Refunds
Allows developer to create, view, and delete individual
refund

Products
Allows developer to create, view, update, and
delete individual, or a batch, of products

Product variations
Allows developer to create, view, update, and
delete individual, or a batch, of product variations

Product attributes
Allows developer to create, view, update, and
delete individual, or a batch, of product attributes

Product attribute terms
Allows developer to create, view, update, and
delete individual, or a batch, of attribute terms

Product categories
Allows developer to create, view, update, and
delete individual, or a batch, of categories

Product shipping classes
Allows developer to create, view, update, and
delete individual, or a batch, of shipping classes

Product tags
Allows developer to create, view, update, and
delete individual, or a batch, of product tags

Reports Allows developer to view all types of reports available.

Tax rates
Allows developer to create, view, update, and
delete individual tax rates, or a batch of tax rates.

Tax classes
Allows developer to create, view, and delete individual
tax classes

Webhooks

Allows developer to create, view, update, and
delete individual, or a batch, of webhooks. Webhooks can
be managed via the WooCommerce settings screenor
by using the REST API endpoints

Settings Allows developer to view all groups of settings available

76

Settings options
Allows developer to view, and update individual, or a
batch, of setting options

Payment gateways
Allows developer to view, and update individual
payment gateways

Shipping zones
Allows developer to create, view, update, and delete
individual shipping zones

Shipping zone locations
Allows developer to view and batch update locations of a
shipping zone

Shipping zone methods
Allows developer to create, view, update and delete
individual methods of a shipping zon

Shipping method Allows developer to view individual shipping methods
System status Allows developer to view all system status items
System status tools Allows developer to view and run tools from system status

Table 5.3: List of available REST APIs in WooCommerce

3. Shopify

The architecture of Shopify is made of three different tiers, traffic tier, application tier

and data tier which are described in details in the up coming section, the architecture

diagramas of Shopify can be seen in Figure 5.5.

• Traffic tier

Responsible for getting the request from then network to Shopifys infrastructure

and send back the requested data. The following sub-section described the

technologies and methods used inside Shopify traffic tier.

– Global routing

Shopify uses BGP/TCP anycast for routing the customer request to the

Shopify database. Every Shopify has IP addresses which are visible on

the network. Since the network consists of many ISPs (Internet Service

Provider) which is responsible for providing the internet services. Shopify

provides IP address information to the its ISPs so that they know where

to route the requests if the requested IP address matches one of those IP

77

Figure 5.5: Shopify architecture

78

addresses provided by Shopify. These ISPs that are directly connected to

Shopify are in turn connected to other ISPs (neighboring ISPs) who contain

information about where and how to route a particular set of IP addresses

[29].

When Shopify IP address is sent from a customer, the ISP that is directly

connected to the customer will send this particular IP address to its neigh-

boring ISPs who in turn distribute the IP address to its neighboring ISPs

[29]. The distribution of IP address will continue until the IP address

reaches the ISPs that are connected to Shopify and the customers request

enters Shopifys network.

– OpenResty

OpenResty is a web platform that integrates Nginx standard core, third-

party Nginx modules and other libraries in order to help developers build

scalable web application, web services and dynamic web gateway.9 In

Shopify, OpenResty allows scripting of the Nginx load balancer with Lua

which is lightweight programming language.

– Bots

Shopify did have the issues with bots in the past. Bot is the web application

that executes the automated scripts over the internet and quite often is used

for malicious purpose such as execute automated attacks on the network.

Shopify has built a Nginx OpenResty module that detects the malicious bots

and ban them. The module is built using two modules call Kafka logger

and rule banner modules. The Kafka module is responsible for logging the

incoming request to Shopify. The stream aggregator called Bot Squasher

that listens to the Kafka logger, the Bot Squasher is responsible for detecting

suspicious patterns that can potentially be malicious bots. If the potential

9https://openresty.org/en/

79

bots are detected, the Bot Squasher notifies the rule banner module to ban

and reject those particular bots [29].

– Cache hits

Shopify provides a technology called Cache hits which is used together with

OpenResty. The purpose of Cach hits is to faster serve the data to the

customers, for instance when a customer brows a Shopify page for a product

and another customer does the same later on. This data is cached stored

inside Memcached and is served in application tier, but Shopify speeds up

the serving of the cached data by caching it at the Nginx layer [29].

Edgecache which is an OpenResty module will check the cache directly in

the low bouncing tier which make serving the cached data a lot faster since

it does not need to check for the cache in the application tier. However,

this module is not available for all the retailers.

– Checkout throttling

Merchant with large amount of data traffic will benefit from the Checkout

throttling. Checkout throttling helps the retailers to speed up the number

of customers during the heavy checkout process including getting shipping

rate and processing payment. This is very rare in Shopify since not many

retailers have encounter the heavy checkout issues, but if it does happen,

Shopify can handle it smoothly.

When the requests come in to a very busy store and then to the checkout,

Shopify puts the requests into the queue. The Checkout throttle controls

the rate of throttling the requests out of the queue using a component call

a throttle and redirected the requests back to the checkout [29].

• Application and data tier

Both application tier and data tier work together to serve the request from the

users. In the application layer, a very important concept used in Shopify is pod.

80

Pod is an isolated unit of one or more Shopify stores that can run in Cloud,

data center and therefore anywhere in the world.

Since the pods are isolated, this means they cannot communicate with each other

which provides some great scalabilities in Shopify. Each pod contain MySQL,

Redis, Memcached and Cron, these are isolated from each other, however the

workers are shared between pods which means the requests are shared between

the pods. Shopifys goal of implementing this workers is because of the large

amount of sale that the pods must handle, the pods simply use the capacity of

the workers to handle the large sale. The traffic tier is also shared between the

pods.

Shopify enables the data from different pods to migrate, the old fashion way of

doing this is to lock down the store and transfer all data in the database to the

new pod. Locking down the store might not be the issue for small shops, but

for large stores the amount of lost sale could be significant.

Shopify is avoiding this issue by first copying all data records inside every tables

in MySQL of the old pod and send them to the database of the new pod.

However, there is another problem of new record such as checkout being inserted

into the old database while the data copying and transferring process is going

on. The process will miss the new inserted record is thus not getting transfer

to the new database. Shoify solves this problem by implementing MySQL bin

log can checks the new inserted data inside the old database and compares it

to the copied data inside the new database. In the case where there are some

new records being detected inside the old database but cannot be found in the

new one, then the MySQL bin log is streaming the new records and store them

inside the new database. This way, the store owner does not have to lock down

the store and is able to continue with the sale.

When all the data records are completely transferred to the new database, the

81

routing information of the new pod is updated by first locking down the store for

a few seconds and later update the shop pod id inside the routing data store.

After completing all the updates, the shop can be unlocked and operated as

normal.

Combine all three tiers together, the traffic tier must know how to route the

requests to the correct pods. In order to do so, Shopify implements an Open-

Resty module called Sorting Hat. The module knows the status of the pods

whether they are active or inactive. When there are incoming request to the

Shopify network, the module checks the requests and determines which pods the

requests belong to. The module is able to perform this task by asking the rout-

ing data store about the incoming request, the routing data store will response

by returning the routing information which includes the pod number, the status

of the pod and the shop id corresponding to the requested data. The Sorting

Hat module then uses this information to route the request to the correct pod.

• Shopify REST API

This section describes and analyzes Shopifys Admin API which is used to build

applications and integrations with other systems. Shopify allows developer to

select a number of APIs that are suitable for the applications. The list below

describes the available APIs inside Shopify [9].

– Product and collections management: the product and collection APIs

can be used to access and manipulate a catalog of the store.

– Sales channel: Creating and managing the sales channel such as mobile

application, website or online marketplace.

– Shipping and fulfillment: Allows for accessing shipping rate data for

showing it to customer at checkouts. Managing the applications fulfillment

after registered to the stores fulfillment.

– Store settings: Allows for managing the configuration of the store.

82

– Customer management: Managing customer data such as add or update

information about the customers including customers address.

– Checkouts and orders: Allows for adding options and features at the

checkout point in order to improve customer experience.

– Billing: Allows for managing the billing.

– Modifying storefonts: Allows for updating the storefront and its content.

– Analytics: Provides detailed report to the store owner to help analyzing

the business activities and how the shop is doing.

– Marketing and discounts: Provides possibility for store owner to offer

flexible discount and promotions to customers, the result can be tracked

using this API.

– Storing event and resource data Allows for storing events and resources

which can later be retrieved when needed.

– Inventory management: Allows for managing inventory levels across

multiple locations.

Phase 3: Scenarios classification

In this step, all scenarios from the previous step are classified into two groups, direct and

indirect scenarios. With that in mind, direct scenarios are scenarios which can be executed

directly by the system while indirect scenarios require modification to be made to the

system before execution.

The following describes the process of applying and executing all scenarios into the

architecture of each candidate E-commerce platform. The results is the lists of scenarios

classified as direct scenarios and indirect scenarios for each platform.

83

Magento

• Direct scenarios

1. Create, retrieve, update and delete customers

2. Create, retrieve, update and delete products

3. Create, retrieve, update and delete orders

4. Import products using product file

5. Export products

6. Product search should be available

7. Checkout and payment gateways

8. Customers are able to place an order online and pick up in store (need purchased

extension)

9. Provide security mechanism to protect sensitive data

10. Allow selling on social media platforms

11. Customers are able to log in and see their order history

12. Refunds should be possible

13. It should be possible to extend the functionalities of the store by adding modules/plug-

ins

14. Add advanced functionalities using software code

15. Data transfer using REST APIs

84

• Indirect scenarios

16. Adding custom themes

17. Adding additional custom functionalities to the system

18. Integration with another system

WooCommerce

• Direct scenarios

1. Create, retrieve, update and delete customers

2. Create, retrieve, update and delete products

3. Create, retrieve, update and delete orders

4. Import products using product file

5. Export products

6. Product search should be available

7. Checkout and payment gateways

8. Customers are able to place an order online and pick up in store (need purchased

extension)

9. Provide security mechanism to protect sensitive data

10. Allow selling on social media platforms

11. Customers are able to log in and see their order history

85

12. Refunds should be possible

13. It should be possible to extend the functionalities of the store by adding modules/plug-

ins

14. Add advanced functionalities using software code

15. Data transfer using REST APIs

• Indirect scenarios

16. Adding custom themes

17. Adding additional custom functionalities to the system

18. Integration with another system

Shopify

• Direct scenarios

1. Create, retrieve, update and delete customers

2. Create, retrieve, update and delete products

3. Create, retrieve, update and delete orders

4. Import products using product file

5. Export products

6. Product search should be available

7. Checkout and payment gateways

86

8. Customers are able to place an order online and pick up in store (need purchased

extension)

9. Provide security mechanism to protect sensitive data

10. Allow selling on social media platforms

11. Customers are able to log in and see their order history

12. Refunds should be possible

13. It should be possible to extend the functionalities of the store by adding modules/plug-

ins

15. Data transfer using REST APIs

• Indirect scenarios

14. Add advanced functionalities using software code

16. Adding custom themes

17. Adding additional custom functionalities to the system

18. Integration with another system

Phase 4: Perform scenarios evaluation

Based on the indirect scenarios obtained from the previous step, scenarios evaluation tends

to identify the scenarios whether or not they can be considered as direct scenarios. The

process of identifying the scenarios includes component evaluation and interface/connec-

tion evaluation. New components and/or interfaces might be introduced to the system

architecture or the existing ones require modifications to be made.

87

For the indirect scenario 18, integration with another system requires a new component

to be introduced to the system architecture. Data exchange will take place as part of the

integration procedure which is one of the responsibilities of the new component. Such data

exchange requires large amount of data to be transferred with multiple data types involve

in transfer process.

