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ABSTRACT 

 

Some organizations routinely (e.g., monthly) process tens of thousands of flat 

files, files consisting of records containing a fixed number of fields, received from third 

parties.  Currently, the process of characterizing each file’s encoding, formatting 

elements, structure, and content is a manual process, expensive in that the process costs 

human time, delays processing the files, and is error prone.  This dissertation provides 

methods for automatically inferring the specified meta data associated with these files. 

In order to mine, persist, transform, or in some other way process structured data 

contained within a flat file, the properties associated with a file must first be known.  

Within this paper, the identification of these properties will be referred to as the layout 

inference problem, where a layout is a specification of the characteristics associated with 

a file.  Typically a manual task, layout inference can benefit from an automated tool 

designed to replace or assist human involvement in this process. 

In defining the result of this process, the layout, the first step is to identify the 

properties to be inferred.  These characteristics are requisite to read and process the 

contents of a file and include but are not necessarily limited to:  the schema of the data 

records contained within a file, the character encoding, and other formatting details.  

Thus layout inference is concerned with providing an encompassing description of a file 

rather than a single characteristic (e.g., only the character encoding).  Once available, the 

final step in the layout inference problem is to communicate the produced layout in a 

meaningful manner to any interested parties. 



The approach to this problem described in this paper is primarily statistical in 

nature.  Statistical solutions, while potentially more ambiguous, can be considered to be 

better than other solutions because they are more adaptive:  gracefully handling a limited 

amount of error and incomplete information along with many unforeseen circumstances.  

Another important characteristic of the approach detailed herein is a conglomeration of 

expert agents.  These agents provide the means for identification of the file properties as 

each agent is an expert concerning a respective property.  By applying their respective 

knowledge in various ways, as appropriate with respect to the property being determined, 

the various layout characteristics may be inferred.  Together the statistical results of 

expert knowledge agents provide a powerful approach to solving the layout inference 

problem. 

The applicability of this approach towards the layout inference problem will be 

shown through results generated by an implemented prototype.  These results will 

indicate the prototype’s performance (i.e., accuracy and run time) with respect to a 

representative set of data files; consequently showing the ability of the defined approach 

and the promise related to certain areas of future work. 
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1.  INTRODUCTION 

1.1  Problem Definition 

A common practice when transimitting data stored in a database is to pull the data 

and save it to a flat file in order to facilitate the transfer.  In this situation the records 

stored in the file mirror those existing in the database.  While this procedure is common 

to many organizations on a smaller scale, some organizations can receive up to tens of 

thousands of files from third parties each month for processing (e.g., customer lists).  

Often, the format of these files is unknown, partially known, or miscommunicated and as 

a result humans must examine each file manually in order to identify and specify a 

format.  As proper extraction of the data contained within the file is the desired result, 

this step must be perfomed before any further processing can be performed.  Even if a 

format is pre-specified, it is not uncommon for these format definitions to be incorrect or, 

in the case of monthly transmissions of the same file, to change unexpectedly.  For many 

organizations, but especially those that aggregate data from dozens or even hundreds of 

data sets, identifying the layout of incoming data files is a time critical task.  Considering 

this, and also that the job of characterizing files is expensive with respect to time, human 

intensive, and error prone; an automated program that can flexibly read files and assign 

layouts would be very beneficial.  Even if standards specifying the transfer of data were 

to be developed and improved, many organizations may not use them causing the 

problem of determining file layouts to endure. 

As suggested, the layout inference problem is the process of determining 

previously unknown structural and formatting properties of a structured (i.e., schema-

based) data file from an existing set of potential attributes and reporting those 



 2 

characteristics:  converting an undefined file into a well-defined file.  For this problem, a 

structured data file is a file containing consistently formatted, sequential records of data.  

The structure and data descriptors of the file are a consequence of the records contained 

within the file.  Furthermore, the records are built from fields of data.  Each field is 

defined by a positional element and a type label.  Beyond these structural components, 

there are certain formatting elements associated with a file whose recognition is also part 

of the layout inference problem; specifically the character encoding and delimiters.  

Distinct from the record data, these items are nonetheless important, enabling data to be 

correctly read and extracted from a file.  From the perspective of this problem, 

recognition of these elements is what differentiates an undefined file from a well-defined 

file.   

Where general structured files can contain repeated subsequences of records, flat 

files are a restricted subset of structured files which contains only fields and not 

hierarchies of repeated groups of fields.  The layout inference problem is restricted to flat 

files.  Often, files of this type are produced when entities exchange data between 

databases.  In this situation, the records contained within a database are dumped to a flat 

file which retains the existing structure.  Once the file is created, it is transmitted to 

another party where the records must be parsed from the file before being processed.  

When the layout is unknown or miscommunicated, the receiving party must perform 

layout inference. 

Given a flat file as input, often pulled from some database, the layout inference 

problem seeks to identify certain structural and formatting elements and reports them in 

an understandable manner.  The formatting properties include the character encoding and 
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delimiters.  The structural properties include the records and fields along with their 

corresponding descriptive elements:  length for records and position and type label for 

fields.  Identification is constrained to a predefined list of possible values for each 

property (e.g., only certain delimiters and only certain field types are considered).  While 

each constraint may be expanded such that the supporting lists handle additional 

eventualities, this problem assumes the properties to be inferred are predefined.  Once the 

layout has been inferred, the final step is to output the report in a manner understandable 

within the context it is used.  This means that it must be both easily readable (e.g., 

formatted text for humans or a well structured document such as XML for machine 

processing) and also must contain enough information such that it is possible to ascertain 

how the results were derived (i.e., an inclusion of the evidence used to infer the layout 

properties).  From input to output, this provides an introductory definition of the layout 

inference problem discussed in this paper. 

The layout inference problem is not appropriate for all types of data.  Files of free 

text, those containing well-formatted structural elements such as XML tags, and binary 

data are examples of incongruous data.  Layout inference is unsuitable for free text as it 

relies on consistency within the data and also because the approach taken for tokenization 

is necessarily different since whitespace and punctuation, the normal characters used for 

tokenization, play a different role for this problem.  This puts it at direct odds with the 

problem of identifying information within free text.  The problem of correctly 

representing files containing structural elements such as XML tags is also different than 

this problem.  While there can be consistency in such a file, it is not guaranteed; also 

tokenization is simplified through the existence of the formatting tags and layout 
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inference is unnecessary.  The last example, binary data, is also not associated with the 

layout inference problem.  While it is possible that common types of binary data such as 

multimedia could be recognized, the many proprietary types and forms binary data can 

assume make it unlikely that a general solution might be achieved.  After a brief 

description of what the layout inference problem is, these examples are representative of 

what layout inference is not. 

Solving the layout inference problem is typically a highly manual task as no 

known automated solution exists.  Often, existing tools will pull a sample of data 

allowing a human user to identify any file properties.  As this can be a mundane process, 

requiring unnecessary amounts of time, the intent of this research effort is to describe the 

means by which to automate a solution – see Figure 1.  This solution must be able to 

identify various attributes normally associated with a layout and identified by a human:  

properties that make the data within the file accessible to other processes.  This is 

important as layout inference is rarely an end in itself, often serving as the beginning of a 

sequence of processes which may include, among others: data hygiene, data mining, or an 

extract, transform, and load (ETL) sequence [2]. 
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Figure 1:  Visual depiction of the layout inference process:  both manual (left) and automated (right). 

For the described problem, three common types of files are considered, files 

which will be designated as fully delimited, fully fixed, and hybrid.  As the terms 

indicate, the types of delimiters present, or not, in the file determine the type of file.  A 

delimiter is a character, or group of characters acting as a unit, that designate boundaries 

between data entities.  Understanding the different file formats associated with this 

problem is important as it affects how the layout is inferred. 

Fully delimited files contain delimiters separating the fields, field delimiters, 

within the records and also the records themselves, record delimiters.  Figure 2 depicts a 

fully delimited file as it would be seen in a basic text editor with commas as field 

delimiters and the carriage return, line feed combination as record delimiters. 

 

Figure 2:  A fully delimited file as viewed in a text editor. 
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Figure 3:  A fully fixed file as viewed in a text editor. 

 

Figure 4:  A hybrid file as viewed in a text editor. 

Fully fixed files contain no delimiters.  This file type requires that the fields and 

consequently the records to be fixed in length (i.e., always a predefined number of 

characters).  With no delimiters, each record is immediately adjacent to the preceding and 

following records and when viewed in text editor appears to have no structural formatting 

at all, see Figure 3. 
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A combination of these two, hybrid files are the third type of file considered.  This 

representation contains characteristics common to both types of files (i.e., fixed length 

fields and records and a record delimiter), see Figure 4. 

With respect to the layout inference problem, the proposed solution described 

herein is a statistical approach.  This approach is well suited to this problem, a fact made 

evident when considering the data.  As suggested, often the data is pulled directly out of 

an existing database, but how was the database populated?  Coming from many sources, 

some prone to error and others generally unreliable, ensuring the correctness or validity 

of data is a problem in itself.  Consequently it is important that layout inference allow for 

errors or incomplete data that may exist in the data; thus the statistical approach.  Another 

important feature suggesting a statistical approach is the inability to perfectly model or 

describe all possible data values for recognition.  For much data, the range of possible 

values is not closed (fully known beforehand) but rather is ever expanding.  

Consequently, it is better to attempt to identify most of the common values rather than 

including those that are new or otherwise exceptional.  An example is personal names.  

Among all the possible valid values, there is a subset of widely used, common values that 

are most frequently used.  Even though this subset exists, the complete set is an open 

domain, ever expanding due to the introduction of minor variations of existing values or 

entirely unique, often foreign, values.  As the set is continually changing, it is difficult to 

completely model all the possible values.  This concept is very powerful, providing 

reliable solutions in imperfect environments. 

Within the overall statistical approach, other tools and methodologies are used to 

infer a file’s layout.  Of primary importance is the concept of an oracle.  Oracles are 
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basically expert agents tuned for the recognition of respective properties within a file, and 

thus many of the computational steps associated with layout inference rely heavily on 

them.  Once recognition is enabled via the oracles each of the individual properties 

associated with a layout are determined in an iterative manner.  Flow-of-control within 

this process is relatively straightforward only branching based on the file type 

encountered.  Because of the available delimiters in a fully delimited file, tokenization of 

the record structure is easily accomplished.  All that remains is to identify the properties 

associated with the individual fields.  On the other hand, the files with fixed length 

records, hybrid and fully fixed, field boundaries must be identified through some other 

means.  In this case “tokenization” is accomplished by utilizing the oracles in a 

combinatoric search.  Ultimately, the layout problem requires a variety of tools and 

methodologies all working together to obtain the various pieces of evidence necessary to 

best infer a file’s layout. 

At an introductory level, there are two defining assumptions associated with the 

layout inference problem:  first is that the file is structurally consistent and the second is 

that the file contains a statistically insignificant number of errors and/or amount of noise.  

To be consistent, the properties at one position in a data file must reflect the 

corresponding properties at all other points in the file.  So, for example, if a file uses one 

character encoding at the beginning and switches halfway through to another character 

encoding, the file would be inconsistent.  Also, if a field is at the beginning of one group 

of records and at the end of another within the same file, then that file would be 

inconsistent.  Inconsistency is considered separate from error or noise because it affects 

entire segments of data making it difficult to determine what is invalid and what is valid.  
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This uncertainty makes it challenging, if not impossible, to accurately represent the file as 

a whole thus rendering the output useless to later processing stages.  On the other hand, 

because the results of layout inference are based on statistical evidence, an insignificant 

number of errors and/or amount of noise are allowed for within the data.  For example, 

the presence of garbled or unrecognizable data in a few records out of many should not 

impair the layout inference results because the invalid records may be discarded or 

ignored in light of overwhelming evidence from the error free records.  Error and noise 

are viewed as generally isolated events within a file’s data.  While it is difficult to draw 

an exact distinction between inconsistency and error, the two terms are used to indicate 

that problems at the file level, referred to here as inconsistency, are more difficult to 

address than problems at the record level, error and noise.  These two assumptions are 

directly tied to the approach taken to the layout inference problem. 

Using this definition of the layout inference problem, including the stated 

assumptions, an automated approach will be described throughout the remainder of the 

paper.  This description provides solutions on how to identify the individual layout 

characteristics, detailing any further assumptions based off of the given assumptions, 

along with problems that may result and how to address them.  In identifying the various 

components to the problem and their respective solutions an encompassing theory 

representing the layout inference process will be presented.  

1.2  Thesis Statement 

The thesis of this paper is that the process of determining the layout of an 

unknown file can be automated or semi-automated, provided that enough metadata is 

available about the content of such files. This thesis introduces the layout inference 
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problem and proposes a means of implementing an automated approach for converting an 

undefined file (i.e., a flat file, a file containing only sequential records of data, for which 

none of the associated properties are known) into a well-defined file (i.e., the same file 

except with defined attributes). 

1.3  Organization of this Thesis 

Using the problem description in this chapter, the remaining chapters provide 

details about the proposed solution:  approach, implemented architecture, results, and 

conclusions.  Chapter 2 describes existing work in related disciplines. Chapter 3 provides 

a general discussion of the approach taken to address the defined problem.   Architectural 

details of the prototype that provide an implementation of the approach are given in 

Chapter 4  Implementation details are followed by Chapter 5 which contain experimental 

results and analysis obtained from the prototype.  Finally, Chapter 6 provides conclusions 

and proposes potential areas of future work.  Appendices are also provided at the end of 

the paper that provide an example of how the layout engine can be configured and file 

layout outputs generated by the engine. 
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2.  RELATED WORK 

2.1  Formal Languages 

When working with languages, one of the first steps towards recognition is 

tokenization.  Originally derived from computational linguistics, tokenization or lexical 

analysis is the process of separating data into meaningful units, tokens [3].  In the most 

common applications tokenization relies on special characters, typically some form of 

white space or punctuation, to delineate information.  Thus, this important initial step can 

be considered to be relatively straightforward. 

Layout inference also relies on tokenization in order to report the boundaries of 

data records and their comprising fields.  With layout inference, the approach to 

tokenization depends on the file type.  Fully delimited files are comparable to the types of 

data often encountered during tokenization because the available delimiters explicitly 

mark boundaries between the conceptual entities of records and fields.  This then only 

requires the normal approach to define any meaningful units.  For the other types of files 

pertinent to layout inference, hybrid and fully fixed files, a different approach must be 

taken.  In this situation whitespace and punctuation often make up the contents of a field 

rather than separating them, consequently providing different information, see Figure 5. 

 

Figure 5:  A hybrid file with identified fields. 
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This approach is further differentiated from typical forms of lexical analysis as 

identification is performed simultaneously.  Commonly, tokenization is only concerned 

with identifying where data is (i.e., boundaries) leaving identification to subsequent 

processes, but in layout inference recognition of particular types within the data replaces 

the use of whitespace and punctuation as boundary indicators.  Thus identification is a 

necessary side effect of tokenization.  Lexical analysis is one concept relating formal 

languages to layout inference, an idea expanded to meet the unique requirements of the 

layout process. 

Once a set of tokens is made available, a next step is to build an appropriate parse 

tree based on a predefined grammar [3].  This is relatable to layout inference where the 

layout (e.g., the field attributes, the record structure, and other properties that describe a 

file) can be considered a parse of a data file.  The comparison is further evinced by 

comparing an ambiguous parse tree to the single record structure chosen from many 

candidates.  In fact, the correct parse is chosen by statistical means not dissimilar to the 

process of choosing the correct parse of a probabilistic grammar [4-7].  Probabilistic 

grammars have relative weights corresponding to each associated production from which 

the correct parse is chosen.  Among potentially several instances, determining the best 

parse is dependent upon the value and structure of the sentence being examined.  If the 

fields represent the productions within a grammar, then the correct parse, record 

structure, is determined based on statistical evidence acquired during analysis.  

Considering probabilistic grammars can also lead to a discussion of grammar induction. 

Layout inference bears further resemblance to Grammar Induction (GI) which is 

the problem of producing a grammar, regular or context free and often probabilistic in 
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nature, from a set of representative sentences [8-11].  Varying approaches have been 

developed, many that require a certain amount of human interaction [9] and others that 

attempt to provide a more automated solution [8, 10].  If the records of data are viewed as 

sentences and the layout as the probabilistic productions, then, at this level, the one 

problem can easily be viewed in the terms of the other.  As corresponding details are 

considered though, differences begin to arise.  First is the availability of the initial 

sentences.  In GI, these are assumed to be ready to use whereas in layout inference, it can 

be expected that the records must first be identified and then separated.  Also important is 

allowance for error.  When an approach to GI includes error, negative examples, it is 

intentional and designated.  Otherwise the samples are assumed to be a valid 

representation of an instance conforming to the produced grammar.  Within layout 

inference, errors are not known beforehand and consequently must be handled as such.  

The inferred layout must still be correct even though the supporting data may be flawed.  

This is one of the strengths of the proposed statistical approach to layout inference.  

These examples suggest a relative commonality between layout inference and certain 

aspects of Formal Languages, yet also provide specific instances necessitating developing 

additional mechanisms for layout inference instead of these other technologies. 

2.2  Information Extraction and Named Entity Recognition 

Another discipline related to the layout inference problem is Information 

Extraction (IE); especially when it is considered via Named Entity Recognition (NER), 

an enabling sub-discipline.  IE is concerned with distilling “structured data or knowledge 

from unstructured text by identifying references to named entities as well as stated 

relationships between such entities” [11].  For the purposes of this discussion, 
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“identifying references to named entities” is achieved through NER for which the 

“objective is to identify and categorize all members of certain categories of ‘proper 

names’ from a given corpus” [13].  Most references generally restrict “proper names” to 

name, address, and place content types but in certain instances have been expanded to 

include more specific examples such as biological names [14].  Interest and research in 

this field surged corresponding to the explosion of Internet-based information sources 

where most information is stored as free text or natural language.  In order to make the 

data useful to available systems, pertinent data must be identified, extracted, possibly 

transformed, possibly cleaned, and loaded into a traditional storage medium such as a 

database.  IE is concerned with the identification and extraction stages of data acquisition 

making it possible to pull data from sources previously difficult to process. 

There are several technologies adapted to solve the NER problem, the most 

popular of which are:  Maximum Entropy, Hidden Markov Models (HMM), and Decision 

Trees.  Maximum Entropy accomplishes NER by first identifying several ‘features’ 

which are used to identify properties associated with the data [13].  Features exist as 

binary valued functions returning either TRUE or FALSE.  There are many types of 

features including:  lexical, dictionary, compound, and external system features.  During 

training the features appropriate to a particular data category are automatically selected 

and weighted by the system.  Given an input, the trained system first tokenizes the text 

and then runs the features against each token to see which features ‘fire’, or return TRUE.  

Given the resulting features and their corresponding weights for each token, a Vertibi 

search is performed to determine the most appropriate labeling, out of potentially many, 

for the tokens. 
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As Hidden Markov Models have been found to be useful in pattern recognition 

for speech recognition and NLP, they have been applied in varying ways to solve the 

problems associated with NER and consequently IE as well.  Examples of such can be 

found in [15-17].  The methodology presented in [15] provides a solution to separating 

composite fields into the individual pieces.  For example, once a data item has been 

identified as an address the system will further break it down into the house number, 

street name, city, state, etc…  The Nymble system presented in [17] is similar to the 

maximum entropy approach presented above where the text is tokenized using white 

space, punctuation, and other available formatting elements after which each token is 

assigned a label.  The difference is that a HMM is used to assign labels rather than feature 

selection.  Finally the approach given in [16] builds on these techniques to enhance 

general HMM to incorporate dictionaries and allow for groupings of tokens.  Whereas 

other approaches [13, 17] seek only to best label each individual token, the approach 

taken in [16] also considers groups of tokens, when appropriate, labeling them as a single 

unit. 

Decision trees provide yet another alternative approach to the NER problem.  The 

system described in [19] has defined three pieces of information necessary for labeling 

tokens:  part-of-speech, character type information (i.e., token lexical properties), and 

special dictionaries (i.e., look-up tables or knowledge bases).  Preceding both the training 

and testing stages these properties are determined for the corresponding data.  Once 

acquired, they are used during the training stage to build the appropriate decision tree 

which reflects the associated properties of each applicable category type.  In order to 

prevent deterministic labeling the leaves of the decision tree contain a probability 
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associated with each category type or label.  This combined with Vertibi algorithm allows 

for the scenario where the most probable label for a token is not ‘globally-consistent’ and 

instead another less probable label must be chosen.  Once the decision tree is acquired it 

is used in conjunction with the previously determined properties to label tokens during 

the testing phase. 

In comparing the problem of IE with layout inference, there is a striking 

similarity:  both are concerned with identifying important fields within textual data in 

order to define structured records.  Beyond this step, the differences in the two problems 

begin to stand out.  First, layout inference is not concerned with just field identification 

but is interested in other file properties as well (e.g., character encoding).  Also, IE begins 

by assuming that the incoming data is ready to be tokenized using expected values such 

as white space and punctuation whereas layout inference does not.  Even in fully 

delimited files (i.e., the most straightforward scenario with respect to tokenization) the 

appropriate delimiter must be identified before lexical analysis may be performed.  In 

treating a delimiter as generic punctuation, some NER approaches could potentially be 

enhanced to handle fully delimited files, providing field identification; but this is only 

one property out of many associated with a file’s layout.  Another difference involves the 

text being examined.  IE is concerned with unstructured, free text while layout inference 

is associated with files containing structured data records.  This suggests that each will 

rely on separate characteristics in order to provide identification.  IE relies heavily on 

textual clues associated with an available token and surrounding tokens (i.e., context) 

such as capitalization, punctuation, length properties, and even part of speech.  Also, due 

to the nature of the source, the Internet, structural or formatting elements such as HTML 
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or XML tags along with generic labels (e.g., “NAME:” indicating a name field) are also 

allowed for.  As layout inference works with records of data these features that are 

common within natural language are typically unavailable and are unreliable when 

available.  Thus while there is a significant correlation between these two problems, their 

respective domains remain distinct. 

2.3  Statistical Learning 

In addressing the problem of NER, the described approaches were drawn from the 

field of Artificial Intelligence which indicates that the layout inference problem might 

contain certain commonalities with statistical learning algorithms.  This is true, but only 

on a basic level.  As indicated, the process to infer a data file’s layout relies on building 

statistical evidence which in turn suggests probable characteristics and structural 

organizations associated with the file.  In the preceding paragraphs, this reasoning, 

among other similarities, relates this problem to the HMM and decision tree models used 

for NER and correspondingly probabilistic grammars.  Also, relatable is the use of 

statistical evidence within learning algorithms.  While the solution to layout inference 

presented in this paper does not make use of complete technologies available within the 

field of artificial and computation intelligence, it does rely on some of the underlying 

principles of statistical sampling.  Not using artificial neural networks, genetic 

algorithms, or kernel machines was primarily based on the fact that these tools are too 

heavyweight (i.e., training and performance) for this problem without providing likely 

improvements.  Given the provided solution, if desired, these types of technologies would 

be most appropriately applied in the task of field content type recognition, and thus the 

design architecture allows for their inclusion. 
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Besides the implementation of learning algorithms for recognition purposes, the 

statistical approach to layout inference also bears marked resemblance to several of the 

general properties found in statistical learning.  Of note is the concept of the “hypothesis 

prior.”  To reduce over fitting, complex hypothesis are generally assigned a lower prior 

probability because there are typically more complex hypothesis than simple hypothesis 

[21].  Within layout inference, this can be seen directly in the ranking of field content 

types.  In terms of layout inference, the field content types defined by limited domains, 

the simple hypothesis, are ranked higher than the field content types defined by very 

inclusive domains, complex hypothesis.  Also, the structured file assumption inherent to 

layout inference could be seen to rely on the proof of the maximum-likelihood parameter 

learning concept which provides that the statistical properties of a sample is indicative of 

the corresponding properties of all the data [22].  Similarities between these two problem 

areas are generally limited to the properties of statistics, especially with regard to data 

sampling, and do not extend to the functional concepts of dynamic algorithm and 

parameter tuning provided by learning algorithms.  The terms associated with layout 

inference, that were used for comparison (e.g., ranking and field content type) will be 

defined in the following section. 