Exchanging data requires interfaces to connect the integrated systems together. Intro-

ducing new component in between the system architectures also requires new interfaces.

However, this is not the case in this work since the required interfaces are already available

in both system. REST APIs of respective systems are the required interfaces that will be

frequently used for data exchange.

The introduced component consists of several services/functions that perform necessary

tasks in systems integration which will be described in details in section 6. In this work,

it is important to point out that a master system must exist for the integration as it will

contain larger amount of data to offer the other system. Factor that decides which of the

system is to be considered as master system is the amount of data owned by the system

which flows to the other system.

Due to the changes made to the system architecture, data exchange between the systems

is achieved, with several different data type being transferred in both directions. Systems

experience the impacts of modifications in the form of being able to exchange multiple

data types with other system such as retrieving new additional order data. An important

aspect of transferring data from one system to another is that it should occur in real

time. The integration of these systems has high demand on real time data transfer due to

rapid changes in business marketing world. This is another impact which the systems will

experience during the exchange of data.

The cost for system architecture modification is presented in the amount of hours of

work time. The estimated cost for performing systems integration is ranged between 800

to 900 hours.

88

Indirect scenario 17 involves creation of custom functionality which also requires a

new component to be added to system architecture. The new component is the extension

module itself which is introduce to the system for additional functionality based on retailers

demand. The impacts of such modification include system is able to provide functionality

that was not available in the platform, and enable the system to function comprehensively

depending on the introduced functionality.

In terms of cost, the estimated value required for the modification is not as straight-

forward as the previous estimated cost. Depending on the complexity of the functionality,

the estimated cost value can range between 25 to 200 hours.

As same for adding custom functionality, scenario 16 also requires a new component

to be added to the system architecture. The added component is the theme plug-in which

affects the layout and appearance of the online store. The impact on the appearance is

caused mostly by CSS and PHP files which are main sub-components that perform most

of the work.

The estimated cost for this modification is less than the previous two. Depending on

the requirement on the appearance, the estimated cost is around 20 to 120 hours.

Indirect scenario 14 is only required by Shopify. Unfortunately, this scenario can not

be performed since Shopify is non open-source and does not provide access to the software

code for modification.

Phase 5: Scenarios interactions assessment

This step presents the interactions of different scenarios that will be evaluated. Interacted

scenarios require changes to be made on the same component(s) in system architecture.

Semantically related scenarios with high interaction indicates high cohesion which are

desirable in the system while high interaction between semantically unrelated scenario

indicates low cohesion.

For indirect scenarios 16 and 17, new components are being introduced to the systems

architecture which means no modifications were made to the existing components, therefore

89

there are no interacted scenarios to be evaluated for these. In contrast, indirect scenario

18 requires new component to be added into the system architecture and the REST API

as the existing component of the system must be used as part of the scenario.

Phase 6: Overall evaluation

As mentioned in section 4.3.3, all scenarios are assigning the weight which is used to

determine the ranking of the architectures of Magento, WooCommerce and Shopify as

shown in Table 5.4, Table 5.5 and Table 5.6 respectively.

Scenario No. Description Weight Estimated cost (hours)

18 Integration with another system 90% 800-900

16 Adding custom themes 5% 20 - 120

17
Adding additional custom

functionalities to the system
5% 25 - 200

Table 5.4: Weighted scenarios for Magento

Scenario No. Description Weight Estimated cost (hours)

18 Integration with another system 90% 800-900

16 Adding custom themes 5% 20 - 120

17
Adding additional custom

functionalities to the system
5% 25 - 200

Table 5.5: Weighted scenarios for WooCommerce

90

Scenario No. Description Weight Estimated cost (hours)

18 Integration with another system 90% 800-900

16 Adding custom themes 5% 20 - 120

17
Adding additional custom

functionalities to the system
3% 25 - 200

14
Add advanced functionalities

using software code
2% -

Table 5.6: Weighted scenarios for Shopify

Based on the created scenarios, Magento and WooCommerce are closely matched. Be-

fore any conclusion is made, the following section summarize the overall evaluation of the

three platforms.

Magento is a comprehensive platform with a good amount of features to offer their cus-

tomers. The comprehensiveness and advanced features that Magento offers is what makes

it such a powerful platform. Because Magento is the open-source E-commerce platform,

users and developers can gain the access to the software code for further modifications to

suite their business needs. The incredible scalability provided by Magento is one of the

key features that allows users to grow their retail business.

Security is one important quality attribute for online store retailing. Magento uses

SSL to secure data being transferred between the customers and retailers online stores. It

protects transaction data, credit card data and other sensitive data in the store.

In terms of functionality, Magento is the most advanced platform of all three. It is

considered as a comprehensive platform with number of extensions that can be introduced

to the system. Magentos architecture is design to handle huge set of data load without

negatively affecting the performance of the system. As this is one of Magentos strongest

features, it provides great scalability suitable for medium to large size online stores with

a huge load of different data types such as product and order data. This key feature is

91

one of the factors used for choosing E-commerce platform due to the capability of enabling

growth of online store in the future.

Magento does also provide and enable the use of RESTful or REST APIs within its

architecture which is one of the most important factors in choosing the platform for the

integration. REST API is an essential part of system integration since it allows data to

be exchanged from one system to another. Magento architecture will authorize the use

of these REST APIs on the access token that is generated for specific user with specific

access rights.

Even though Magento is a good and comprehensive platform, it does have some draw-

backs. But the drawback related to Magentos architecture is the complexity of the system.

The software architecture is large and becomes more complex when the system grows which

is undesirable for any developer. The nature of Magentos architecture allows extensions

to be added to the system for additional and enhance functionalities, but doing so also

introduces more complexity to the system architecture. This results in difficult system

management and maintenance, specially for beginner who has little or no experience with

E-commerce platform before. Magento platform can potentially be too complex and dif-

ficult even for experience store owner. One should know that increasing complexity will

decrease usability. Usability is essential for online websites and those that do not offer

usability are likely to get less popularity.

Due to its complexity in software architecture, the learning curve in managing and

maintaining Magento platform is very steep. Such demand in learning curve often leads

to the requirement of high experience developers. This is where another drawback comes

into play, high complexity comes with high cost. Hiring skilled developer to manage and

maintain the system means increase in management and maintenance costs.

Magento does not provide a good set of themes to be used for store-front and has a

weak architecture for CMS (Content Management System). CMS is an essential part of

operating online store since it presents the contents of the store to customers and enables

92

interaction with customers at the front-end.

Shopifys main focus is on small to medium size retailers. The platform offers a com-

pleted package which include all the feature necessary to run the online store including SSL

(Secure Socket Layer) connection for data protection. The platform also focuses on the

integration with third party software, an example of this is social media marketing such as

Facebook and also integration with other market places such as Amazon and eBay.

However, unlike Magento and WooCommerce, Shopify is not an open-source platform

which means that retailers and/or developers do not have the access to the software code.

Its software and services are hosted in cloud solution which also makes it Software as a

Service (SaaS). The limited access to software code is probably the biggest drawback on

Shopify and is not something desirable for developers. Modifications to the system cannot

be made which can lead to development issues in the future.

WooCommerce allows access to software codes for developers to make further modifi-

cations to suite their business goals. WooCommerce also provides powerful features that

simplifies and reduces the amount of work for retailers.

In terms of security, WooCommerce does not include any security protocol from the

start but it can be purchased from the provider. Running WooCommerce with SSL helps

retailer protect sensitive information including transaction data, credit card data and more,

therefore security quality attribute is fulfilled in WooCommerce. Another strong feature

offered by WooCommerce is the CMS and usability. Various types of themes are available

in both free and paid options, but what differs WooCommerce from other e-commerce

platforms is probably the huge set of free themes that WooCommerce offers.

Usability provided by WooCommerce is one of the features that makes WooCommerce

gain popularity in online retailing market. Since WooCommerce is a smaller platform

compared to Magento, the software is also smaller and less complex. All of this lead to

a much more suitable platform for retailers who just start their online stores and do not

have any experiences with online platforms.

93

To conclude the evaluation, scenario 14 which requires software code modification to be

made in order to introduce advanced functionalities to the system, this scenario can directly

be executed by Magento and WooCommerce system while Shopify cannot due to software

code restriction. Hence, Shopify is discarded as the potential platform for integration.

Since all of the direct scenarios can be directly executed in Magento and WordPress

WooCommerce system architectures and the same number of indirect scenarios require

changes to be made to the components for both systems. However, since Magentos soft-

ware complexity is greater than that of WooCommere and introducing more extensions or

components to the architecture increases the complexity even further. This will require

a large amount of resources to manage and maintain the system architecture. Therefore,

Magento is discarded and I decide to choose WooCommerce as the E-commerce platform

for the integration.

94

6 Prototype development and implementation

This section presents the development and implementation of an integration software pro-

totype for integrating the systems of POS and WooCommerce platform with regards to

the design choices of the prototype and alternative integration solution available in the

software market.

The design description of the software prototype will be provided in section 6.1, the

section will present the goal of the prototype and describe the components involved in the

design with relation to their functionality and why those components are included in the

design.

Section 6.2 presents alternative integration solutions that have been considered as the

possible choices in performing system integration. These alternative solutions will be de-

scribed in different aspects that describe the components and their capabilities.

During the development, Postman will be used as an analysis tool on REST API.

Postman is an excellence tool for both analyzing and developing REST API, it is capable

of monitoring API when user runs the group of individual requests together and check

for the performance and response. Postman enables user to perform the CRUD (Create,

Read, Update, Delete) operations using HTTP methods POST, GET, PUT and DELETE

respectively. In this project, Postman will be mainly used on the REST API of the chosen

E-Commerce platform and Cash-IO REST APIs. Combining HTTP methods with the

URL and endpoints to get access to various types of data securely with the use of different

authentication mechanisms including Basic Auth, Digest Auth, OAuth 1.0, OAuth 2.0,

Hawk Authentication and AWS Signature. In order to use authentication mechanism in

Postman, a pair of keys must be created. These keys can be created by following the

instructions inside the documentation of the E-commerce platform. Postman provides the

choice for users to chose between different response data formats, JSON, XML, HTML and

plain text are the current response formats Postman supports with the headers also being

provided.

95

6.1 Design

In this section, the design of the prototype will be described in details. The design de-

cisions are taken based on the results obtained from the analysis performed in section 4.

This section will also present an overview description of REST API as one of the two inte-

gration components used in the development. The description includes common operations

that are used when performing requests via REST APIs. The next sub-section will present

the detailed description of the adapter which is the second component for system integra-

tion. Later in this section, more details on how these components cooperate to create the

seamless integration between POS and WooCommerce systems.

The programming and code writing for prototype development is part of the design and

will be done in asynchronous style. Asynchronous programming allows multiple operations

to be performed parallel. The difference from synchronous programming is that it wont al-

low multiple operations to be perform simultaneously, each operation must complete their

task before another operation is allowed to execute its task. For implementing the integra-

tion, asynchronous programming is perfectly suitable for the job since more operations can

be performed simultaneously without having to wait for others to complete their tasks.

The async and await keywords are used together when writing asynchronous program-

ming. The async keyword tells the compiler that the method might run in parallel and

that it could be waiting for a resource or operation but the actual trigger is the await

keyword that makes the method run asynchronously. Typically the await keyword is used

in the method that has the async keyword. The Task〈T〉 keyword is also used together

with async to indicate that the method is waiting for the resource, in other word, it waits

for the task to complete. T will be returned as the result from Task〈T〉 when the task is

completed.