Beyond these basic, statistical properties, there are two other features commonly 

associated with artificial intelligence that are relevant to the layout inference approach 

described in this paper.  First is the concept of search space pruning [23].  Particularly 

with respect to how the record structure is inferred, the organization of the processing 

stages is designed to filter out distracting or detrimental evidence in order to improve the 

inference process later on.  Limiting the amount of evidence to be considered helps 
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restrict any unnecessary ambiguity.  Organizing the system in stages effectively prunes 

the search space in that earlier decisions can rule out later false paths. 

The second AI concept is the use of oracles.  In the introductory remarks these 

oracles were referred to as expert agents because they are knowledgeable about particular 

domain elements.  This comparison is drawn from the fact that each oracle is a distinct 

entity and can operate independently of or in conjunction with other oracles to produce a 

desired affect.  Able to identify particular properties, each oracle can be considered to be 

an “expert” with respect to the associated attribute.  Ultimately though, these agents are 

very limited in scope and may be defined as simple reflex agents which, ignoring history, 

produce output based only on the current percept [24].  Even the system they interact in, 

while multiagent, is only minimally so as the actions they produce have little impact on 

the actions of the other oracles. 

2.4  Tabular Data Recognition 

When records of data within a file are considered as two dimensional tables of 

information, another related discipline is that of table image recognition and OCR 

processing [25-28].  Of particular interest is the problem of column identification which 

is conceptually similar to the process of determining field position in the layout problem 

and the concept of automatic table understanding, where the labels of table columns are 

recovered, which is conceptually similar to identifying field types [29, 30].  Because the 

properties corresponding to a table are identified from an associated image in tabular data 

recognition, the supporting analysis methodologies are based on image recognition and 

consequently are not directly translatable to layout inference.  In other words, this 

problem identifies records, columns, and fields by discovering the positional 
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correspondence of entries (e.g., all entries found at a single Y offset represent a record of 

data within a table, or all the entries found at a single X offset can be associated with a 

label entry found at the same X offset).  Thus any similarity is essentially conceptual as 

identification is not inferred from the actual data values. 

2.5  Text Mining 

Text mining (TM) is also a related field, if only by association.  Specifically, text 

mining may use the techniques and algorithms provided by IE and NER, among other 

areas, but the final goal is not the same [32].  Similar to data mining for structured data 

sources, text mining is focused on extracting previously unknown and unexpected trends 

or relationships from unstructured data sources [33, 34].  Also text mining is typically 

performed across a collection of texts rather than on a single document [16].  Another 

way to conceptualize the difference is that, in IE, the results identify a predefined set of 

content types, whereas in text mining, any information is to be determined from the data 

itself and is consequently not limited to finding fields of data.  Thus while text mining 

might find layout inference, just as IE, useful in identifying and extracting particular 

pieces of information from data sources that is merely the beginning of identifying trends 

in the data. 
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3.  LAYOUT INFERENCE APPROACH 

3.1  Layout Characteristics 

As mentioned in the introduction, there is a set of attributes associated with a data 

file that comprises a file layout.  Before any other characteristics can be determined, the 

character encoding must be inferred.  This provides the information necessary to interpret 

the data within the file, thus allowing further processing to be accomplished.  After 

interpreting the data, any explicit structural elements, in the form of special characters, 

may be deduced.  This also dictates how to proceed with layout inference, particularly 

which analysis steps are needed or appropriate for determining the record structure and 

which are not.  Once the record length has been determined, the records may be logically 

separated and the field properties identified.  As indicated by the suggested ordering, 

each property provides crucial evidence facilitating the inference of the remaining 

properties.  Together, this information provides much information about a file and 

consequently is grouped together as the output results. 

3.2  Initial Steps 

Given the list of properties necessary to layout inference:  character encoding, 

special characters, and record structure; the first two provide information about how to 

read the file, and thus must be identified first and in order.  Once it is known how to 

interpret the contents of the file, further processing may be accomplished to determine the 

record structure.  This is particularly significant because the existence or nonexistence of 

special characters indicates what functionality must be performed in order to be able to 

infer the record structure. 
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Due to the possible size of the files represented in this problem, exhaustive 

analysis is not desirable.  Instead, a representative sample extracted from the beginning of 

the file provides the necessary characterization of the file.  The assumption of consistency 

mentioned in the introduction indicates that the character encoding and special characters 

of this sample will remain constant throughout the remainder of the data file.  The size of 

the sample must be large enough to ensure representative statistical results while being 

small enough to keep computational time within tolerable ranges. 

Identifying the character encoding of a text corpus is nothing new.  The process of 

Charset Detection has been accomplished before in many applications including web 

browsers [35].  The layout approach does not differ much from these approaches, 

providing a best attempt through the use of “statistics and heuristics” [36].  For the layout 

inference problem, the first step toward proper identification is to identify discriminating 

properties of each encoding.  These are items that may be used to differentiate between 

two distinct encodings.  Once accomplished, the contents of the file are sampled and the 

bytes tested for these properties.  The results are then matched to the character encoding 

that they best represent.  In this approach, the most important step is correctly identifying 

the properties associated with each encoding, as recognition subsequently becomes a 

straightforward process. 

Special characters, such as commas or pipes, exist as additional structural 

information within the data.  Acting as delimiters, these indicators may be contained 

inside a composite data item to separate the individual pieces of a field or may be located 

externally to indicate boundaries between fields of data.  In either case, delimiters 

provide important information regarding how to properly separate the data and thus are 
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important when inferring a layout.  Statistics and heuristics are used to determine what, if 

any, kinds of delimiters exist in the file.  Given a predefined set of delimiters, where a 

delimiter is one or more characters in length, the sample is scanned once and counts 

indicating the number of occurrences in the sample of each set entry are tallied.  Multiple 

non-intersecting sets, each representing distinct delimiter types (i.e., record, field, and 

text quote delimiters), must be allowed for as several delimiter types, each used to 

separate a unique structural element, may exist together in a single file.  Given the counts 

associated with all the possible entries, the entry in each set that occurred most frequently 

is selected as the representative delimiter for that particular type.  When the statistical 

count passes a corresponding, minimum threshold, the delimiter for the current type 

under consideration is saved and later reported in the results of the layout process.  

Otherwise it is discarded and no delimiter is reported for the current type.  The unique 

threshold associated with each delimiter type is necessary in order to prevent errors or 

misidentification resulting from noise in the sample.  Due to the dynamic nature of the 

program, the threshold is set as a small percentage of the sample size.  This approach 

assumes that the layout engine, the program performing the steps necessary to infer a 

file’s layout, knows the sets of delimiters before analysis begins. 

  

3.3  Parsing a Record 

The third component of a file layout is the record structure, which is minimally 

defined as the length of the record and the comprising field characteristics.  While 

character encoding and special characters specify how to read the information contained 

within the file, the record structure designates where to look for specific units of 
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information.  Before describing the analysis steps required to determine these properties 

within the context of the record structure, first consider the field characteristics and the 

tools used for recognition.  Once available, these tools provide the means to identify each 

of the components of the record structure. 

3.3.1  Field Characteristics 

When characterizing a field, there are at least two important pieces of 

information:  position and content type.  A field’s position may be represented as the start 

position and, depending on whether or not field delimiters are present, length of the field.  

Besides positional information, a field is also associated with a set of values that are 

associated with some content type.  Content type is a category or label that provides 

identity to the corresponding data values.  Assuming consistency, the field at a given 

position within a record must have a single content type.  Each content type is associated 

with a domain:  a set of valid values that the associated content type may assume.  The 

rules or set of entries that define the domain are what distinguish one content type from 

another. 

Just as the set of possible delimiters is specified before special character 

recognition, the field types to be recognized must also be designated and defined before 

being able to perform the remaining analysis required to parse the record structure.  To 

this end the conceptual model of an oracle, whose sole purpose is to relate a domain to its 

respective content type, has been designed.  In other words, oracles are structures that 

contain the domain definition corresponding to a particular content type, see Figure 6. 
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Figure 6:  This oracle relates a list of first names to the "First Name" label. 

When queried about a data item, an oracle determines if the item is contained within its 

defined domain and responds with an appropriate result.  Thusly a data item may be 

related to a content type through the respective oracle’s knowledge of a particular 

domain.  It must be noted that the domains associated with human knowledge are often 

dynamic (e.g., continually expanding or the result of poorly defined, inaccurate or 

otherwise incomplete, syntax) and thus an oracle’s corresponding domain definition may 

be incomplete, representing a best effort.  This best effort is another argument for the use 

of statistical measurements in parsing the record structure.  Together, a group of oracles 

provide the necessary functionality required to determine the remaining items of a file 

layout, first of which is record length. 

3.3.2  Record Length 

A record is a grouping of distinct yet associated pieces of information.  These 

pieces of information are the comprising fields, and when grouped together they dictate 

the length of the record.  The determined file type determines the best approach for 
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identifying the record length.  Assuming consistency, when delimiters are present, the 

process of determining the record length is straightforward.  Merely count the number of 

fields for variable length records and the number of characters for fixed length records 

that occur between record delimiters.  When special character delimiters are not present, 

an appropriate substitute must be found to perform the role of delimiter completely 

changing the problem of record length identification.  In this situation, the term 

“delimiter” is expanded to refer to anything that may be used to determine the boundaries 

between units of data rather than the previous definition of a set of special characters.  As 

suggested in the preceding statement these delimiters are present in the data itself rather 

than external to it.  Specifically the positioning of certain fields provides the delimiting 

information. 

To use a field as a delimiter there are three steps that must be accomplished.  First 

a field of an appropriate content type must be chosen.  This is the most important step 

primarily because when considering the many content types that may be present within a 

record of data, some provide much more reliable results than others.  First the content 

type must exist in the examined data.  It would be pointless to use a content type such as 

personal first name for records about car parts.  Once the viable content types and their 

associated fields have been identified, the next step is to determine which of these will 

occur in a statistically significant number of the records.  It is important to avoid fields 

that may contain blank values, and that are often so, as a disproportionate number of 

blank values may skew the required statistical evidence.  Once it is known that a 

particular field will exist in the data and will not frequently contain blank values, another 

important criterion to consider is whether or not the field is easily identifiable.  There are 
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at least two properties associated with a field being easily identifiable:  the field’s content 

type is not readily confused with other content types and it is not too complex as to make 

finding the field boundaries, especially the start position, difficult.  The first property is a 

result of domain overlap.  The domain overlap problem is a significant sub problem 

associated with the layout inference problem.  It is caused by multiple domains that share 

common values.  Given two domains A and B, these domains are said to share a common 

value if there exists an entry in A, a, such that a is equal to or is a substring of an entry in 

B, b; or vice versa.  These two possibilities are based on the file type.  Since field 

boundaries are known beforehand in fully delimited files “common values” are based on 

equality.  When considering fixed files, since the field boundaries are not given, 

“common values’ are defined by equality and substrings.  A good example for this 

particular discussion is zip codes.  While relatively easy to find, because it is a number, a 

zip code is readily confused with other number fields (e.g., street, phone, and account 

numbers).  Thus while phone numbers are ten digits in length and zip codes only five, 

because zip codes are often a substring of valid phone numbers these two domains share 

many common values.  Consequently, with respect to finding record length, zip code is 

not a desirable field to base this analysis upon.  The impact of this problem on the various 

analysis steps performed during layout inference depends on the sample from the input 

file and also the degree to which distinct content types overlap.  Finding field boundaries 

is a problem common to composite fields, see Figure 7.  A composite field is one whose 

type is a combination of several simple content types.  This is a feature characteristic of 

database schemas where several individual yet related components are grouped together 

(e.g., full name and address). 
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Figure 7:  A composite field is multiple simple fields grouped together. 

Composite fields are potentially unhelpful because the accurate positional information 

required for using the data as a delimiter is not always obvious.  Together, these criteria 

ensure adequate statistical results from which to derive the record length. 

Once a content type has been chosen, the final two steps are computational in 

nature.  First is to identify where fields of the associated content type begin.  To this end, 

a combinatoric approach has been developed which enumerates all possible start 

positions and lengths.  This approach will be further explained in the following sections 

as the means by which field type and position are elucidated.  The oracle corresponding 

to the chosen content type is used within this combinatoric scan to determine where the 

associated fields occur.  As mentioned, the oracles provide the means to test whether a 

sequence of characters from the data is valid within the confines of a particular content 

type’s domain.  When an oracle returns TRUE for a particular sequence of characters, the 

start position of the sequence is recorded.  Together, these start positions provide enough 

information from which to determine the record length.  There are two types of errors that 

often occur with this approach:  false positives and missed fields.  The first is when 

another field is mistakenly identified as having the same content type and the start 
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position is recorded, and the second is when a field should be identified but is not.  Both 

are a result of the inexact nature of domain definitions and all that entails.  To allow for 

these errors, and potentially others, it is appropriate to make a statistical determination 

rather than an exact one. 

The final step is to identify the record length.  Two methods were considered as a 

solution to this problem, both of which rely on the property that the records are fixed in 

length.  The first was to find a common offset between field positions.  The idea behind 

this approach is that the offset, once found, would be the record length as it represents the 

distance between fields of common type.  This idea presents several difficulties in light of 

the characteristics representative of the data file layout inference problem.  First, false 

positives and missed fields can significantly impair the results.  These errors can provide 

many varying offsets making it difficult to choose the correct length, impairing the 

statistical quality of the result.  Though it is possible that a statistical approach can 

overcome these difficulties the problem is magnified when fields are duplicated.  It is 

quite feasible that a single piece of information might appear multiple times in single 

record.  While not the best normal form, it is not uncommon.  When this occurs, multiple 

offsets will be reported with the same statistical evidence causing even more uncertainty 

with respect to the correct record length.  This problem is also solvable, but a more 

straightforward solution exists. 

The other approach that was considered, the one implemented in the associated 

prototype, finds the record length by examining multiple possible lengths until the field 

positions logically line up, Figure 8.  This approach starts with some initial record length, 

possibly a length of one, and incrementally considers record lengths until the positioning 



 30 

of the fields found in the previous step organize themselves with respect to the 

hypothesized record length (i.e., they logically line up).  When this organization is 

deemed to exist, the procedure declares victory and returns the current guess as the 

determined record length.  A threshold value is used to indicate when the fields line up.  

This value should be set high enough to avoid the possibility of random organizations 

caused by false positives and low enough to allow for a certain number of missed and 

blank fields.  This statistical approach is not hampered by errors or duplicates as the other 

approach is.  In fact the positional results associated with these problems provide little, if 

any, interference with the evidence provided by the actual fields.  Both approaches make 

assumptions based on the content type selection criteria mentioned in the second 

paragraph of this section. 

 

Figure 8:  Example of fully fixed record length identification using full names. 
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3.3.3  Field Content Type 

Incrementally more and more information has been ascertained about a data file 

through the previously described analysis steps.  Each preceding property either makes it 

easier to or is necessary for determining the current element of a file layout.  The last 

stage it is no different.  By first determining the character encoding, it is known how to 

interpret the data in the file.  Then by identifying special characters, specifically 

delimiters, it is possible to recognize any external structural clues provided by the data 

source.  These characters along with the determined record length indicate how best to 

divide the data into logical components (i.e., records and possibly even fields).  Together, 

all this information makes it simpler to parse the record into its comprising fields. 

Parsing delimited files requires the least amount of computation of the three file 

representations considered.  Since field delimiters indicate field boundaries, and thus 

position, the only remaining step is to determine type.  Using the available delimiters, the 

data may first be broken up into records and then separated into fields.  The end result of 

this division is multiple sets of values each corresponding to a unique position within the 

record.  The next step is to assign a content type to each set of values.  To accomplish 

this, each set of values is considered individually.  For a particular set, each available 

oracle is considered in turn and a total count acquired that indicates the number of valid 

entry values according to the oracle’s respective domain definition.  In other words, given 

a set of values, V = {v1, v2, …, vn-1, vn}, and an oracle, o, the total count is the result of 


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ivo  o(vi) = {1 if vi is considered valid by oracle o, 0 if not}.  Once a count is 

achieved for each oracle the process is repeated for each set of values.  These counts, 

which correlate a field description to a set of values, provide the statistical evidence used 
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to infer the correct field designation among potentially many.  A single field description, 

along with its respective statistical count will thus be referred to as a potential field (PF).  

From many of the papers describing the areas of IE and NER, it seems plausible that 

some of the presented solutions could solve or be adapted to solve this particular portion 

of the layout inference problem:  identification of field content type in delimited files.  

Essentially, the available delimiters provide enough information to easily tokenize the 

data, but problems might arise from reliance on contextual clues of surrounding fields 

common to free text documents. 

Parsing a fully fixed or hybrid file requires a different tokenization approach to 

that just described.  Particularly is the importance of determining field position, as there 

are no special characters indicating field boundaries.  Fortunately this can be 

accomplished simultaneously by comparing the oracles against the data in a combinatoric 

way.  Since the record length is now known, the data can be separated into records.  It is 

helpful at this stage to at least know the record boundaries, because the statistical results 

derived from the combinatorial scan of the data are interpreted within the context of the 

record superstructure.  On a side note to be considered later, this scenario also reduces the 

worst case run time because now the time to perform a brute force search of the data is 

primarily dependent upon the length of the records rather than the length of the data 

sample, which can be significantly longer.  Once a list of records is available the 

combinatoric or brute force analysis begins. 

Each field position and content type is identified by testing all possible start 

position and length combinations.  Slightly tweaking the idea used for delimited files 

where a field represents a set of values offset by delimiters within a list of records, in this 
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case a field represents the set of values within a list of records at a given position as 

specified by a start position and length pair.  Thus for each start position and length pair, 

the sequence of characters at the specified position within each record represent the 

entries in the set of values corresponding to a field.  In the same way as with delimited 

files, the entries in the set are examined by an oracle and the number of valid entries 

recorded for subsequent analysis stages.  This is repeated for each available oracle.  Once 

completed, this process is repeated for another position until all possible positions have 

been enumerated.  The following figure represents one iteration of combinatoric analysis.  

In this example the “First Name” content type is considered and for a single length each 

start position is examined.  Once completed, the length will be altered and the process 

repeated until all lengths have been considered for this particular content type. 

 

Figure 9:  Depiction of combinatoric analysis. 

Once the necessary counts have been tallied, the correct position for each field 

must be determined.  This requires a correct understanding of the results produced by the 

combinatoric analysis, showing why this approach is appropriate for fixed and hybrid 

files.  When data is stored as fixed length fields a length is chosen for each field 
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appropriate to the values that will exist in the respective field, a length that is long 

enough to contain all or almost all foreseeable values.  When an actual value is shorter 

than the maximum length prescribed for the field, the remaining characters are unused 

and must be filled, typically with white space.  For values that exceed the prescribed 

length the value must be truncated.  On a side note, the latter case is another reason why 

error must be allowed for in the layout problem.  This characterization of the data 

suggests a general trend that may be taken advantage of.  In graphical terms, as longer 

and longer lengths are considered from a single, field start position, the number of valid 

values defined by the current position will increase until reaching some apex after which 

the number will begin to drop, Figure 10.  While increase and decrease in the number of 

valid entries may change gradually or quickly, and while the apex may be a single point 

or a plateau, the general trend describes the representative structure of the data and can be 

used to infer the positional elements of a field.  Specifically, by counting the number of 

valid entries for each start position and length pair, the results of the combinatoric 

analysis provide a graph for each start position that correlates lengths to valid counts.  For 

each content type, possible start positions are chosen by finding which have associated 

valid counts large enough to indicate a field.  The length appropriate to a given start 

position is indicated by identifying the last length before the valid count begins to drop 

significantly.  Using this information the proper position can be determined and a 

representative potential field (PF) created. 



 35 

 

Figure 10:  Example of an apex with a plateau. 

Composite fields must be handled in a slightly different manner.  Often in 

database schema definitions, highly related simple fields are grouped together into a 

single composite field.  This is a common occurrence with content types such as names 

and addresses.  Considering the valid counts for a composite field, it is possible for 

multiple apexes, plateaus, to occur for varying lengths at a given start position.  Because 

an apex is the maximum valid count corresponding to the length from a particular start 

position, to be in this group of apexes each individual apex must have the same valid 

count; otherwise it is not an apex.  As longer lengths are considered, a value from a 

composite field may alternate between valid and invalid several times depending on the 

organization of the simple fields within a composite field.  This causes valleys between 

the several apexes.  Due to this fact, the appropriate length of a composite field is the 

length corresponding to the rightmost apex, the longest length with the maximum valid 

count.  Using the rightmost apex ensures that the entire composite field is included in the 

positional element of the field information.  This is merely a generalization of the single 

apex encountered with simple fields. 
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3.3.3.1  Verifying the Results 

The combinatoric analysis just described scans the record data in a horizontal 

fashion.  The evidence acquired by examining each row individually can be incomplete 

as it is unable to account for trends that may only become apparent when the field values 

are viewed all at once.  This implies the need for a vertical, field-based, analysis.  Using 

the PF as indicators, it is possible at this point to look at the complete set of values for an 

individual field.  While possibly not necessary for all content types, this form of analysis 

is often valuable in addressing part of the domain overlap problem.  It is especially 

applicable in recognizing when the set of values corresponding to a PF only contains a 

small number of unique entries all or most of which are shared by multiple domains.  An 

obvious scenario is when a file is sorted on a field and thus all of the entries in the set are 

equal.  In many cases random sampling can alleviate this problem, but for small files it is 

possible that each record contain the same value for the field being sorted on and thus this 

eventuality must be allowed for.  When all of the entries are equal in value, a 

corresponding flag can be set thus communicating a fact that may be useful later on.  In 

the case of more than one unique entry value in a set, it is possible to ascertain the correct 

content type by determining for which domain the entry values better represent a normal 

distribution of data.  For example, if the set of values for a field along with occurrence 

count was {a - 15, b - 3, c - 2, d - 1} which returned a PF for both content type I defined 

by domain {a} and content type II defined by domain {a, b, c} then content type II is a 

better fit.  This is because even though the value {a} occurs most frequently, enough to 

potentially identify the field as content type I, the values of {b, c} indicate that in fact 

content type II is most appropriate.  While content type II also has a higher valid count, 
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this contrived example also attempts to show the importance of vertical analysis.  When 

domain overlap causes multiple PF to conflict, vertical analysis can be used to indicate if 

any of the PF are not plausible or at least less so. 

A previous figure, Figure 5, helps to show some of the issues for which vertical 

analysis provides additional information.  First, consider the “City” field which contains a 

single value, “Austin,” for each record.  This would go unrecognized by the horizontal, 

combinatorial, analysis and the field could equally be a first name, street name, or city.  

By performing vertical analysis the fact that only a single entry exists could be marked 

and handled later on as a special case.  Another circumstance would be the “2” in the 

“512” area code of the phone number field.  Individually these could be considered to be 

name suffixes associated with a person who has the same name as their parent.  By 

scanning the column no statistical distribution is encountered and the column is 

determined not to be a name suffix.  These are just two examples of the use of vertical 

analysis. 

3.3.3.2  Consolidating the Results 

Upon completing the preceding analysis steps several PF have been identified.  

As mentioned, these represent hypotheses identifying the position and type of fields 

within a record.  Given the combinatoric approach, there are two problems to resolve at 

this stage.  The first is conflict resolution.  Because PF of varying content types may have 

been assigned to the same position within the record, a decision must be made regarding 

which is best suited.  The second is the identification and elimination of false positives 

from the results.  As the name implies a false positive is a PF that has been incorrectly 
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assigned to the record structure.  Once these two issues have been addressed a final 

representation of the record structure can be made. 