Included in the design is the JSON configuration file which is created in order to simplify

and manage the configuration settings of the system. The purpose of creating the config-

uration file is to allow user to easily configure the settings used inside the system without

96

having to make changes in several places. The file contains the following configuration

settings.

• Base URL of the Admin site

• Consumer key and secret for admin site to access WooCommerce data

• Base URL of the first WooCommerce online store

• Consumer key and secret for the first WooCommerce online store

• Base URL of the second WooCommerce online store

• Consumer key and secret for the second WooCommerce store

• Total number of orders

• Number of products per page

• Number of product pages

• Total number of customers

• Base URL of Cash IT.IO on Azure Cloud service.

• Client id

• Client key

• Organization id

• Web shop id

• Sales channel id

97

The main goal of creating the prototype software is to integrate POS software with

WooCommerce platform. During the integration development, various types of data will

be exchanged, mainly product, customer and order data. The prototype is developed

based on the approach of loosely coupled which nowadays plays a huge roll in software

development. With that in mind, the prototype consists of two core components, REST

API and Adapter.

REST API is used as the core of the procedure for exchanging data between systems

which is a crucial part of system integration. During the prototype development, two

different sets of REST APIs are used, each set of REST APIs is available and provided

by WooCommerce and Cash IT respectively. The prototype is designed to handle data

transfer bidirectionally to enable both systems to exchange data, but most of the data

transfer will occur in an unidirectional fashion.

The functionalities descriptions of Cash IT REST API and WooCommerce REST API

will be presented in section 6.1.1 and 6.1.2 respectively, the descriptions also include how

these REST APIs can be used in order to exchange data.

The Adapter contain three modules and a set of services that are responsible for per-

forming different tasks in system integration. The purpose of creating these small services

is to avoid what is called ripple effect where changes of one component affect other com-

ponents of the system. This is the approach taken from the loosely coupled principle from

Microservices. The loosely coupled enables the upgrade, update and replace of one or more

components to be carried out without affecting other components of the system.

The challenge of integrating different systems comes in the form of data structure due

to different system has different data structure. This challenge is handled by the services

inside the adapter component. The overall design architecture diagram of the prototype is

shown in Figure 6.1.

98

Figure 6.1: Design architecture of the prototype

6.1.1 Cash IT REST API

This is the REST API created and provided by Cash IT company. The set of REST API

are available to purchase and can be used to access and modify data. The set contains the

APIs that are both important and necessary for integration with third-party system. For

this work, Cash IT.IO is uploaded to Azure cloud service so that it can be easily accessed.

The REST API are used as the communication channel for sending requests to Cash

IT database and get the responses in JSON data format. It is capable of quickly accessing

and providing data to the user. With this capability, Cash IT REST API is used as part

of the integration between Cash ITs software and any third-party systems whether that is

ERP systems or other E-commerce platforms.

99

In this work, Product, Customer and Document APIs will be used for the development

of the integration prototype. The Document API is used for the purpose of performing

the CRUD operation on order data. This API is also capable of handling different types

of Document data which includes order, receipt, invoice, deposit etc.

There are several HTTP methods provided but in this project, only four of those are

required and they are GET, POST, PUT and DELETE. These methods are used to indicate

the REST APIs what action to take when sending the requests.

As most of other REST APIs, Cash IT REST API supports a set of access rights.

The REST APIs currently support three different types of access rights: read, write

and notify and provides CRUD operations with HTTP methods POST, GET, PUT and

DELETE. In order to use the API, the first client (master client) must be created. This

is done by setting the id and key for the client in the GET /api/client/token section.

The successful creation of master client will return the response header, response code 200

and the response body containing the access token which will be used for creating another

new client. However, this access token is only valid for an hour, after that, the token is

invalid and a new access token has to be created. The creation of the client master is

only required once when a new installation is made. It is important to point out that this

master client only has the read and write access to the client entity. A new client can

be created if developer wants to gain more access and make modifications to other types

of entity. An already existing client can also be updated to give it more accessibility to

different types of data entity.

It is worth to mention the notify access right since it is a special type of access right

that differs from the other two. The notify access right enables the service that uses it to

listen to the changes of the data entity that occur inside Cash IT database. However, that

particular data entity must have this notify access right enabled in order to notify the

changes, otherwise the service will not be able to notify any changes that had been done.

Every data entity can be created, retrieved, updated/modified and delete with the

100

CRUD operations. Each of the entity has a different number of different attributes associ-

ated with the entity itself. When performing CRUD operations, different response status

will be returned, but the most common ones are show in Table 6.1.

Status code Meaning Description

200 OK
The request is flawless and
the requested data is returned
as response

400 Bad request
The request contains flaw(s)
such as invalid parameters or
URL

401 Unauthorized

The request does not have the
right to modify the data. This might be
caused by invalid or missing
user name, password or
access token is required

404 Not found

The requested resource(s)
cannot be found on the server
due to wrong URL path or just
simply the requested resource(s)
does not exist

500 Internal server error
Error(s) occur inside the server,
for example the server is down

Table 6.1: Response status code

As mention earlier, the integration solution will be based on the concept of loosely

coupled system. In order to achieve this, small services are created and each is capable

of performing the task independently. These services are accessing and sharing the same

databases which is not done in the same manner as in Microservices. The communication

between the services and the communication channel takes place via REST APIs. The

implementation is written in C# which is chosen as the programming language because of

its simplicity to use and a well-designed language.

101

6.1.2 WooCommerce REST API

WooCommerce REST API is open-source software that enables different type of data enti-

ties to be transferred between systems. Since WooCommerce REST API has already been

described in details in section 5.2 as part of the SAAM E-commerce platform architecture

analysis, I decided to only described the important and necessary features of the APIs

needed for the integration.

The REST APIs provide the ability to access different resources as shown in Table 3 in

section 5.2. Furthermore, WooCommerce REST APIs provide the endpoints to different

resources to be used for accessing and modifying the resources alongside HTTP verbs for

performing different operations on the resources.

In order to use WooCommerce REST APIs, the APIs usage itself must be enabled from

WooCommerce Admin Panel. Admin is able to grant permission to use REST APIs for any

specific user. Depending on the access right, the permitted user can modify the resources

inside WooCommerce database. WooCommerce currently grant three types of access right,

read to retrieve resources, write to create and update resource, and read/write for all

CRUD operations.

After enabling the use of REST APIs, the pair of keys will be created. The key pair

consists of consumer key and consumer secret which are used to authenticate and

authorize the request sent via REST APIs.

To simplify the description, the following is an example to demonstrate how to use

WooCommerce REST APIs to access and modify the resources. In this example, a client

requests data from the product resource.

GET http://mystore.com/wp-json/wc/v2/products

The part mystore.com is the store website and wp-json/wc/v2/products is the prod-

uct endpoint of WooCommerce REST API.

102

6.1.3 Adapter

The adapter consists of 3 modules and 17 small services which are part of the prototype

development. The modules are designed to perform tasks separately from each other. These

modules use the services inside the adapter to perform the tasks and different modules

require different services depending on the tasks.

As for the modules, the services are created separately, this approach of structuring

services allows each of the them to run separately and independently.

The services inside the adapter are divided into two separate groups, CRUD services

and Mapping services. The CRUD services are divided further into two separate groups,

Cash IT client services responsible for performing CRUD operations on customer data,

product data and order data inside Cash IT database and WooCommerce services

which is also responsible for performing CRUD operation on product, order and customer

data but inside WooCommerce database instead.

The Mapping services are mainly responsible for parsing and mapping different data

attributes inside the data entity of one system to data attributes inside the same data

entity of another system. In this prototype development, the data attributes inside the

data entity of WooCommerce system are mapped into the data attributes inside the data

entity of POS system.

The following are the lists of CRUD services and Mapping services contained inside the

adapter.

1. Cash IT client service

• Create (SaveAsync)

• Retrieve (LookUpAsync)

• Search (FindAsync)

• Delete (DeleteAsync, DeleteManyAsync)

103

• Notify (RegisterNotificationCallback)

2. WooCommerce services (custom services)

• Retrieve order data

• Retrieve product data

• Retrieve customer data

• Transfer order data

• Transfer product data

• Transfer customer data

• Update order data

• Update product data

• Update customer data

3. Mapping services

• Mapping order data attributes

• Mapping product data attributes

• Mapping customer data attributes

The services on the POS side are already available and provided by Cash IT. However,

the services on WooCommerce side are custom created for the purpose of performing CRUD

operations as mentioned earlier.

Since the services use REST APIs as part of performing their tasks, each request sent

by the services needs to be authenticated and authorized. Therefore, each service must

include authentication and authorization mechanism which will allow them to perform

CRUD operations on the resources. Cash IT services are able to authenticate and au-

thorize themselves using the client that will automatically authenticate and authorize the

104

request sent by theme. On the other hand, each WooCommerce service must include the

authenticator as part of their services. As the name suggests, the authenticator will au-

thenticate and authorize the request sent by each service before granting the access to the

resources.

The services inside the adapter are used frequently throughout the integration proto-

type. Thus to better understand these services, the following section will describe the detail

implementation of the services involved in the development of the prototype which includes

Cash IT services, WooCommerce services and Mapping services. These services will be de-

scribed with respect to their functionalities and needs with the example demonstration to

show how the services can be used.

6.1.3.1 Cash IT services

• Create resources: the service is responsible for creating and storing resources inside

Cash IT database. Product data, customer data and order data are created using

this service. The service is implemented by the function SaveAsync which requires

the data entity to be specified with the id, type of the id and the resource content to

be created. Listing 1 below creates the resource in the form of order data object with

id 2 inside Cash IT database using the create service. We assumed that the content

to be created is store inside variable content.

Listing 1: Example usage of Cash IT resource creation service

1 var order = client.SaveAsync <Document , string >(2, content);

• Retrieve resources: this service is responsible for retrieving resources from Cash

IT database. The function LookupAsync is the function which implements the service

and takes two parameters, the data entity and type of the id with one specified id op-

tion. The service is mainly needed for looking up and retrieve the specific data object

105

inside specified data entity. The service is needed for updating order/document data

in WooCommerce database and is frequently used to distinct the order/document

data that flows between POS and WooCommerce systems.

Listing 2 below demonstrates the use of search service which searches for a customer

with a specified id 12 inside the customer data entity.

Listing 2: Example usage of Cash IT resource retrieval service

1 var customer = await client.LookupAsync <Customer ,string >(12);

2 if (customer != null)

3 Console.WriteLine (" CUSTOMER :{ JObject.FromObject(customer)}");

4 else Console.WriteLine($"ERROR: No such customer ’{customerId }’");

• Search resources: responsible for searching for data attribute inside the data entity

with the specified option. The service implements a function call FindAsync which

executes the search based on the given data entity and specified option. Listing 3

below shows an example of the search on order/document data entity that are created

since the specified date.

Listing 3: Example usage of Cash IT resource searching service

1 var options = new Find{Query = $"{{’ createdOn.DateTime ’: {{ ’$gte ’:

2 new ISODate(’{date.UtcDateTime.ToString ("o")}’) }} }}" };

3

4 var documents = await client.FindAsync <Document >(options);

• Delete resources: the service is responsible for removing the a data entity. It

is capable of removing both a data entity with specific id or removing all data of

the specific data entity. The function DeleteAsync is responsible for implementing

the delete service, the function also takes the two parameters and one option as the

search service described previously. Listing 4 shows the use of the delete service

which removes a product data with product id 22.