3.3.3.3  Conflict Resolution 

Because of the problem of domain overlap between content types it is possible 

that the positions of multiple PF, each of a different content type, will completely or 

partially conflict with each other.  Conflict is when the positions of two PF, X and Y, 

overlap each other such that start positionX ≤ start positionY ≤ (start positionX + 

lengthX) or vice versa.  For content types with which domain overlap is a significant 

problem, it is helpful to perform one final step to gather more evidence before choosing 

among conflicting PF.  This step is to intentionally restrict the domain definitions present 

in the respective oracles as a means by which to reduce the overlap between the domains 

– Figure 11.  Once the domains have been restricted, the sets of field values 

corresponding to the positions of the appropriate PF are scanned.  This scan will produce 

a secondary count to associate with each respective PF providing additional statistical 

evidence to better differentiate among the conflicting entries. 
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Figure 11:  Figurative depiction of domain reduction. * indicates a reduced domain. 

To determine the fields in the record structure, a relatively simplistic approach has 

been adopted which provides satisfactory results.  The set of PF for each content type are 

each considered in turn.  Upon consideration, each PF in the current set is either selected 

as the best candidate for the corresponding position in the record or discarded.  To be 

selected as the best candidate, the current PF must either not conflict with another PF 

already chosen as the best candidate or must prove to be a better candidate than the PF it 

conflicts with.  When a conflict occurs, the evidence previously gathered is considered 

along with the empirically determined reliability of the associated content type’s domain 

definition thus indicating the best candidate between two PF.  The statistical evidence 

exists as the primary count determined during the combinatoric stage and, when 

available, the secondary count acquired after reducing the designated oracle’s domains.  

When a PF, X, is determined to be a better candidate than the existing best candidate, Y, 

X will replace Y as the best candidate and Y will be discarded.  After considering each 

content type, the final PF considered best candidates are assigned to the record structure 

as fields.  Because the records in the data file may contain content types unrecognizable 
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to the layout engine, any ranges of characters not corresponding to a field definition are 

marked as unknown.  Given the available evidence, this approach provides a result better 

than or equal to all other possible results.  Assume that there exists another possible 

organization that is strictly better than the one chosen.  This assumption indicates that a 

discarded PF is a better choice than the final candidate it conflicts with.  This is a 

contradiction though, because in order for a PF to be a final candidate it must be a better 

candidate than any PF it conflicts with.  Better, more correct, solutions may exist, but 

they are not indicated by the gathered evidence. 

3.3.3.4  Result Enhancement 

Once conflict resolution is complete, the set of resulting candidates have been 

assigned to represent the fields of the record structure.  Given this set of fields, one final 

step remains:  to enhance the results by removing false positives.  This analysis stage has 

been deferred until this point in order to prevent unnecessary work.  During conflict 

resolution many false positives were discarded in the process of choosing the best 

candidate among conflicting entries.  Also, in restricting the set of fields the analysis 

performed at this stage becomes more reliable, because close approximation to the actual 

contents of the record improves analysis.  This approach includes cross-reference and 

contextual analyses. 

Conceptually, cross-reference analysis is a means by which to identify which 

fields reflect a defined relationship among domains of different content types and which 

do not.  Thus, cross-reference analysis is accomplished by referencing the values of two 

or more fields within a single record and testing whether or not they conform to a defined 

relationship.  In other words, cross-referencing of field values is possible if there exists a 
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mapping from the domain of one content type to the domain of one or more other content 

types.  This form of analysis is often used during database integration to enhance the 

results of field content type identification [38].  Any group of fields determined to be 

related by a particular mapping can be confidently included in the final record structure.  

The remaining fields, those not assigned to a valid grouping, are potentially false 

positives.  Identifying false positives in this manner assumes that the values of any fields 

corresponding to a content type associated with a defined relationship must map to the 

values of a field corresponding to another content type in the relationship.  This 

assumption implies that given two relatable fields, A and B, for each value in A there 

must be a value within B that the value from domain A maps to and vice versa.  If this is 

not true, then the extraneous fields are assumed to be false positives.  Cross-reference 

analysis attempts to find relationships among the values of certain fields.  Conceptually 

similar to vertical analysis, cross-referencing recognizes trends in the values of fields in 

order to determine which PF are best suited for the result. 

As an example, candidates for cross reference analysis are the content types:  zip 

code, city, and state.  Because the zip code domain contains only numbers, the associated 

oracle can be prone to report false positives.  In performing cross reference analysis, 

every possible city, state, and zip code combination is examined.  From this, a set of 

correlated fields is returned indicated by extremely high correspondence among the 

respective field values.  Only the fields that are reported are considered to be valid 

whereas those that remain are determined to be false positives.  In order to provide a 

clearer example, let three fields be identified as zip codes:  field 1 is the correct zip code 

field, field 2 is part of a phone number, and field 3 is part of an account number.  For 
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simplicity let there be a single city and state field.  The possible combinations of fields 

are:  (city, state, field 1), (city, state, field 2), and (city, state, field 3).  When cross-

referenced the first combination should return a very high correspondence as field 1 is the 

actual zip code field associated with the city and state fields.  The other two combinations 

should return an insignificant, if not negligible, correspondence.  Subsequently the first 

combination is returned as valid and the zip code fields determined to be PF, fields 2 and 

3, are removed from consideration. 

Another form of analysis pertinent to this stage is contextual analysis which is 

common, and typically required, in most IE and NER systems.  Within the context of data 

file layout inference, contextual analysis refers to the relative nearness of fields of similar 

content type and as such takes advantage of any organizational features inherent to the 

record structure.  Context often does not exist when considering the data representative of 

the layout inference problem.  This is due to the fact that fields are often added to 

databases, the typical source of layout inference data files, in a haphazard way usually 

being appended to the end of a record.  For example if a database was expanded to 

include middle names the field would often be added to the end of the supporting schema 

completely isolated from the other, existing name parts.  This could cause two fields of 

similar content type to be relatively distant from each other within the record.  On the 

other hand, when available, context can provide useful evidence indicating false 

positives.  As this type of analysis is often not available, it must be used with caution 

because relying on context will often prove to be unreliable for layout inference. 
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3.3.4  Results from Evidence 

Just as in the related fields of IE and NER along with parts of learning algorithms 

and database integration, layout inference relies on several kinds of statistical evidence in 

order to produce results.  Considering layout inference, this evidence begins by counting 

how many records contain values corresponding to a defined type at a given position.  

These potential fields are just the beginning.  From there vertical analysis recognizes 

trends, specifically values representing small domain intersections, unattainable from a 

horizontal scan potentially reducing the set of PF to be decided among.  Conflict 

resolution further reduces the set of PF to the subset that most accurately, based on the 

available evidence, represents the record structure.  From this subset further enhancement 

is performed by attempting to identify and remove false positives.  Each step represents 

the acquisition of different types of evidence in order to systematically isolate and 

determine which potential fields are most appropriate as part of the record structure. 

3.4  Reporting the Results 

Upon obtaining the desired results, the remaining step required for layout 

inference is to report the information.  Due to the nature of layout inference, the results 

include both the final layout specification along with much of the information derived in 

producing the results.  This reflects the understanding that the statistical results of layout 

inference may be imperfect, particularly when the assumptions about the data are not 

met.  Thus the results not only indicate the properties determined to be most appropriate 

based on the data, but also all possible candidates from which the result was chosen.  

Along with the gathered evidence, many of the assumptions can also be specified by 
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indicating what properties were predefined (e.g., delimiters).  Including this information 

allows a user to choose how to interpret the results, especially if they are found to be 

inadequate.  Ultimately, the physical report should be organized such that all of the 

necessary information can be presented in an easily recognizable manner as determined 

by the end user. 
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4.  PROTOTYPE DESCRIPTION 

4.1  Introduction 

With the given approach as a guide, a layout inference engine prototype was 

developed using the Java programming language.  The prototype explores the issues 

discussed in the previous section and thus serves as a proof of concept.  The prototype is 

sequential:  starting at a single entry point and iterating through several analysis steps 

after which the output is produced and the program returns.  The remaining segments in 

this section explain the various components and design details of the layout engine which 

follow the flow of control shown in Figure 12.  The basic flow of control used to 

determine the record structure is expanded in Figure 13, indicating the several sub 

problems to be solved in order to identify the record structure.  While the overall 

approach is the same, the implementation details for each file type are unique.  A feature 

further discussed throughout this chapter, this is indicated in Figure 12 by the branch on 

file type. 
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Figure 12:  Layout engine flow of control 

 

Figure 13:  Record structure identification. 
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4.2  Prototype Invocation 

For ease of use, there are two ways to invoke the layout engine.  The first is from 

the command line and the second is as a web service.  There are two parameters to the 

program, the location of a configuration file and the data file whose layout is to be 

determined.  The web service functionality was included as a convenience and makes the 

assumption that the data file can be accessed by the server.  This assumption will be 

explained later.  The single purpose of the entry points is to begin analysis and return the 

compiled results. 

4.1  Setting Parameters 

Upon invocation, the first step is to setup the layout engine.  Dispersed throughout 

the program, there are many options, thresholds and heuristics that may be specified.  

Beyond these general parameters and in order to facilitate extensibility, it is also possible 

to define what oracles are run and the associated parameters of each.  Together the 

parameters specified in the configuration file allow a user to tune the layout engine as 

necessary.  Written in basic XML, an example of the configuration file is given in 

Appendix A.  This example provides default values for each of the following described 

parameters. 

Encountered first in the configuration file are “global_parameters”.  The options 

in this group are dispersed throughout the program being used in the various analysis 

stages. 

  “PrintTextOutput” – a Boolean flag indicating the type of output the 

prototype should return.  If set to TRUE then the prototype will return the 
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output in a more human readable format otherwise the output will be in XML 

which is much more verbose. 

 “EbcdicPercentage” – this percentage establishes how many bytes from the 

sample must have the first bit set in order to accurately decide between ASCII 

and EBCDIC character encodings.  

  “RecordsToTest” and “AcceptableRecordCount” – These are heuristics 

limiting the number of records considered during each iteration of the 

combinatoric stage.  Given a start position and length if there are not at least 

“AcceptableRecordCount” valid entries out of a distributed sampling of size 

“RecordsToTest” then the current start position and length are ignored and the 

next pair considered (i.e., a sampling of the sampling).  The reasoning for this 

is based off the idea that when looking at data a human does not initially 

consider all the entries, but rather just a few.  This small set determines 

whether or not the remainder should also be considered. 

 “OptimalRecordCount” and “SamplePartitionCount” – These parameters 

determine the sample size extracted from the data file from which the record 

structure is determined.  Once the record length has been determined the file is 

re-sampled and “SamplePartitionCount” blocks are read from the file which 

together will approximately contain “OptimalRecordCount” records.  This re-

sampling is the reason the data must be available to the web-service server.  

Only an approximation can be made for variable length records and thus the 

total number of records may be slightly different than “OptimalRecordCount.” 
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 The seventh parameter, “HeaderRecordsToSkip,” provides for the fact that a 

header record may exist in the data file and that when sampling to determine 

the record structure this special record should be ignored. 

 “SampleSize” – specifies the size of original sample from which the character 

encoding, special characters, and record length are determined.  It is helpful 

that the sample be acquired from the beginning of the file in case the file is 

fully fixed.  If obtained from a random position within the data file the 

positioning of fields within the sample would likely be skewed making it 

difficult to determine the appropriate record length. 

  “LineUpPercentage” – specifies how many valid entries must occur at a given 

start position for the fields to line-up and is used to indicate when the correct 

record length has been found. 

 The final three options “RecordDelimiter,” “FieldDelimiter,” and 

“TextDelimiter” provide the possible sets of values corresponding to the 

respective delimiter types that the prototype should look for.  The characters 

are given by their ASCII representation (e.g., the character ‘|’ is indexed in 

ASCII by the decimal value 124).  Each individual delimiter in a set is 

separated by ‘;’ and the possibly multiple characters in a delimiter are 

separated by ‘,’. 