106

Listing 4: Example usage of Cash IT resource deletion service

1 var product = await client.DeleteAsync <Product ,string >(22);

2 if (product != null)}

3 Console.WriteLine($"PRODUCT: {JObject.FromObject(customer)}");

4 else Console.WriteLine($"ERROR: No such product ");

• Notify changes: responsible for listening and notifying other services when the

changes occur. This service is created using websocket technology in order to listen

to the changes occur in Cash IT database. This service can in turn be used by other

services depending on what tasks they are performing. In order for other services

to use the notify service, the data entity that other services observe must have the

notify access right as described in section 6.1.1.

6.1.3.2 WooCommerce services

• Retrieve orders data: responsible for retrieving data objects of order entity. The

service is capable of retrieving all order data objects in WooCommerce database. The

function get many order data woo is responsible for implementing the service, the

function returns the requested data objects as the result. As described earlier, each

service implement the authentication and authorization mechanisms that allows it to

access the resources. This service uses the endpoint to order resources together with

base URL of WooCommerce online store. The request is created using the endpoint

and HTTP verb GET to indicate that the request requires order data object to be

returned as the result of the request. The next step is to include a consumer key and

secret into the request in order for WooCommerce to authenticate and authorize the

request. The function code is shown in Listing 5.

107

Listing 5: Service code for retrieving WooCommerce order data

1 public async Task <string > get_many_order_data_woo(string url ,

2 string consumerKey , string consumerSecret , int per_page , int j) {

3 var client = new RestClient(url);

4 var authenticator = OAuth1Authenticator.ForRequestToken(consumerKey ,

5 consumerSecret);

6 string endpoint = ReadConfigurationFile.readOrdersEndpointWoo ();

7 var request = new RestRequest(endpoint + "?", Method.GET);

8 request.AddParameter (" per_page", per_page);

9 request.AddParameter ("page", j);

10 authenticator.Authenticate(client , request);

11 IRestResponse response = await client.ExecuteTaskAsync(request);

12 var content = response.Content;

13

14 return content;

15 }

Listing 6 shows the use of service code in order to retrieve data objects of order data

entity from inside WooCommerce database where url is the full URL path to the

order resources.

Listing 6: Example usage of WooCommerce order data retrieval service

1 var orders = get_many_order_data_woo(url , key , secret , per_page , index);

Since WooCommerce implements an pagination option which by default only returns

at most 10 order data objects at a time. To retrieve all order data objects, I decided

to implement a mechanism for getting all data objects from each page. This is why

the parameters per page and index are needed since the per page parameter will

indicate the function to retrieve 10 order data objects and the index parameter

108

indicates the function which page number to retrieve the order data objects from.

• Retrieve products data: responsible for retrieving both single product data object

and all product data objects from WooCommerce database. The function implements

the service which returns the number of product data objects as the result. The

function uses the product endpoint and online stores URL to construct full URL

path to the product resource. GET HTTP verb indicates the retrieval of product

data objects which is to be returned as the result of the request. The consumer key

and secret are included inside the header of the request in order to for the request to

identify itself and to get the permission to access the product resources.

As for the order retrieval service, the product retrieval service implements the mech-

anism for retrieving all product data objects. However, the difference between this

service and order retrieval service is that the amount of product data objects to be

retrieve per page can be configured from WooCommerce Admin Panel. The number

of product data objects to be retrieved per page is used as one of the parameters of

the function. The function code for the service is shown in Listing 7.

109

Listing 7: Service code for retrieving WooCommerce product data

1 public async Task <string > get_many_product_data_woo(string url , string

2 consumerKey , string consumerSecret , int per_page , int j) {

3 var client = new RestClient(url);

4 var authenticator = OAuth1Authenticator.ForRequestToken(consumerKey ,

5 consumerSecret);

6 string endpoint = ReadConfigurationFile.readProductsEndpointWoo ();

7 var request = new RestRequest(endpoint + "?", Method.GET);

8 request.AddParameter (" per_page", per_page);

9 request.AddParameter ("page", j);

10 authenticator.Authenticate(client , request);

11 IRestResponse response = await client.ExecuteTaskAsync(request);

12 var content = response.Content;

13

14 return content;

15 }

Listing 8 below demonstrates the retrieval of product data object which returns 25

product data objects per page and these objects are retrieved from page number 5.

Listing 8: Example usage of WooCommerce product data retrieval service

1 var product = get_many_product_data_woo(url , key , secret , 25, 5);

• Retrieve customers data: The service is responsible for retrieving customers data

objects, the main purpose of creating this service is to retrieve all possible customer

data objects that will be transferred to POS system. The function is responsible for

implementing the service which returns all the customer data objects. As for most

of WooCommerce services, this service function construct full URL path to customer

resources using customer endpoint and base URL. The request includes HTTP verb

110

GET and consumer key and secret for authentication and authorization purposes.

The response from such request is the return of all possible customer data objects.

Due to pagination in WooCommerce that only return 10 customer data object as

default, a mechanism is created to handle such pagination and retrieve all customer

data objects on each page. Listing 9 below shows the code of the service.

Listing 9: Service code for retrieving WooCommerce customer data

1 public async Task <string > get_many_customer_data_woo(string url ,

2 string consumerKey , string consumerSecret , int per_page , int j) {

3 var client = new RestClient(url);

4 var authenticator = OAuth1Authenticator.ForRequestToken(consumerKey ,

5 consumerSecret);

6 var request = new RestRequest ("wp -json/wc/v2/customers?", Method.GET);

7 request.AddParameter (" per_page", per_page);

8 request.AddParameter ("page", j);

9 authenticator.Authenticate(client , request);

10 IRestResponse response = await client.ExecuteTaskAsync(request);

11 var content = response.Content;

12

13 return content;

14 }

To better understand how the customer data retrieval service is used, Listing 10

demonstrates the example usage of the service which retrieves 10 possible customer

data objects per page and that the service will only retrieve those customer data

objects on page number 3.

Listing 10: Example usage of WooCommerce customer data retrieval service

1 var customer = get_many_customer_data_woo(url , key , secret , 10, 3);

111

• Create orders data: the service is responsible for creating and storing order data

resources. The purpose of creating this service is to create a new order data object

inside WooCommerce when a document data object is created in POS system since

both system are sharing order/document data. The function responsible for imple-

menting the service is called create many order data woo, the function will create

the new order data object based on the content of order data objects from POS sys-

tem. The function requires consumer key, consumer secret and full path URL to the

order data resources to be included in the request as shown in Listing 11.

Listing 11: Service code for creating order data object in WooCommerce

1 public async Task create_many_order_data_woo(string url ,

2 string consumerKey , string consumerSecret , object data) {

3 var client = new RestClient(url);

4 var authenticator = OAuth1Authenticator.ForRequestToken(consumerKey ,

5 consumerSecret);

6 var request = new RestRequest ("wp -json/wc/v2/orders", Method.POST);

7 request.AddJsonBody(data);

8 authenticator.Authenticate(client , request);

9 IRestResponse response = await client.ExecuteTaskAsync(request);

10 }

Listing 12 below shows the action of the service which create a new order data ob-

ject inside WooCommerce database. We assumed that the content of the order data

object to be created is represented by the variable content.

Listing 12: Example usage of WooCommerce order data creation service

1 var order = create_many_order_data_woo(url , key , secret , content);

112

• Update orders data: responsible for making the update to existing order data

objects inside WooCommerce. The function responsible for implementing this service

is called update orders data woo, which uses the id of existing order data object to

update that particular order. The main purpose of this service is for the prototype to

be able to update the existing order data object inside WooCommerce based on the

order data object that are created in POS system. This is one crucial part of making

the integration work since the order data object created inside POS system is based

on the order data object that had been transferred to POS system. In other words,

WooCommerce order that is transferred to POS system will be used by store owner

to get and provide the merchandise to customer. This order is then updated by POS

system, the updated order will be transferred and stored inside Cash IT database.

However, since the integration requires the order data objects to be shared between

the systems, any changes made on these objects inside one system must be updated

inside the other system as well. The updated order data object inside Cash IT

database is retrieved by another adapter service, the retrieved order data object is

then updated using the order update service. The data attributes required in the

updating process include the date the order data object is last update, the order

status, and any additional product items that customer might purchase from the

store. The code which implements the service function is shown in Listing 13.

113

Listing 13: Service code for updating order data object inside WooCommerce

1 public async Task update_orders_data_woo(string url ,

2 string consumerKey , string consumerSecret , string id, object update) {

3 var client = new RestClient(url);

4 var authenticator = OAuth1Authenticator.ForRequestToken(consumerKey ,

5 consumerSecret);

6 var request = new RestRequest ("wp -json/wc/v2/orders" + "/{id}",

7 Method.PUT);

8 request.AddUrlSegment ("id", id);

9 request.AddJsonBody(update);

10 authenticator.Authenticate(client , request);

11 IRestResponse response = await client.ExecuteTaskAsync(request);

12 }

To demonstrate the use of the order update service, the code in Listing 14 updates

the order data object with order id 23. We assumed that the order data object to be

updated is represented in variable order content .

Listing 14: Example usage of WooCommerce order data update service

1 var order_update = update_orders_data_woo(url , key , secret , 23,

2 order_content);

• Update products data: responsible for updating existing product data object in-

side WooCommerce database. For this service, the function update product data woo

is implemented which uses the id of existing product data object to update that par-

ticular product. As for updating order data object, updating product data object is

an crucial part of system integration. The changes made inside one system must be

updated inside the other system in order for system integration to work seamlessly.

The function will update data attributes of order entity which includes date of last

114

modification and product quantity. The code that implements the product update

service is shown in Listing 15.

Listing 15: Service code for updating product data object inside WooCommerce

1 public async Task update_product_data_woo(string url ,

2 string consumerKey , string consumerSecret , string id, object update) {

3 var client = new RestClient(url);

4 var authenticator = OAuth1Authenticator.ForRequestToken(consumerKey ,

5 consumerSecret);

6 var request = new RestRequest ("wp -json/wc/v2/products" + "/{id}",

7 Method.PUT);

8 request.AddUrlSegment ("id", id);

9 request.AddJsonBody(update);

10 authenticator.Authenticate(client , request);

11 IRestResponse response = await client.ExecuteTaskAsync(request);

12 }

Listing 16 demonstrates the usage of WooCommerce product data updating service

that updates the existing product data object with id 5. To make it simple, we also

assumed here that the product data object to be updated is represented inside a

variable product content .

Listing 16: Example usage of WooCommerce product data update service

1 var product_update = update_product_data_woo(url , key , secret , id ,

2 product_content);

The three modules contained inside the adapter are Product data transfer module,

Order data transfer module and Customer data transfer module as shown in

Figure 6.1.

115

6.1.3.3 Product data transfer module

Responsible for transferring product data. It is capable of transferring product data from

WooCommerce to POS system and vice versa. The module is designed to handle the trans-

fer of product data from WooCommerce to POS system and only to handle the transfer of

updated product data from POS to WooCommerce system. In other words, the completed

product data is only transferred from WooCommerce to POS system while updated data

will only be transferred from POS to WooCommerce system.

The task of the module is not only to transfer product data, firstly it retrieves the

product data from database of one of the systems using data retrieval service. The module

then maps the retrieved data to the corresponding product data attributes of another

system using product mapping service and eventually transfers the mapped product data

to another system using data transfer/creation service.

6.1.3.4 Order data transfer module

Responsible for retrieving, mapping and transferring order data between systems. To

retrieve data, is uses the data retrieval service which will provide the requested order

data. The module maps the data using the order mapping data which maps the data to

the corresponding order data attributes in another system. Lastly, the module uses data

transfer service to send the mapped order data to another system.

6.1.3.5 Cusotmer data transfer module

Responsible for transferring customer data from WooCommerce to POS system. The mod-

ule initially retrieves customer data from WooCommerce database using WooCommerces

customer data retrieval service. The module then maps the retrieved data using customer

data mapping service inside the adapter, and later uses Cash IT data creation service to

send the mapped customer data to POS system.

116

6.2 Data transfer

The section presents the implementation details for data transfer procedure from WooCom-

merce to POS system which are in turn implemented inside the modules. The section also

includes the implementation description of the three modules described in section 6.1.3.3,

section 6.1.3.4 and Section 6.1.3.5.

The implementation starts with creating Cash IT client that will be used to perform

operations on the data on POS system. Fortunately, the client code has already been

provided by the company together with the codes for Cash IT services that will be used

for CRUD operations.

Customer data, product data and document/order data are involved in the data transfer

process. These data types play an important roll in retail marketing as they complete the

process of retail merchandising. There must exist products to be purchased, customer

who purchases it and order created by customer. POS and WooCommerce systems require

these mandatory data in order to function properly.

WooCommerce and POS are two different systems that require different data struc-

ture/model. However, the systems do have some common data entities such as product,

customer and order/document data, but data structure/model of these data entities are

different in many places. The data entities in each system also contain different number

of data attributes which differ the two systems from each other. With that in mind, the

procedure of data transfer is breaking down to smaller steps as described below.

• Connect to the systems database

• Send request and retrieve the data

• Map/parse the retrieved data to the corresponding data structure of another system

• Connect to the database of another system

• Send mapped data to another system

117

As described in section 6, the Adapter is the core of the integration, the flow of data

from one system to another and vice versa is achieved via the adapter. The adapter

contains a set of services as described in section 6.1.3, when cooperating these services, it

is possible to perform tasks required for the integration. The process of transferring any

kind of data from WooCommerce to POS system is divided into three smaller processes as

described below.

1. The data on WooCommerce system is retrieved using the data retrieval service inside

the adapter.

2. The retrieved data is mapped to corresponding data attributes of POS system using

the mapping service.

3. The mapped data is transferred to POS system using Cash IT data creation service.

To accomplish this, a number of services described in section 6.1.3.2 is used, each service

will perform a specific task independently of each other. These services handle different

types of data by creating, retrieving, updating and deleting it.

Using C# as the programming language with asynchronous programming described in

section 6.1 and third party library RestSharp help simplifying the construction of these

services. RestSharp is an open-source HTTP client third-party library that enables user

to access data using APIs to create web services and web applications.10 RestSharp works

great together with all ṄET. Using RestSharp to send request via REST API requires both

consumer key and secret. The key pair can be obtained from WooCommerce Admin Panel

by enabling the use of API keys and later create the key pair that gives the access right to

the user. There are three access rights supported by WooCommerce as shown below.

10https://github.com/restsharp/RestSharp/wiki

118

• Read only – user can only retrieve the data

• Write only – user can create, update and delete the data

• Read/Write – user can perform all CRUD operations

In order to consume the consumer key and secret, another service is created which is

responsible for getting the key pair from configuration file. The service is used inside each

of WooCommerce CRUD services for the authentication purpose. This same service also

retrieves and sends the base URL of the online store to all WooCommerce services which is

used to together with the resource endpoint to construct the full URL path to the resource

data.

6.2.1 Product data transfer module

A large set of product data will be transferred from WooCommerce to POS system. For

this purpose, WooCommerce database must first contain huge number of products. To

accomplish this, a CSV product file is created with large number of product data inside, this

product file is specifically created for simple type products. The file contains the headers

for all the products which is the actual product attributes specified by WooCommerce.

Table 6.2 lists all the header included inside the product file.

After the product data is added inside the file, the next step is to use WooCommerce

Admin page to import the file. WooCommerce provides a file importer to allow different

types of file to be uploaded into the store. CSV and XML are the file types currently

supported by WooCommerce.

The importer will first read the products data inside the file. However, WooComemerce

importer limits the size of the imported file to be no larger than 2 MB. After reading the

file, the importer will allow the user to map the headers inside the file to the correct prod-

uct attributes. It is important that the correct product attributes are correctly mapped,

otherwise the upload will fail. After the mapping procedure, the importer then uploads

119

Header Description
ID Product id
Name Product name
Type Product type
SKU Unique identiifer

Published
Determine if the product is
published or not

Visibility in catalog Visibility of product
Description Product description
Short description Product short description

In stock
Determine if product is
available in stock

Slug Product slug
Permanlink Product URL
Status Product status
Regular price Product price
Sale price Product price
Type Product type
Stock quantity Amount of products in stock
Categories Product categories
Tags Product tags

Purchasable
If product can be
purchased or not

Tax status Tax status
Weight Product weight

Review allowed
If product review
is allowed or not

Table 6.2: Headers inside CSV product file

120

the product data into WooCommerce system. The upload process can take several minutes

depending on the number of products inside the file. The snippet of the CSV product file

is shown in Figure 6.2.

Figure 6.2: The snippet of the product file

As mentioned in section 6.2, the procedure in transferring product data from WooCom-

merce to POS system is divided into three small processes which require WooCommerce

product data retrieval service, product mapping service and Cash IT data creation service

to be used.

As mentioned in section 6, these services are included in the adapter. To transfer prod-

uct data, firstly, the product data retrieval service connects to WooCommerce database via

REST API and sends the request for product data to WooCommerce system. WooCom-

merce system responses to the request by providing small amount of product data depend-

ing on the value of the parameter per page due to the pagination option implemented

by WooCommerce platform. These returned data are in JSON format which needs to be

deserialized using Newtonsoft library. The deserialized data is then mapped into corre-

sponding product data attributes of POS system which mainly includes product id, product

name, product price, etc. using product mapping service. Cash IT data creation service

transfers the mapped data attributes as part of the data creation request to POS system.

Since all product data must be transferred to POS system, the services are implemented

inside a for loop in order to retrieve, mapped and transfer all product data.

121

6.2.1.1 Retrieve product data

The service for retrieving WooCommerce product data constructs the URL path to the

product data resource using base URL of the store and WooCommerce product endpoint.

The service creates the request for product data using the full URL path with HTTP verb

GET. In order to retrieve all product data, the service is implemented inside a for loop,

the number of times the service is executed in the loop depends on the values of parameters

per page and page. As mentioned in section 6.1, the service implements an authenticator

to handle authentication which is required when sending request. WooCommerce system

checks for the consumer key and secret and verifies whether or not the request is valid.

If the request is valid and authenticated, the system will grant the access to the resource

and provides the product data in JSON format as response to the request. At this point,

the service has the requested product data which needs be mapped. Section 6.2.1.2 will

describe how the mapping procedure is carried out.

6.2.1.2 Map product data

As mentioned in section 6.2.1.1 above, the data retrieval service contains the requested

product data. This data is then handled by a new service called product mapping service.

Since the data is in JSON format, the mapping service deserializes the JSON data using

Newtonsoft library which makes the data in JSON format accessible. The deserialized data

is then mapped to the corresponding data attributes of product data entity in POS system.

The data attributes include product id, product name, product price, stock quantity etc.

At this point, the mapped product data is ready to be transferred to POS system which

will be described in section 6.2.1.3.

6.2.1.3 Transfer product data

The mapped product data is transferred by Cash IT data creation service. The service uses

Cash IT client as described in section 6.1 for the authentication procedure. The mapped

122

data is stored in a list of product objects which is implemented in order to simplify the

transfer process. Using another for loop, the service uses the id of each product object

and its product data content to make the request in which each product object inside the

list is sent individually to POS system. After the transfer is finished, the list will be clear

for the next set of product data objects to be stored and transferred.

The product transfer is a long running process which can take several minutes to com-

plete depending on the number of the product data. To inform the user about the transfer

progress, an progress indicator is implemented. The progress indicator is created inside the

Console application which allows the indicator to be displayed in the console. The code

for creating and displaying the indicator is open-source which is written by Daniel Wolf,

this code is also under the MIT license which grants the permission to anybody who wants

to use the code [41].

The indicator function is simply called inside the product transfer service. The indicator

informs the user about the transfer progress by using percentage number with an animated

bar. The calculation of the percentage number is possible by knowing the status of the

current page being processed and divides it by the total page number.

6.2.2 Customer data transfer module

The customer data transfer process is implemented in the same manner as the product

data transfer. The process is divided into three parts which involves WooCommerces

customer data retrieval service, customer data mapping service and Cash IT data creation

service to be used. Section 6.2.2.1 describes detail implementation of retrieving customer

data from WooCommerce system, section 6.2.2.2 involves implementation of mapping the

retrieved customer data and finally section 6.2.2.3 involves the process of transferring the

mapped customer data to POS system. Due to pagination option being implemented

by WooComerce which does not allow all data to be retrieved at once, to transfer all

customer data, all services responsible for retrieving, mapping and transferring data must

123

be implemented inside a for loop.

6.2.2.1 Retrieve customer data

The process of retrieving customer data involves WooCommerces customer data retrieval

service. The customer data resides inside WooCommerce database in which the service is

trying to access. Firstly, the service constructs full path URL to the customer resource by

fetching it from the configuration file which are put together with WooCommerce customer

endpoint to create a full URL path to WooCommerce customer resource. This URL is used

by the service with GET HTTP verb to indicate data request, the authenticator imple-

mented in the service handles the authentication process the request is sent. The request

includes pagination parameters per page and page which is used to specify the number

of customer data objects to retrieve and from which page number. WooCommerce system

receives and check the validation of the request. If the request is valid and authenticated,

WooCommerce grants the access to the customer data resource and responses with the

requested customer data. The response data is in JSON format which contains customer

data attributes. The JSON data needs to be deserialized before any mapping can be done.

6.2.2.2 Map customer data

At this point, the customer data retrieval service contains customer data in JOSN format,

this customer data is handed over to the customer data mapping service which will map

the data to corresponding customer data attributes in POS system. But first the data is

deserialized using Newtonsoft library to make it accessible for mapping. The necessary

data attributes inside the customer data is retrieved and mapped into the corresponding

customer data attributes in POS system. These data attributes include customer id, name,

billing address, shipping address etc. These mapped customer data is put inside a list and

ready to be transferred.

124

6.2.2.3 Transfer customer data

Transferring the customer data to POS system is done in the same manner as transferring

product data. The process of transferring customer data uses Cash IT data creation service.

As mentioned in section 6.2.2.2 above, the mapped data is stored inside a list and wait to

be transferred. The service is design to transfer data by sending each customer object in

the list individually to POS system based on their id and mapped data. The service also

indicate REST API that the transferred data is in JSON format by including the value

application/json into the header. The list is clear each time the transfer process is done

to allow new set of customer data objects to be stored and transferred. Also the progress

bar indicator is implemented in the same manner as for product data transfer.

6.2.3 Order data transfer module

The similar approach used for both product and customer data transfer is used here.

The process of transferring order data is divided into three smaller processes involved

WooCommerces order data retrieval service, order data mapping service and the Cash IT

data creation service. Section 6.2.3.1 presents detail implementation for retrieving order

data from WooCommerce system. Section 6.2.3.2 describes the implementation of the

order data mapping process and section 6.2.3.3 presents the detail implementation of the

order transfer process to POS system.

6.2.3.1 Retrieve order data

WooCommerce order data retrieval service is used in the process of retrieving order data

from WooCommerce system. The URL path to the order resource is created by the service

using the URL path of the store and WooCommerce order endpoint. The store URL

and endpoint are fetched from the configuration file as described in section 6.1. The

service uses GET HTTP verb to request order data and the authenticator to handle the

authentication process for the request. The request also includes pagination parameters

125

per page and page which is used to specify the number of order data objects to retrieve

and the page number where the data is to be retrieved. After the request has been sent,

WooCommerce system receives and check the validation of the request. If the request is

valid and authenticated, WooCommerce grants the access to the order data resource and

provides the requested order data. The JSON response data which contains order data

attributes will need to be deserialized before any mapping can be done.