The remainder of the configuration file is used to define what oracles will be run 

by the prototype.  First within each oracle configuration definition is the qualified name 

of the oracle from which the prototype dynamically loads the oracle class at run-time.  

Also included is the second parameter, “Rank,” which is an integer value specifying the 
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reliability of the associated oracle.  This number is relative, where the larger the number 

the more reliable the content type of the corresponding oracle is determined to be.  These 

first two options are used by the container class to first load and then to order the oracles. 

Any remaining parameters are grouped together and define the oracles 

themselves.  While there are many oracle specific parameters, there are four parameters 

shared by all oracles: 

 “TypeName” – the label associated with the content type used for 

identification. 

 “MaximumLength” – a heuristic used to reduce the computational 

requirements of the combinatoric stage.  Empirically determined, each content 

type has some upper bound with respect to its length which is less than or 

equal to the record length.  By stopping at this defined length it is possible to 

reduce the number of start position and length pairs considered during 

combinatoric analysis. 

 “MinimumThreshold” – a boundary percentage indicating which PF should be 

passed on to the conflict resolution stage and which should be discarded.  If 

the valid count associated with a PF compared to the total number of records 

is less than this percentage then the PF is discarded. 

 “Grouping” – a bitmask used to indicate logical groupings among oracles 

(e.g., street number, directional, street name, and street suffix could all be 

considered part of one grouping, a grouping of address line components).  

This grouping information, further detailed in Section 4.5.3, is used to 
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determine what statistical evidence is most appropriate to resolve conflicts 

among PF. 

4.2  Character Encoding 

After the engine’s parameters have been set the prototype begins to follow the 

flow of control provided at the introduction to this section.  The prototype has the ability 

to identify the encoding from three possible candidates:  ASCII, EBCDIC, and Unicode 

in its three variations UTF-8, 16, and 32 [39].  As mentioned in section 3.2, the first step 

is to describe the unique characteristics of each encoding.  Once these are available, the 

data sample is scanned testing which of the characteristics is most prevalent and thus 

which encoding is most appropriate.  The ordering of the tests can be important as some 

of the discriminating properties are not entirely distinct.  For example, it is 

straightforward to determine whether the sample is ASCII or EBCDIC, but choosing 

between EBCDIC and Unicode is not so obvious.  In the latter case, Unicode is tested for 

first, but if those tests fail then EBCDIC becomes a more plausible candidate. 

First, UTF-32 and 16 are considered.  For most valid characters, characters within 

some language’s alphabet, these two encodings will contain a null byte in their two or 

four byte encodings.  This is particularly true of UTF-32.  So if null bytes are consistently 

encountered at the beginning, or end depending on endianness, of a group of bytes then 

the sample is probably one of these encodings.  After testing for null bytes, ASCII is 

considered next.  ASCII encoding is distinct from the other two in that the most 

significant bit is never set.  Therefore, if a very high percentage of the sampled bytes do 

not use this bit, then ASCII is chosen as the encoding.  If the sample is still unrecognized, 

then UTF-8 is considered.  UTF-8, as a variable length encoding, has a format definition 
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that the encoded bytes must conform to [35].  Thus, upon recognizing this format, 

possibly along with an optional, prepended byte order mark, the prototype chooses UTF-

8 as the character encoding.  If the character encoding is still undetermined, EBCDIC is 

considered next.  This test assumes the encoding to be EBCDIC and converts it to ASCII 

counting the characters that map correctly.  If a very high percentage mapped correctly, 

then in the absence of indicators for the other encodings, the sample is determined to be 

EBCDIC.  If not EBCDIC, then the sample is assumed to be UTF-16.  While it is 

possible that UTF-16 will contain null bytes, it can not be assumed, particularly for 

foreign character sets.  Without any other distinguishing characteristics, UTF-16 is left as 

the default. 

4.3  Delimiters and File Type 

Once it is known how to read the data in the file, the next step is to determine if 

any delimiters exist in the sample.  This step is important because delimiters provide 

clues about the structural representation of the records of data within the file and thus 

indicate how best to examine the records.  There are three types of delimiters considered:  

record, field and text.  Text delimiters are merely recognized and reported while the 

record and field delimiters determine the type of file being considered and thus how the 

analysis of the record structure will proceed.  The first type of file is a fully delimited file 

which contains both record and field delimiters.  In this type of file the fields and thus the 

records may be variable in length because of the special characters explicitly indicating 

the respective boundaries.  On the opposite end of the spectrum are fully fixed files.  In 

files of this type, there are no delimiters of any kind and field and record boundaries are 

based on fixed lengths.  Thus, when one field or record ends, another begins immediately 
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afterwards.  The final type considered is the hybrid file which is a combination of the 

other two types.  This file contains fixed length fields with no field delimiters but does 

contain record delimiters, such as a line feed, at the end of each record. 

The representative sets of delimiters are specified by the user in the configuration 

file just described.  Once available, these sets are considered in turn starting with the 

record delimiters.  The sample is scanned once and a count corresponding to each entry is 

incremented whenever the respective entry is encountered in the sample.  The prototype 

allows a delimiter to be comprised of a sequence of characters, such as a carriage return 

followed by a line feed, or an individual character.  Once the counts are tallied, they are 

compared to a configurable minimum threshold to allow for noise and those that are 

greater than this empirically determined threshold are compared against each other.  The 

delimiter with maximum count is selected and is recorded as the corresponding type of 

delimiter.  Of note is the special case of string literals typically indicated by the 

characters “ or ‘.  These are used to enclose delimiting characters that are actually part of 

the data, such as a comma separating the first and last names in a full name field.  When a 

string literal character is encountered any following data is passed over until a matching 

character is found.  This logic assumes that for each opening string literal character there 

is a matching closing character.  Using this approach the delimiting characters can be 

quickly identified and used to determine how best to proceed with respect to analyzing 

the file. 

4.5  Oracles 

Before any further analysis can be performed, the oracles must be defined.  They 

were previously described as a black box used for recognition of data corresponding to 
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associated content types, but now the actual classes and corresponding interfaces will be 

described in order to clarify their programmatic design.  Of importance in such a 

discussion are three constructs depicted in Figure 14:  the oracles, the container class that 

acts as a wrapper for all of the oracles, and the interfaces that the oracles implement. 

 

Figure 14:  Architectural representation of oracle components. 

4.5.1  Interfaces 

There are two features that encourage the use of Java interfaces.  First, it is 

preferred that the prototype be extensible, allowing for the inclusion of other content 

types not currently considered such as social security number or web address.  Second, 

the remaining analysis algorithms have been designed to perform recognition in a generic 

way thus ignoring any specific instance of an oracle.  This approach ensures that the 

addition or removal of an oracle will have absolutely no affect on the analysis algorithms, 

decoupling the process of recognition from the tools used for recognition.  Together these 

two design issues do not align with the natural tendency of oracles to be disparate:  

encouraging special cases and unique logic.  The solution is thus to bundle the common 

functionality that is required by the analysis algorithms into an interface and have each 
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oracle implement it.  A common interface also makes it possible to relate the results from 

the unique oracles.  To this end the Oracle.java interface was defined as given in the 

following figure. 

 

Figure 15:  Oracle interface. 

The first method is used for initialization where the parameters given in the 

configuration file are passed as arguments from which the oracle defines its domain.  The 

next three methods (i.e., “isValid()”) are used for recognition as they provide access to 

the domain definition corresponding to the oracle.  The three functions provide access to 

the same supporting logic, but for different input parameter types.  The next two methods 

provide access to instance specific heuristics and thresholds used during recognition 

while the final two methods provide the associated content type name and grouping 

respectively. 

Certain oracles also implement other applicable interfaces beyond the common 

interface that each oracle implements.  Specifically there are three interfaces that dictate 

functionality not provided in the basic interface.  The first provides the means to direct an 

oracle to intentionally restrict its domain definition.  This ability can be helpful in gaining 

additional evidence to partially address the domain overlap problem.  The other two 

interfaces define the methods necessary for vertical, cross-reference, and contextual 
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analysis.  There are two interfaces because vertical analysis is performed before conflict 

resolution and cross-reference and contextual after thus relying on different pieces of 

evidence. 

In implementing these interfaces, the unique domain definition of each oracle may 

be accessed in a common way.  This feature addresses the general and extensible 

requirements important to the prototype. 

4.5.2  Container Class 

To further assist with generality and extensibility, a container class was defined 

that groups the oracles together into a single data structure allowing each to be invoked 

via this single reference point.  This object acts as a wrapper around all of the individual 

oracles and is an intermediary between the analysis algorithms and said oracles.  Which 

oracles are loaded into the container class and how their internal parameters are set can 

be parameterized within the configuration file making the engine very dynamic.  The 

container class also has the ability to order the oracles in multiple ways by defining 

several iterators which sequence through the oracles as specified.  This allows the 

analysis algorithms to view the oracles through the lenses of parameters such as 

confidence or any other pertinent ordering.  Therefore, the container class controls access 

to the oracles and consequently facilitates their use by the analysis algorithms. 

4.5.3  Oracle Definitions 

As the oracles’ primary role is that of recognition, the methodology they employ 

in this task is reflected in their definition.  As mentioned, this methodology is widely 

varied among the oracles as it is chosen to correspond to the defined domain.  Examples 
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of appropriate domain definitions include:  sorted, lookup tables of valid entries for list-

based domains, regular expressions or simple grammars for rule-based domains, or a 

combination of these.  Other conceivable methodologies include incorporating learning 

algorithms such as artificial neural networks or other probability-based approaches such 

as the HMMs commonly used in IE and NER or ranked lookup tables.  A potential 

problem with these trained systems is that they rely on contextual characteristics of the 

data along with the data values.  Since context is not reliable in file layout inference, 

these technologies would typically be reduced to training based entirely on the data 

values which is not an improvement over lookup tables or predefined rules.  Worth 

mentioning are the composite oracles which are the oracles related to composite content 

types.  These oracles are defined by combining multiple simple oracles into some logic 

and account for the bulk of the simple grammar-based domain definitions.  In this 

context, the composite oracles rely on the recognition capabilities already defined in the 

comprising simple oracles.  Ultimately, the methodology used for recognition should be 

appropriate to the domain it is attempting to define. 

Beyond the specific domain definition, oracles provide other information 

corresponding to the associated content type.  These include the name or label, the 

reliability or confidence ranking, and any associated enclaves or groupings.  The name is 

a necessary property as it provides identity once recognition is achieved through the 

available analysis.  The reliability of a content type is determined from the domain 

definition.  Crucial to conflict resolution, this property reflects the amount of confidence 

the prototype may have in a potential field.  As mentioned in Section 6.2 Related Work, 

an inclusive domain definition is generally ranked lower than a more exclusive 
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counterpart.  By assigning an empirical value as the confidence, this property provides 

important evidence used by the prototype to decide among conflicting potential fields 

where higher ranked content types are chosen over lower ranked ones.  Another feature 

associated with the oracles is the concept of enclaves or groupings.  This property reflects 

natural relationships that might occur among separate content types and indicates when 

the valid count acquired after reducing the oracles’ domains should be used and when the 

initial count determined during combinatoric analysis is more appropriate.  As an 

example, when considering records containing USA name and address information, a 

reasonable grouping would be all of the content types that are associated with an address 

line one field:  street number, directional, street name, street suffix, and address line one.  

When grouped together, only the primary count (i.e., the initial count determined during 

combinatoric analysis) should be considered.  In fact the secondary count can be 

detrimental.  On the other hand, when comparing street name with content types in other 

groupings such as last name or city, both counts are important to making an accurate 

decision.  These features all combine to describe a content type and are made available to 

the analysis algorithms via the oracles. 

4.5.4  Oracle Implementations 

The implemented prototype was developed to recognize USA name and address 

information.  To this end, twenty-two oracles each representing many of the aspects of 

name and address information have been implemented, see Figure 16. 
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Figure 16:  Implemented oracles specified by content type. 