6.2.3.2 Map order data

The order data retrieval service contains order data which is in JSON format. At this

point, customer data mapping service takes over the data and deserializes it in order to

access the order data attributes. The necessary data attributes of order data are retrieved

and mapped into the corresponding order data attributes in POS system. Example of these

data attributes include order id, order status, number of ordered items etc. The mapped

data are put inside a list and ready to be transferred.

6.2.3.3 Transfer order data

Transferring the order data to POS system is done in the same manner as transferring

product and customer data. In this process, Cash IT data creation service uses the mapped

order data in the list which was described in section 6.1.3.1. Each order data object inside

the list is transferred to POS system individually by the service which uses the id of each

order object and its mapped data. The authentication process is done by Cash IT client

which generates the access token to handle the authentication process by POS system. The

service also indicate REST API that the transferred data is in JSON format by including

the value application/json inside the request header. As before, the list is clear each

time the transfer process is done to allow new set of order data to be stored and transferred.

The process of transferring order data also uses the progress bar indicator is to indicate

the progress of order data transfer.

126

6.3 Data update

The section presents the procedure of updating the data in WooCommerce system when

changes have been made to the same data type inside POS system. The purpose of updating

the data is part of the integration since the two systems share the same data. It will not be

such a good integration if the systems contain two completely different data. Therefor, any

changes being made on the data inside one system, the same data inside another system

must be updated as well. Section 6.3.1 and 6.3.2 present the procedure of updating order

data and product data respectively.

6.3.1 Order data update

The notification service inside the adapter is listening for any changes on order data occur

inside POS system. Cash IT client is given the notify access right to the document/order

entity which is required in order to be able to notify other service about the changes. The

changes are notified to the order update service inside the adapter. The notified information

contains the id of the order in POS system that has been affected by the changes. The id

is used by the order retrieval service and retrieve the order data corresponding to the id.

This order data in turn contains order id which refers back to the original WooCommerce

order. The service is designed to contain the necessary data attributes to be updated which

are order status, date of last modified, date of payment, date of order completion and even

additional products. The order update service uses this data together with the id and send

the update request to WooCommerce system.

6.3.2 Product data update

The process of updating product data in WooCommerce system occurs when additional

products are added into existing order. The adapter checks the receipt data for any addi-

tional products that might have been added to the order by comparing size of the product

array of the original order with the product array size of newly created receipt data. If the

127

array size in receipt data is larger than the array size of original order data, it indicates

more products are added into existing order.

The product data attributes that will be updated includes stock quantity and date of

last modification. Since each additional product contains the id and the ordered quantity,

the adapter is designed to handle the update by using the product id of each additional

product to retrieve its current stock quantity from WooCommerce. The current stock

quantity is reduced by the number of ordered quantity to yield new current stock quantity

and the date of last modification is set to the current date where the update occurs. These

updated stock quantities are put inside a list which is then included in the request together

with the date of last modification. The adapter uses the product update service to send

the update request to WooCommerce system.

Since the data will be sent from one system to another, it is crucial to have a mech-

anism that executes the data transfer procedure automatically. To start with, a timer is

implemented which is used to as part of the data transfer. The timer will be set and trigger

the data transfer process in a specified time interval which can be configured inside the

JSON configuration file.

To get the order data from WooCommerce and transfer further to POS at a specified

time interval, the timer is used inside the order transfer function.

6.4 Possible integration

This section describes the functionalities, characteristics and advantages of possible inte-

gration solutions that have been considered in this work. The possible integration solutions

include Integration platform as a service, Enterprise service bus, Microservices,

integration platform and custom integration. This sub-section attempts to explore

alternative solutions available for integrating systems with the benefits of long term devel-

opment goal in mind. The concepts derived from the candidate solutions will be evaluated

with respect to both WooCommerce platform and POS systems.

128

6.4.1 Integration platform as a service (iPaaS)

Integration platform as a Service is a cloud-based integration solution that enables systems

resides in cloud to be integrated with each other. It also allow integration for on-premises

systems to be integrated with cloud-based systems. iPaaS provides efficiency and consis-

tency of data processing of an online business. The data must be updated in real time or

near real time in order for the business to run smoothly [25]. It is difficult to manually

maintain databases at different places, this requires a huge resource of manpower and is

time consuming. This is where iPaaS comes in handy, it provides a single platform to

handle data integration which eliminates the need of manpower and other resources such

as time. The following are the core functions of iPaaS according to [25].

Data integration

From Excel to ERP, iPaaS connects all of them together no matter how much data it has.

Scalable data integration

Infinite scaling of data is an important aspect of iPaaS platform. The growing business

today doesnt guarantee the size of data and the platform should be able to easily handle

performance bottlenecks.

Process chaining and orchestration engine

No business process is independent of each other. The dependency chaining is very im-

portant aspect of data integration in which the data should follow the proper business

model of an enterprise so that it executes step by step and predecessor tasks gets executes

first before its successor. This is achieved by Workflow Automation, in which the entire

dependency is defined and processed as a single unit.

129

Microservice integration

iPaaS platform connects the APIs of different applications including internal microservices,

which are modular services inside an application.

6.4.1.1 CloudHub: Mulesoft iPaas

Integration platform as a service is a cloud based integration solution that steadily gains

popularity [10]. iPaas is the platform that enables building and deploying integrations

within cloud service, the cloud based integrations take place between the cloud and en-

terprise. The advantages with using iPaas is that no installations or management on any

hardware or middleware are required which allows developers to focus on developing inte-

gration of systems running in cloud or on-premises and directly deploy them [10]. iPaas

enables the connectivity between Software as a Service (SaaS) and cloud services providing

security for accessing on-premises systems behind firewall and provides solution to cloud

silos by integrating cloud-based services with each other and with on-premises systems in

a hybrid integration model.

According to [10], CloudHub is the fist iPaaS that offers complete solution to the

requirements of robust connectors for SaaS and cloud services with the ability to quickly

add more new services, it also answers the requirements of robust core integration the

demands such as high availability, reliability and security. Combining CloudHub together

with integration solution such as Mule ESB, Anypoint Studio and API Manager provides

an unified connectivity platform to create integration system. The following section listed

some advantages and disadvantages of using iPaaS as according to [25].

Pros

• Support modern messaging and document formats such as JSON and REST.

• Internet of Things (IoT) enabled.

130

• Easy to use self-service connection tools and allow user to easily integrate data from

two applications/systems.

• Agility, scalability, reduced IT overhead, economies of scale.

• Efficiency and consistency

Cons

• Security concerns on public cloud. Data operations are complexed which requires

special development resources.

• Questionable compliance profile as stakeholders outside the realm of IT unknowingly

configure integrations that do not meet the compliance standards of regulated data

such as PII (Personally Identifiable Information), PHI (Personal Health Information),

or PCI (Payment Card Industry).

6.4.2 Enterprise Services Bus

Enterprise Service Bus is an infrastructure that implements communication system to en-

able SOA (Service-Oriented Architecture) by acting as an intermediary layer of middleware

through which a set of systems/services are made available. ESB provides great flexibility

due to its responsiveness and adaptiveness. Changes made can be managed and applied

both dynamically and easily without affecting systems in operation. Integration occurs in

real time which eliminates lengthly integration of the systems [35].

One of the main advantages in using Enterprise Service Bus is because of its loosely

coupled characteristic. Services are communicating with each other via this Bus instead of

using point-to-point communication which is much more complex when the system grows.

During this work, a few of the ESB concepts are taken into consideration for the integration

implementation.

131

In terms of disadvantage, Enterprise Service Bus is used as central communication chan-

nel which transfers and converts data of one system to another. This is one disadvantage of

using ESB as it create a single point of failure which can potentially bring down the entire

communication. The following describes the infrastructure of ESB as shown in Figure 6.3

11.

Figure 6.3: ESB infrastructure

Invocation

Invocation is the ability to send requests and receives responses from integration services

and integrated resources. ESB supports web service communication such as SOAP, WSDL,

UDDI and WS-* family [35]. ESB must also be able to handle underlying protocols such

as TCP, UDP, HTTP, SSL. Java Message Service (JMS) API, and J2EE connector Ar-

11http://d3s.mff.cuni.cz/seminar/download/2006-03-14-Kapova-ESB.pdf

132

chitecture (JCA) need to be implemented in order to integrate with Message-Oriented

Middleware (MOM) system and application servers [35].

Routing

The ability to determine the destination when sending the message. Routing is an essential

feature of ESB because it enables decouple between the source and the destination of the

message. URI is the common standard for addressing [35].

Mediation

Refers to all transformations and translations including transport protocol, message format

and message content between resources. Since applications often do not agree on the

common data formats, the transformation is therefore very important.

Adapter

ESB provides a number of application adapters. These adapters are connected to the

native transaction interface, API and data structures that the applications exposed. By

using the prefabricated adapters, the work for integrating applications into SOA can be

reduced.

Security

ESB must provides a way of routing messages securely. This means ESB must be able to

encrypt and decrypt the content of the message. Handle authentication and access control

for messaging endpoint and use secure persistence mechanism.

Management

ESB must provide some sort of monitoring infrastructure and integration scenario, such as

audit and logging [35].

133

Process Orchestration

ESB might include the engine for executing business process described with the Web Ser-

vices Business Process Execution Language (WS-BPEL) [35]. The engine is controlled by

the process description and then coordinates the collaboration of the services connected to

the bus.

Complex Event Processing

Asynchronous message can be seen as an event when using a publish-subscribe channel.

Therefore, ESB may include some mechanisms for event interpretation, event correlation

and event pattern matching which enable event-driven architectures [35].

Integration Tooling

Graphical design-time tooling, deployment and testing tool should be available for profes-

sional ESB development [35].

6.4.3 Microservice

Microservices is a newly emerged architecture with a large complex software application

consisting of one or more smaller services. It is the architectural approach to develop a

single application that consists of multiple smaller service [30]. Each of these small ser-

vices represents a small business activity and focuses on completing that business activity

only in order to perform it well [26]. Microservices are loosely coupled and can be de-

ployed independently, also Microservice can be written in any programming language and

are communicating with each other using APIs such as Representational State Transfer

(REST). The following describes some of Microservices common characteristics.

134

Loosely coupled

This is an essential characteristic of Microservices. The developer needs to be able to deploy

a single Microservice independently. This loosely coupling characteristic enables frequent

and rapid deployments and therefore getting a much needed features and capabilities to

the consumers [26].

Small and focused

There are no rules or guidelines on how small a Microservice needs to be, but one essential

thing to remember is that Microservices need to focus and reflect on business activity [26].

Microservices need to be small enough to make sure that developers are able to easily

rewrite and maintain the entire structure of Microservices [26].

Language-neutral

According to [26], Microservices need to be created using the correct tool. Microservices

together composed a large and complex application/system but they do not need to written

in the same language. For example, one Microservice might be written in Java as the correct

language but another Microservice might be written in Python.

Bounded context

This means that one microservice does not need to know about the underlying implemen-

tation of other microservices surrounding it.

However, Microservices do have some drawbacks. The distribution systems are diffi-

cult to achieve and program due to its remote calls that are slow and always at risk of

failure [30]. Consistency maintenance is very difficult for the distributed system and a ma-

ture operations team is required in order to manage a large amount of services to reduce

operational complexity [30].