4.5.4.1  Name Oracles 

There are six oracles representing the various name components often found in 

records of name and address information:  name prefix, first name, middle name, last 

name, name suffix, and full name.  The first five are simple oracles and all but middle 

name are based on lookup tables of most common entries per census data [40].  Middle 

name is a unique oracle.  It does not actually contain a domain definition as is typical to 

all the other oracles.  Instead it relies entirely on contextual analysis to perform 

identification.  Simply put, a middle name is extremely hard to identify unless it is an 

initial directly adjacent to a first or last name or a secondary first name relatively close to 

another name part.  Isolated instances can not be reliably classified as middle names and 

thus context must be the evidence indicating a middle name.  The only composite oracle 

is full name.  This oracle combines the previous five into a simple grammar to determine 
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validity, see Figure 17.  Essentially a full name contains at least a first and last name in 

any order with the other fields considered to be optional.  Due to the many legal 

combinations possible for a full name, this oracle’s domain was intentionally defined 

very loosely. 

 

Figure 17:  Simple grammar defining valid full names. 

4.5.4.2  Address Oracles 

There are thirteen oracles related to address content types.  Directional, street 

number, street name, street suffix, and PO Box are all simple oracles and address line one 

is a composite oracle associated with the first address line, see Figure 18. 

 

Figure 18:  Simple grammar defining valid address line ones. 

Unit designator and unit number are simple oracles and address line two is a composite 

oracle associated with the second address line.  The address line composite oracle 
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represents a complete address and finally city, state, and zip code are simple oracles 

representing their titular content types.  These oracles are implemented in various ways.  

The simple oracles are built from lists (e.g., street name, street suffix, zip code) and 

regular expressions (e.g., street number and PO Box) [41].  The composite oracles are 

built similar to the full name oracle of the previous section.  Worth mentioning is the 

address line one oracle.  Because it is common for a multi-token street name to end with a 

value that may also be considered a street suffix (e.g., “court”) the address line one oracle 

must be careful how it identifies the individual components within a string of data.  To 

handle this eventuality, it is helpful to find the longest possible street name within the 

address and only then identify any remaining pieces.  This ensures that an address is not 

preemptively invalidated. 

4.5.4.3  Email Oracle 

The email oracle is a simple oracle that combines the use of regular expressions 

with a lookup table.  First an input string is compared against a regular expression 

defined by the RFC specification, see Figure 19 [42].  If the string complies with the 

defined regular expression then the top-level domain (e.g., .com, .org, and .info) is 

extracted and compared against a list of valid entries.  Due to the expansive nature of the 

defined regular expression, this assists in determining the correct end position of an 

email. 
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Figure 19:  Grammar defining valid email addresses. 
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4.5.4.4  Phone Number Oracle 

This simple oracle is based on two related lists:  one containing area codes and 

another containing prefixes.  For each area code there is a list of valid prefixes.  A string 

to be tested is first checked to ensure that it only contains ten digits.  Upon passing this 

filter it is parsed into its individual components which are compared against the valid 

lists.  First the area code is compared against the corresponding lookup table, if a valid 

entry is found, the immediate next three digits, the prefix are compared against the list of 

possible entries for the given area code.  The final four digits, the line number, are 

essentially ignored as they provide little-to-no information and can generally assume any 

value. 

4.5.4.5  Boolean Oracle 

This oracle was implemented late as a response to Boolean fields being identified 

as directional fields (i.e., the value of “N” can also stand for north).  The importance 

associated with this oracle is that it evidenced the positive impact of adding content types 

to provide additional information. 

4.6  Record Length 

Returning again to a description of file analysis, from this point forward, the 

prototype transitions to begin considering the records and the fields they contain.  Unlike 

previously where any analysis was common to all files, the implementation details of the 

following stages, though addressing a single conceptual problem, will be different for 

each of the file types as the data must be handled individually for each case.  A prime 

example is the next step in the flow of control:  finding the record length.  Depending on 
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the context record length may take on a slightly different meaning, for hybrid or fully 

fixed files it is the number of characters present in a record whereas in fully delimited 

files it is the number of fields. 

For fully delimited and hybrid files the presence of a record delimiter is an 

obvious indication of the record length, but in fully fixed files this delimiter clue does not 

exist and requires other evidence.  Originally the name field was chosen as it was thought 

to be a content type well fitted to the requirements mentioned earlier, and initial tests 

showed this hypothesis to be accurate.  Since record delimiters are absent from the data, 

the name field will act as a delimiter of sorts by marking the individual records.  Though 

the name field may appear at any position within a record, once located they can still 

provide enough evidence from which to extract a record length.  The first step is to scan 

the sample identifying the positions where name fields occur. 

The record length is determined by examining a range of possible values, 

selecting the record length that causes the identified positions to line up.  Given a range 

of values, the procedure starts with a minimum value and chooses it as the current record 

length guess.  The data is logically split into records with length equal to the current 

guess.  Using the positional information already gathered, the new records are examined 

at each position and the number of name fields that occur at the current position is 

recorded.  The field positions line up when enough name fields occur in the same position 

within a logical record.  This value is a threshold that can be set by the user in the 

configuration file.  When this occurs, the current record length guess is assigned as the 

actual record length.  If the fields do not line up, then the guess is incremented and the 

process repeated. 
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Once the record length is found, the file is resampled.  The new sample extracts 

data not only from the beginning of the file, but also from equally spaced positions within 

the file.  While this approach can be considered more thorough, it does not guarantee an 

improvement in the results as the new samples may not boost the random, statistical 

qualities of the sample.  Once extracted from the file the new sample is split up into 

records to facilitate processing in greater detail.  A sample associated with a fully 

delimited file can be divided into records which may be further broken down into fields, 

but for fixed files, hybrid and fully fixed, the smallest divisible unit is the record.  The 

fields’ positional ambiguity resulting from this discrepancy causes the fixed files to be 

more difficult to handle than fully delimited files. 

4.7  Record Layout Analysis 

Since the records have been identified, only a few steps remain, first of which is 

to identify the fields contained within a record.  There are two primary pieces of 

information to gather when inferring a record’s layout:  each field’s position and type.  

The field delimiters in a fully delimited file provide all the positional information 

necessary and as a consequence only the type need be determined.  To do this, the records 

are considered in turn and for each record all of the fields are examined.  Each field is 

passed to each of the oracles, and a count variable corresponding to the particular field 

and oracle under consideration is incremented if the current oracle indicates that the field 

is valid with respect to the oracle’s domain.  Once all of the records have been examined 

in this manner, the counts are explored to see if any are a large enough percentage of the 

total number of records to indicate that a field may potentially be of a particular type.  

This statistical analysis ignores any counts that do not meet the minimum threshold 
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which is an empirically determined value that can be set by the user and is distinct for 

each content type.  If a count does not meet this threshold, the engine assumes that the 

entries that were found were in fact false positives due to the fact that only a statistically 

insignificant set of the records contained fields at the given position that conformed to the 

associated content type.  This methodology is relatively straightforward and is much less 

involved than that required for the fixed files. 

Due to the nature of fixed files, field boundaries are unknown and must be 

identified along with the field types.  Unlike most lexical parsing, which relies on white 

space and/or punctuation to identify tokens, fields in fixed files may be directly adjacent 

to each other and as such other clues must be exploited in order to extract any positional 

information.  It is here that the combinatoric approach is used in conjunction with the 

oracles to provide the necessary clues.  In the previous step of the layout inference 

process, the record length was determined and the data subsequently divided into records.  

Because the structure is different than that available for fully delimited files the algorithm 

considers each oracle in turn rather than all at once.  For each oracle, the procedure 

enumerates all start position and length pairs that are possible given the current record 

length.  For each pair the corresponding sequence of characters from each record is 

compared against the current oracle and a count recorded.  Once complete, this 

combinatoric approach provides all valid counts, as determined by the current oracle, for 

each start position and length pair.  These counts are then passed through a filter to 

eliminate those that do not meet the minimum threshold.  The filter returns a list of 

potential fields (PF) corresponding to the content type of the current oracle.  The details 

of the methodology employed to build this list is as follows.  For each start position, the 
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valid count at every corresponding length is considered in order to find the maximum 

valid count associated with the current start position.  Once found, this count is compared 

against the user defined minimum threshold associated with the current oracle to see if 

the value is statistically significant.  If the count is significant, all the adjacent lengths 

associated with the current start position that have the same valid count are grouped 

together in a plateau which indicates the full extent of the field.  As soon as the edge of 

the plateau is found, the layout engine assumes it has found the end of the field and adds 

the length corresponding to the edge of the plateau and its associated start position to the 

list of PF.  As indicated, this process is repeated for each oracle. 

Once a list of PF has been acquired a second piece of evidence is gathered: the 

secondary count.  First, each oracle whose domain may be restricted is directed to do so.  

Once accomplished, the corresponding PF are recounted and the new value stored along 

with the primary count.  This piece of evidence provides information important to the 

upcoming conflict resolution stage.  To indicate this importance some example results 

from a hybrid file are given in the following figure.  The paired bars indicate the primary 

and secondary counts returned by two oracles, first name on the left and last name on the 

right, for four related fields:  first name, last name, street name, and city name.  The 

dramatic difference among secondary counts shows the value of the secondary count. 
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Figure 20:  First and last name oracle results for different domain sizes. 

4.8  Identifying and Removing False Positives 

4.8.1  Vertical Analysis 

As the first step in removing false positives, vertical analysis makes use of the 

individual PF acquired in the previous stage.  This is unlike the remaining analysis steps 

which compare the PF against each other in various ways.  In scanning a column of 

values all-at-once, vertical analysis attempts to recognize any potential data trends that 

would act as evidence identifying a PF as a false positive. 

The process is as follows.  Upon instantiation the container class automatically 

recognizes which oracles implement the interface associated with vertical analysis and 

groups them together for access by the analysis algorithms.  After the combinatoric stage, 

where recognition occurs, several PF are identified indicating the position and content 

type of a potential field (i.e., the process just described).  Using the iterator provided by 

the container class any related oracles are sequenced through passing all associated PF to 

the oracles’ vertical analysis functionality.  For example, if oracle O implements vertical 

analysis functionality then all PF of content type equal to the content type of O will be 
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passed to O for further consideration.  In performing analysis O will consider the set of 

data values corresponding to positional properties of each of the potentially multiple PF 

in turn.  In scanning a set of values, distinctive data trends, refer again to Section 3.3.3.1, 

that indicate a false positive will be searched for.  These are trends that do not conform to 

the assumption of normal   data distribution.  If these trends are found to exist the PF is 

removed from the list of PF, or discarded. 

4.8.2  Conflict Resolution 

The next analysis step removes false positives by removing any inconsistencies or 

ambiguity among conflicting PF.  This process of conflict resolution can be compared to 

putting together the pieces of a puzzle.  Each content type is considered in turn and each 

associated potential field is considered a best fit for the corresponding record position if it 

is better than any potential fields already assigned to that space.  The potential field of an 

oracle is determined to be a better fit if either its domain has a higher confidence ranking 

or when the ranking is the same the valid count is greater than of any other candidate (i.e. 

if oracle A returns ‘yes’ more times than oracle B for the given position, then A is a better 

fit).  As previously indicated, this ranking conveys the property that the domain definition 

of some oracles is more reliable than that of others.  This decision process, while 

potentially naïve, provides a quick and generic means by which to determine the structure 

of a record. 

4.8.3  Comparison Analysis 

Once the conflict resolution stage creates an initial representation of a record, the 

remaining analysis attempts to further improve the accuracy of the result by comparing 
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fields assigned to the record against each other.  Two implemented approaches include 

cross-reference and context analysis.  Cross-referencing compares the data values 

associated with related fields (e.g. city, state, and zip code) and removes any entries 

assigned to the record structure for which there is no match (e.g. an extra zip code).  