135

Based on the collected data, Microservices is not taken in the design decision. Microser-

vice is a relatively new technology which requires a deeper knowledge and understanding

in order to successfully implement and deploy into the business model. Despite being a

powerful technology offering advantages that are desirable for business activities including

loosely coupled. Changing from monolith system to Microservice is a very challenging and

difficult task.

Microservices require rapid provisioning which means it is design to handle failures such

as network becomes unavailable or the service is down and that if the failures do occur, the

system should get back up and running in short period of time. Another requirement is

that each service in Microservices should manage its own data, it simply means that each

service will need to have its own database and that one service cannot directly access data

which belongs to another service.

If Microservices is deployed then Enterprise Service Bus (ESB) is not needed since

one of Microservice principles is smart endpoints and dump pipes. It implies that all the

capabilities should be located at the endpoint where it is most needed instead of locating

them on the Enterprise Service Bus. And if ESB is chosen, then Microservices cannot be

deployed.

But probably the most important principle in Microservices is that each service should

be replaceable, upgradeable and deployable independently without any other systems.

When a service is replaced, it should not affect other services so that they can continue to

function properly.

6.4.4 Integration platform: Mulesoft ESB

Mule is a lightweight Java-based Enterprise Service Bus (ESB) which also is the integra-

tion platform that easily and quickly connects applications together and allows them to

exchange data with each other [19].

According to [19], no matter what kind of different technologies the application use

136

(JMS, Web Service, JDBC, HTTP and more), Mule will allow for easy integration. The

ESB can be deployed anywhere, integrate and orchestrate events in real time or in batch,

and it also has universal connectivity.

Mule as ESB is the integration platform that enables businesses to connect with appli-

cations/systems anywhere. The platform allows data to be synchronized across numerous

applications and services [19]. Instant API connectivity to hundreds of applications allows

businesses to leverage their Anypoint Connectors to integrate data from several applica-

tions, databases, and systems and make sure data synchronization and data consistency

are achieved across the entire enterprise, and separate business logic from messaging to

enable location-independent service call. Mule as ESB is also capable of routing, filter-

ing, aggregating and re-sequence messages based on the content and rules and exchanging

the data formats across various transport protocols [19]. The powerful capacities of Mule

ESB allows services to be exposed and hosted as reusable using ESB as lightweight service

container [19].

137

7 Implementation results

This section presents the results of the prototype implementation in section 6. The results

will be presented for each of the integration steps, as well as for the overall integration.

7.1 Result of product data transfer

WooCommerce database contains a huge amount of product data. For the purpose of test

scenarios, 6994 products are imported into WooCommerce database using the importer.

The adapter connects itself to WooCoomerce system via WooCommerce REST API and

the service for retrieving product data sends request for product data. The result of the

request is the response that contains product data in JSON format, however only a small

amount of product data is provided depending on the specified size of per page parameter

passed into the service. When transferring any types of data, the adapter is designed to

only retrieve and transfer a small amount of data at a time to avoid exhausting the machine

resource. After retrieving the product data, the data attributes of each product data is

mapped to the corresponding data attributes of product data inside POS system. Some

of the product data attributes do not have the corresponding data attributes inside POS

system and therefore are discarded. The adapter connects to POS system and transfer the

mapped product data.

The result shows all 6994 product are successfully transferred and available in Cash

IT database to be used in POS system. At this point, both systems contain exactly the

same product data, the only difference is the number of data attributes inside product data

entity in respective systems.

7.2 Result of customer data transfer

Since the two systems also have different data structures for customer data to be exchanged,

the customer data are retrieved from WooCommerce database by the customer data re-

138

trieval service inside the adapter. Also, only small amount of customer data is retrieved

at a time for the same reason as product data. The retrieved data are mapped into the

corresponding customer data attributes of POS system by the customer data mapping

service. As for product data attributes, some of the customer data attributes can not be

mapped since they do not have the corresponding customer data attributes in POS system,

so they are discarded as well. The adapter then connects to POS system and sends these

small amount of customer data to POS system. The adapter continues to retrieve, map

and transfer the new set of customer data to POS system until there are no customer data

to be transferred.

The result of this transfer shows all customer data being successfully transferred to

the Cash IT database and contains the same set of customer data as WooCommerce. The

customer data attributes in POS system shows the properties of each customer including

name, address, email, phone number etc. As for product data, the only difference between

the customer data in the two systems is the number of data attributes.

7.3 Result of order data transfer

The request for order data is sent from the adapter that is connected to WooCommerce

database using WooCommerce REST API. 10 order data objects are returned as the result

of the request since the default number of order data to be retrieved is set to 10. These

data objects are mapped with respect to the corresponding data attributes of POS system

and transferred to POS system. Some of the data attributes are discarded since no cor-

responding data attributes exist in POS system. The transferred data are authorized by

POS system before being stored into Cash IT database. The result shows all order data

from WooCommerce being successfully transferred to POS system, each order data object

contains the mandatory data attributes needed in order for POS system to work properly,

this is the job for the mapping service to correctly map the data attributes. At this point,

both systems contain identical number of order data but only differ in the number of data

139

attributes in each order data object. Each order data object in Cash IT database contains

the mandatory data attributes that were transferred from WooCommerce system. The

result of the existence of these order data objects inside POS system allows the order data

to be retrieved directly by the system from its database.

7.4 Result of order data update

When changes are made on order data within POS system, the order data in WooCommerce

system must be updated as well. The adapter is specifically designed to handled such

scenario. The changes on order data that occurs inside POS system are notified by Cash

IT notification service that provides the information about the changed order data object.

The updating service inside the adapter uses the affected id included in this information to

retrieve the order data object. The retrieved data in turn contains the id that points back to

the order data object inside WooCommerce and updates it based on this very information.

To complete the updating process, the service sends the request to WooCommerce system

which includes the data to be updated and the id of the affected order data object indicating

which order data object is to be updated. Depending on the number of data attributes

to be updated, the result presents the order data attributes being updated. In common

case, the order data attributes that are updated are order status, date of modification,

date of payment and date of order completion. Figure 7.1 shows the sequence diagram of

the process for updating WooCommerce order data.

140

Figure 7.1: Sequence diagram of WooCommerce order data update

7.5 Result of product data update

Following the order data update, it is possible that customers will purchase more products

inside the store. These additional product items are handled by the POS system by sim-

ply adding them into the existing order. Then, it is the adapter task to also update the

additional products in WooCommerce system. Based on the number of added products,

the product updating service goes through all of them and extracts the data attributes

including quantity ordered and date of latest modification. Depending on the number of

ordered quantity of the product, the service updates the quantity data attributes by sub-

tracting the current quantity with the ordered quantity. The date of the latest modification

is simply set to the current date where the actual update occurs. The product updating

141

service includes this updated data and the id of the product to be updated into the request

and send it in the same manner as the order updating service to WooCommerce system.

The result of this updating process presents the quantity of the updated product being

automatically reduced by number of the quantity ordered from inside the physical store,

with the date of last modify set to the date and time in which the actual update took

place.

7.6 Result of customer data update

The adapter is able to perform update of customer data in POS system after changes

are made to customer data in WooCommerce system. Whether there are changes in cus-

tomers first name, last name or addresses, the adapter is able to retrieve and update these

changes with ease. The result of updating customer data presents the two systems contain

the identical customer data attributes. The date of modification is automatically set by

WooCommerce and POS systems.

142

8 Discussion

In completing this work, the analysis results has shown that retailers are making thier

moves in finding the strategies to fulfill the shopping demand from thier customers. We

learned that the nature of Omni-channel retail is more about customer and not retailer,

customers are now the ones who have the power to make request and demand convenient

shopping experience from retailers. Retailers response to the demand by making offers

or implementing strategies such as store pickup to live up to the expectation from thier

customers and importantly, to stay competitive in the market. However, careful business

decision must be taken into consideration when making any changes or business trans-

formation. Due to the increasing demand from customers, mistakes are commonly made

when rushing the decision making process.

The downside of lacking the information from customer interviews had make the data

analyzing process of this work less completed. Vital pieces of information were missing for

the analysis process which impacts the outcome results. The analysis result that answers

the first research question is not strong enough to be used as the decisive business making

decision. A potential different, stronger and more data driven answer could have been

obtained if we can get our hands on those vital piece of information from the customers

and make the analyzing process more completed.

Another interesting aspect of Omni-channel retail is store pickup strategy. We believe

breaching the gap between online and offline channels is one of several strategies that re-

tailers could adopt to response to customer demand. In fact, this is the approach towards

Omni-channel retail. With store pickup, retailers allow customers the flexibility to shop.

Customer is able to purchase from online channel and pickup thier purchase using offline

channel in the form of physical store. As proof of Omni-channel concept, a prototype

adapter is designed and implemented. The result of the implementation provides an inte-

grated system that combines both online and offline channels and in the process making

store pickup possible. The challenge of implementing store pickup lies in the synchroniza-

143

tion between the two channels. The channels need to be synchonized and work together

quick enough to provide the same data to the customers. This means work is required in

both front- and back-end of the systems. Failing to do so would result in bad shopping ex-

perience and frustration amongs customers, which in turn could result in losing customers

to other competitors. However, store pickup is the initial step towards full Omni-channel

retail as there exist several strategies in which retailers can used to approach Omni-channel

retail. Other commonly used strategies include showing product availability in store on the

website and the option of purchasing online and return in store which will help retailers

moving closer to full Omni-channel retail.

144

9 Conclusion

This work is divided into tow main phases: analysis phase and implementation phase. The

analysis phase focused on finding answers to the study questions while the implementation

phase provides the proof of concept of Omni-channel by integrating an online channel with

an offline channel. The main objective of this thesis is to analyze the retailers requirements

in staying competitive on the market and the architecture of E-commerce platforms in order

to choose the suitable one for the integration with Cash IT POS system which is the proof

of concept towards Omni-channel retail. The objective of the integration is to create an

Omni-channel retail in order to provide seamless and consistent shopping experience to

customers.

Data were collected from companys employees via interviews and analysis technique was

used to analyze the collected data. Thematic analysis technique was used for the process

of analysis the collected data. SAAM was used as the architecture analysis method on

E-Commerce architecture which was performed in order to find a suitable platform for the

integration.

The obtained analysis results from the analysis phase provide answers to the study

questions which indicate that retailers are looking for strategies to fulfill thier customer

requirements as their purchasing demand continues to increase. The analysis results further

show that WooCommerce as an E-commerce platform is most sutiable for the integration

out of the three considered platforms.

However, the analysis result answering the first research question is not strong enough to

be used as the decisive business making decision since there are vital pieces of information

from the customers missing which potentially and likely to provide a different, stronger

and more data driven answer to the first reserach question.

As a proof of concept of Omni-channel, a prototyp is developed and implemented to

integrate POS system with WooCommerce. The design of the prototype involved the trans-

fer of three data types, product data, customer data and order data. The design consisted

145

of two key components, REST APIs and Adapter. REST APIs are responsible for com-

munication between systems and is used as communication channels between the adapter

and the two systems. The adapter contained a number of modules and services which are

cooperated to perform the integration tasks. The services inside the adapter were created

separately to be used for both WooCommerce and POS systems. Each module involved

the process of retrieving, mapping and transferring data as required for the integration.

The implementation result provides an integrated system that seamlessly combines

online and offline channels regarding the concept of local pickup as part of Omni-channel

strategy. It is worth pointing out that there are several strategies which can be taken to

move towards Omni-channel. This work only provides information and demonstrates an

initial approach in the form of local pickup towards Omni-channel, there is still long way

to go and good amount of work need to be done in order to reach the level of completed

Omni-channel retail.

146

9.1 Future work

During the thesis, there were some ideas and strategies that emerged. The current pro-

totype is only capable of handling a simple product type of WooCommerce system.

WooCommerce offers four different types of product to be used in online store and they are:

simple, grouped, external and variable. Retailers will most likely to sell different types

of product in order to offer their customers more shopping options and to increase sale.

Therefore, the future work involves the potential extension of prototypes functionality by

introducing new services to handle different types of WooCommerces product.

On the other side, Cash IT REST API can also be extended by introducing new data

entity like product tag and allow user to access its resource inside POS system. The

product tag is considered as the potential element that enables the ease of use for store

personal. It will help searching for the products which are tagged with the given product

tag.

147

References

[1] Architectural layers overview. https://devdocs.magento.com/guides/v2.0/

architecture/archi_perspectives/ALayers_intro.html. Accessed: May 2, 2018.

[2] Core features & select extensions available for woocommerce. https://woocommerce.
com/wp-content/uploads/2016/06/woocommerce-core-2-6.pdf. Accessed: May
11, 2018.

[3] Domain layer. https://devdocs.magento.com/guides/v2.0/architecture/

archi_perspectives/domain_layer.html. Accessed: May 3, 2018.

[4] Ease of frontend customization. https://devdocs.magento.com/guides/v2.0/

architecture/frontend_custom_strategies.html. Accessed: May 5, 2018.

[5] Evaluating a software architecture.

[6] Extensibility and modularity. https://devdocs.magento.com/guides/v2.0/

architecture/extensibility.html. Accessed: May 3, 2018.

[7] Global features that support extensibility. https://devdocs.magento.com/guides/
v2.0/architecture/global_extensibility_features.html. Accessed: May 5,
2018.

[8] Implementing system-quality attributes. https://msdn.microsoft.com/en-us/

library/bb402962.aspx. Accessed: June 17, 2018.

[9] Introduction to the magento 1.x rest api. http://devdocs.magento.com/guides/

m1x/api/rest/introduction.html. Accessed: March 18, 2018.

[10] ipaas: Integration for the cloud. https://www.mulesoft.com/resources/cloudhub/
ipaas-integration-platform-as-a-service. Accessed: May 10, 2018.

[11] Omnichannel retail brands increase revenue 28% via ecommerce presence. https://

www.bigcommerce.com/blog/ecommerce-presence-increase-revenue/. Accessed:
June 15, 2018.

[12] Persistence layer. https://devdocs.magento.com/guides/v2.0/architecture/

archi_perspectives/persist_layer.html. Accessed: May 3, 2018.

148

https://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/ALayers_intro.html
https://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/ALayers_intro.html
https://woocommerce.com/wp-content/uploads/2016/06/woocommerce-core-2-6.pdf
https://woocommerce.com/wp-content/uploads/2016/06/woocommerce-core-2-6.pdf
https://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/domain_layer.html
https://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/domain_layer.html
https://devdocs.magento.com/guides/v2.0/architecture/frontend_custom_strategies.html
https://devdocs.magento.com/guides/v2.0/architecture/frontend_custom_strategies.html
https://devdocs.magento.com/guides/v2.0/architecture/extensibility.html
https://devdocs.magento.com/guides/v2.0/architecture/extensibility.html
https://devdocs.magento.com/guides/v2.0/architecture/global_extensibility_features.html
https://devdocs.magento.com/guides/v2.0/architecture/global_extensibility_features.html
https://msdn.microsoft.com/en-us/library/bb402962.aspx
https://msdn.microsoft.com/en-us/library/bb402962.aspx
http://devdocs.magento.com/guides/m1x/api/rest/introduction.html
http://devdocs.magento.com/guides/m1x/api/rest/introduction.html
https://www.mulesoft.com/resources/cloudhub/ipaas-integration-platform-as-a-service
https://www.mulesoft.com/resources/cloudhub/ipaas-integration-platform-as-a-service
https://www.bigcommerce.com/blog/ecommerce-presence-increase-revenue/
https://www.bigcommerce.com/blog/ecommerce-presence-increase-revenue/
https://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/persist_layer.html
https://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/persist_layer.html

[13] Presentation layer. https://devdocs.magento.com/guides/v2.0/architecture/

archi_perspectives/present_layer.html. Accessed: May 2, 2018.

[14] Security overview. https://devdocs.magento.com/guides/v2.0/architecture/

security_intro.html. Accessed: May 5, 2018.

[15] Semi-structured interview. http://evaluationtoolbox.net.au/index.php?

option=com_content&view=article&id=31&Itemid=137. Accessed: Februari 12,
2018.

[16] Service layer. https://devdocs.magento.com/guides/v2.0/architecture/archi_
perspectives/service_layer.html. Accessed: May 2, 2018.

[17] Smartphones brought huge changes to shopping in 2017. https://nordic.

businessinsider.com/mobile-shopping-exploded-this-year-2017-12?r=US&

IR=T. Accessed: May 10, 2018.

[18] Storefront customization strategies. https://devdocs.magento.com/guides/v2.0/

architecture/storefront_customization.html. Accessed: May 5, 2018.

[19] What is mule esb? https://www.mulesoft.com/resources/esb/what-mule-esb.
Accessed: February 23, 2018.

[20] The retail paradigm has changed: Smart retailers are engaging in cross- channel
marketing. http://docs.media.bitpipe.com/io_10x/io_107484/item_648720/

FrostSullivan_TheRetailParadigmhasChanged_January2013.pdf, Januari 2013.
Accessed: March 14, 2018.

[21] Magento enterprise vs magento community edition which one is right for you? https:

//www.rishabhsoft.com/blog/magento-enterprise-or-community-edition,
April 2017. Accessed: March 18, 2018.

[22] PerOlof Bengtsson. Design and evaluation of software architecture. 1999.

[23] Isaiah Bollinger. Magento and woocommerce comparison. The Trellis Blog, October
2017. Accessed: February 18, 2018.

[24] Virginia Braun and Victoria Clarke. Using thematic analysis in psychology. Qualitative
research in psychology, 3(2):77–101, 2006.

[25] Soumitra Chakraborty. ipaas integration platform as
a service for beginners. https://www.appseconnect.com/

ipaas-integration-platform-as-a-service-for-beginners/, 2017. Accessed:
May 10, 2018.

149

https://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/present_layer.html
https://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/present_layer.html
https://devdocs.magento.com/guides/v2.0/architecture/security_intro.html
https://devdocs.magento.com/guides/v2.0/architecture/security_intro.html
http://evaluationtoolbox.net.au/index.php?option=com_content&view=article&id=31&Itemid=137
http://evaluationtoolbox.net.au/index.php?option=com_content&view=article&id=31&Itemid=137
https://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/service_layer.html
https://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/service_layer.html
https://nordic.businessinsider.com/mobile-shopping-exploded-this-year-2017-12?r=US&IR=T
https://nordic.businessinsider.com/mobile-shopping-exploded-this-year-2017-12?r=US&IR=T
https://nordic.businessinsider.com/mobile-shopping-exploded-this-year-2017-12?r=US&IR=T
https://devdocs.magento.com/guides/v2.0/architecture/storefront_customization.html
https://devdocs.magento.com/guides/v2.0/architecture/storefront_customization.html
https://www.mulesoft.com/resources/esb/what-mule-esb
http://docs.media.bitpipe.com/io_10x/io_107484/item_648720/FrostSullivan_TheRetailParadigmha sChanged_January2013.pdf
http://docs.media.bitpipe.com/io_10x/io_107484/item_648720/FrostSullivan_TheRetailParadigmha sChanged_January2013.pdf
https://www.rishabhsoft.com/blog/magento-enterprise-or-community-edition
https://www.rishabhsoft.com/blog/magento-enterprise-or-community-edition
https://www.appseconnect.com/ipaas-integration-platform-as-a-service-for-beginners/
https://www.appseconnect.com/ipaas-integration-platform-as-a-service-for-beginners/

[26] Shahir Daya, Nguyen Van Duy, Kameswara Eati, Carlos M Ferreira, Dejan Glozic,
Vasfi Gucer, Manav Gupta, Sunil Joshi, Valerie Lampkin, Marcelo Martins, et al.
Microservices from Theory to Practice: Creating Applications in IBM Bluemix Using
the Microservices Approach. IBM Redbooks, 2016.

[27] Liliana Dobrica and E Niemela. A strategy for analysing product line software archi-
tectures. VTT PUBLICATIONS, 4(2):7, 2000.

[28] August Ejnarsson. Omnichannel development within the swedish fashion retail indus-
try, 2016.

[29] Simon Eskildsen. Shopify’s architecture to handle 80k rps celebrity sales. In GOTO
Copenhagen 2017, October 2017.

[30] Martin Fowler. Microservices resource guide. Martinfowler. com. Web, 1, 2015.

[31] Dennis Herhausen, Jochen Binder, Marcus Schoegel, and Andreas Herrmann. Inte-
grating bricks with clicks: retailer-level and channel-level outcomes of online–offline
channel integration. Journal of retailing, 91(2):309–325, 2015.

[32] Alexander Hübner, Andreas Holzapfel, and Heinrich Kuhn. Distribution systems in
omni-channel retailing. Business Research, 9(2):255–296, 2016.

[33] Shazia Jamshed. Qualitative research method-interviewing and observation. Journal
of basic and clinical pharmacy, 5(4):87, 2014.

[34] Urban Lindstedt. Därför ökar woocommerce bland mindre e-butiker. internetworld,
Februari 2016. Accessed: February 18, 2018.

[35] Falko Menge. Enterprise service bus. In Free and open source software conference,
volume 2, pages 1–6, 2007.

[36] M Miva and B Miva. The history of ecommerce: How did it all begin? on-
line] http://www. mivamerchant. com/blog/the-history-of-ecommerce-how-did-it-all-
begin (accessed 31 July 2015), 2011.

[37] Istvn Nyri. Magento commerce: History and features of the most popular ecommerce
platform. aionHill, November 2016. Accessed: February 18, 2018.

[38] Linda Staflund and Malin Kersmark. Omni-channel retailing: Blurring the lines be-
tween online and offline, 2015.

[39] Brian Walker. Why multichannel retail is obsolete, 2012.

[40] Yongqing Wang and Yuliana Shi. Analysis on the integration of erp and e-commerce.
In AIP Conference Proceedings, volume 1864, page 020137. AIP Publishing, 2017.

150

[41] Daniel Wolf. Console progress bar. https://gist.github.com/DanielSWolf/

0ab6a96899cc5377bf54. Accessed: April 12, 2018.

151

https://gist.github.com/DanielSWolf/0ab6a96899cc5377bf54
https://gist.github.com/DanielSWolf/0ab6a96899cc5377bf54

	Introduction
	Problem statement
	Objective
	Contribution
	Thesis structure

	Background
	Omni-channel Retail
	E-commerce platform
	Magento
	WooCommerce
	Shopify

	Cash IT Point-Of-Sale (POS)

	Related work
	Study protocol
	Research questions
	Importance of research questions
	Methodology
	Data gathering
	Thematic analysis

	E-commerce platform architecture analysis

	Results
	Results from Thematic analysis technique of interview data
	Results of E-commerce platform architecture analysis

	Prototype development and implementation
	Design
	Cash IT REST API
	WooCommerce REST API
	Adapter

	Data transfer
	Product data transfer module
	Customer data transfer module
	Order data transfer module

	Data update
	Order data update
	Product data update

	Possible integration
	Integration platform as a service (iPaaS)
	Enterprise Services Bus
	Microservice
	Integration platform: Mulesoft ESB

	Implementation results
	Result of product data transfer
	Result of customer data transfer
	Result of order data transfer
	Result of order data update
	Result of product data update
	Result of customer data update

	Discussion
	Conclusion
	Future work

	References