Context analysis uses the relative nearness of fields of similar content type to identify 

false positives.  Where cross-reference is based on the data values contained within the 

fields, context relies on the content type associated with the fields.  To reiterate, context 

is unreliable when applied to the data file layout inference problem and must be used 

with great care.  Typically, this form of comparison is best employed to remove PF 

associated with content types defined by very inclusive domains by only retaining those 

PF that are relatively near PF of similar yet more reliable content types.  Another 

reasonable scenario is to identify otherwise unidentifiable fields such as a middle initial.  

Together, these comparison techniques provide more evidence to identify and remove 

false positives. 

The analysis performed after the combinatoric stage can provide significantly 

better results with relatively little computational cost.  As with vertical analysis it is 

important to preserve the architectural concepts of generality and extensibility and thus 

the details of the cross-reference and context functionality must be built into the oracles 

themselves and accessed via methods of an implemented interface.  Oracle designers can 

choose whether or not to implement this interface and consequently only the oracles that 

implement this interface may be accessed through the previously mentioned container 

class. 
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4.9  Header Record 

The final processing stage only applies to fully delimited files.  In this scenario, it 

is possible that the first record might be a header record which contains structural 

information associated with the records of the file.  It is important to detect such a record.  

Using the results of the decision stage, the first record is examined to see how many of 

the fields have values whose respective types match those indicated by the determined 

record structure.  If a statistically significant number of fields have corresponding types, 

then the record is not assumed to be a header record, otherwise it is.  Future work will be 

to determine how best to exploit any available information in this record to improve the 

results or even avoid the processing steps altogether [38].  The wide variety of possible 

content type labels seems to be prohibitive in this regard. 

4.10  Output 

Finally, the engine has completed its analysis and is ready to report its findings.  

To do so all the evidence recorded so far is bundled into either formatted text or XML, an 

option that can be specified by the user, and written to an output file.  This file reports 

runtime, the existence of a header record, what delimiters are present, what oracles were 

considered, the record length, the record structure, and all PFP that passed their 

respective minimum thresholds.  This output is the final result of the layout inference 

engine prototype, examples of which may be found in Appendix B. 
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5.  RESULTS 

5.1  Results Description 

Given the thesis of this work, the prototype was incrementally enhanced, 

exploring new issues as they were encountered, in order to provide continually improved 

accuracy.  Initial tests involved a collection of synthetic data files generated by the 

University of Arkansas’ Synthetic Data Generation program [43].  These files served as a 

proof of concept with respect to the layout engine, but were quickly outgrown as real data 

files became available.  The synthetic files usefulness was restricted because, among 

other issues, they were much too clean, did not contain multiple occurrences of field 

types, and rarely contained sparse fields.  Consequently their ability to expose issues 

encountered within real data files was limited.  The test suite of real data files was 

supplied by an industrial sponsor in two stages:  first a collection of six files and then 

another collection of seven files.  Excluding proof of concept, these thirteen files have 

served to indicate the prototype’s performance both with respect to accuracy and runtime. 

The prototype’s development has been driven by evaluation and understanding of 

these acquired results and has followed an iterative pattern.  First, the prototype and its 

supporting theory are evaluated against existing results to determine what enhancements 

might provide improvements.  Next, the prototype is modified to include the suggested 

enhancements.  Once completed, the results of the updated prototype are compared 

against pre-existing results in order to determine if an improvement is achieved.  This 

comparison provides evidence for or against the suggested modifications.  Based on this 

information, the prototype is brought to a corresponding stable state and the entire 

process is repeated.  This approach is similar to test driven development where expected 
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results drive the development process [44, 45].  This approach to development has 

provided the impetus for developing much of the analysis performed outside of the 

combinatorics stage. 

This type of development has the downside of potentially being tuned to the test 

data, particularly for data analysis processes such as this.  In an attempt to limit the 

affects of over-tuning, the proposed theory has been extrapolated to address the 

encountered issues in a generic way so that, when related issues are encountered within 

unfamiliar data sets, the prototype can perform correctly.  As mentioned in Section 4.5.1, 

this is also a design goal for the prototype.  For example when fields were discovered that 

contained a single data item for each non-blank entry this issue was identified as a part of 

a greater issue of limited statistical distribution.  Subsequently vertical analysis was 

introduced to identify and address limited statistical distribution.  In this way a single 

instance is used to identify and solve more generic issues.  

5.2  Results by File 

The following sub-sections each provide a brief description of a single file, and 

the corresponding prototype results for each of the thirteen files.  These sub-sections are 

followed by a results summary which will present aggregate results for all the files.  

There are two charts presented with each file.  The first chart depicts the accuracy of the 

prototype for varying record sample sizes.  One form of sensitivity analysis, this chart 

shows how accuracy can be affected by different sampling sizes.  Again, it is important to 

note that the prototype samples multiple, equally spaced sections from a file and thus 

some or none of the records in a sample of 50 records may be included in a sample of 150 



 74 

records.  For this chart there are four series representing four different counts:  correct, 

false positive, missed, and total. 

 A correct field is a field that has an accurately assigned position and type 

according to a provided file schema. 

 A false positive field is a field that has been incorrectly assigned by the 

prototype to the record schema.  This constitutes a field of unknown or 

unrecognizable type being assigned a type identifiable by the prototype, also 

see 3.3.2. 

 A missed field is a recognizable field (i.e., a field whose corresponding type is 

defined within the prototype) that is either mislabeled or not labeled at all. 

 The total count is the sum of recognizable fields within the record schema.  

Added together the correct and missed counts equal the total count. 

Besides accuracy performance, runtime has also been recorded in a second chart.  Due to 

the nature of Java, especially with respect to the garbage collector, often a single runtime 

is not sufficient to determine the representative runtime.  For the results reported here, the 

prototype was timed on multiple runs for each record count for each file.  A single value 

was determined by discarding any extreme outliers and averaging the remaining values. 

5.2.1  Synthetic Files 

As mentioned, synthetic files were the initial test bed against which the prototype 

was run.  Serving as a proof of concept, the results associated with these files served to 

indicate that the implemented approach was both feasible and desirable.  Sensitivity 

analysis was not performed on these files as the results from the real data files are 
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considered to be a better representation.  Each synthetic file contains a total of 2000 

records and represent both fully delimited and hybrid file types.  Though not reported 

here, several hybrid files were stripped of their record delimiters transforming them into 

fully fixed files.  The results were unaffected. 

As seen, the prototype performs well against the synthetic files.  Since a few of 

the files contain an isolated middle name initial, the results could be considered to be 

better than they appear.  Particularly in a hybrid file, this situation is extremely difficult 

to identify even by a human.  Other missed fields were primarily a result of extremely 

sparse populations.  An example of this would be address line two components where 

only a couple of fields contain values among the total sample.  This is partly what caused 

the poor results in files eight and nine, files which actually consist of the same data but 

represented as different file types.  Another issue is that the synthetic files showed poor 

statistical distribution.  Consequently, the issue of domain overlap is exaggerated, making 

the conflict resolution stage difficult.  In the following chart, the total length of the bars 

represents the total number of fields to be recognized for a corresponding file.  This bar is 

divided into correct and missed field counts as indicated by the legend. 
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Figure 21:  Results for nine synthetic data files. 
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5.2.2  File 1 

The first file is a hybrid file containing 100 records with record length 177 and 

thus the results do not change after the number of records examined reaches 100.  The 

prototype performs quite well for this file.  The records in files one, two, five, and six are 

comprised entirely of content types recognized by the prototype:  name, address, city, 

state, zip code, phone number, and Boolean. 

 

Figure 22:  Accuracy performance for file 1. 

 

Figure 23:  Runtime performance for file 1. 
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5.2.3  File 2 

File 2 is also a hybrid file but with record length 186.  This file contains a total of 

100 records and thus the results do not change after this point.  The prototype performs 

quite well for this file. 

 

Figure 24:  Accuracy performance for file 2. 

 

Figure 25:  Runtime performance for file 2. 
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5.2.4  File 3 

This file is a fully delimited file with 89 fields.  Notice the significant 

improvements in the runtime over hybrid and fully fixed files.  This file contains 100 

records and thus the results do not change after this point.  File 3 is the only fully 

delimited file considered for the real data files.  With 89 fields in a record, this file 

contains repeated fields, sparse fields, composite fields broken into their simple parts, and 

isolated fields all representative of situations encountered in real data files. 

 

Figure 26:  Accuracy performance for file 3. 

 

Figure 27:  Runtime performance for file 3. 
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5.2.5  File 4 

File 4 is a hybrid file with record length 681.  This file contains a total of 100 

records and thus the results do not change after this point. 

 

Figure 28:  Accuracy performance for file 4. 

 

Figure 29:  Runtime performance for file 4. 
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5.2.6  File 5 

File 5 is a hybrid file with record length 182.  This file contains a total of 100 

records and thus the results do not change after this point. 

 

Figure 30:  Accuracy performance for file 5. 

 

Figure 31:  Runtime performance for file 5. 
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5.2.7  File 6 

File 6 is a hybrid file with record length 133 containing a total of 225 total 

records.  The results spike at 125 and 150 records due to the values being sampled.  In 

these two instances only, a sparsely populated address line two field is not blank and is 

recognized.  For the other sample sizes the field contains only empty values and is not 

recognized.  Consequently the separate address components, line one and two, are 

recognized as a complete address line field. 

 

Figure 32:  Accuracy performance for file 6. 
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Figure 33:  Runtime performance for file 6. 
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5.2.8  File 7 

File 7 is a hybrid file with record length 845.  This file is the worst performing file 

encountered thus far.  This poor performance is caused by several sparse fields, fields 

containing mostly blank entries.  These fields are historical addresses that are 

inapplicable for most records and thus left blank.  Consequently the statistical 

assumptions defining this approach are not met and the fields are not reported. 

 

Figure 34:  Accuracy performance for file 7. 

 

Figure 35:  Runtime performance for file 7. 
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5.2.9  File 8 

File 8 is a fully fixed file with record length 368. 

 

Figure 36:  Accuracy performance for file 8. 

 

Figure 37:  Runtime performance for file 8. 

5.2.10  File 9 

File 9 is a hybrid file with record length 1141.  This file contains a longer record 

length resulting in significantly longer runtimes, a feature discussed in the Runtime 
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section.  The number of false positives is a result of sparse, yet formatted data (e.g., 

values that contain only a ‘Y’ or ‘N’ at a given position within the field which can be 

misinterpreted as a Boolean).  The fact that many of these fields are sparse further 

complicates the situation, limiting any discrediting information. 

 

Figure 38:  Accuracy performance for file 9. 

 

Figure 39:  Runtime performance for file 9. 
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5.2.11  File 10 

File 10 is a fully fixed file with record length 1053.  This file suffers from a 

similar issue experienced with file 6.  In this file a duplicated address line one field is 

only partially recognized as several entries contain information extraneous to the oracle’s 

domain definition.  Thus, just as in file 6, changing the sample size and consequently the 

records that are sampled affects the results. 

 

Figure 40:  Accuracy performance for file 10. 

 

Figure 41:  Runtime performance for file 10. 
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5.2.12  File 11 

File 11 is a hybrid file with record length 2689.  In this file an address line one 

field is only partially recognized.  Analyzing the sampled data indicates that a better 

domain definition would immediately improve the results. 

 

Figure 42:  Accuracy performance for file 11. 

 

Figure 43:  Runtime performance for file 11. 
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5.2.13  File 12 

File 12 is a hybrid file with record length 1886. 

 

Figure 44:  Accuracy performance for file 12. 

 

Figure 45:  Runtime performance for file 12. 

5.2.14  File 13 

File 13 is a hybrid file with record length 1886.  The results of this file show the 

importance of comparison analysis.  The false positive count is increased for this file 
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because a city field is misidentified.  This field is missed because all entries are the same, 

a value shared by the last name oracle, which is chosen during conflict resolution.  The 

problem of no statistical distribution creates a scenario where the gathered evidence is 

inconclusive, providing no indication which PF to choose.  Consequently the 

corresponding cross-reference logic is unable to complete its task removing other related 

fields. 

 

Figure 46:  Accuracy performance for file 13. 

 

Figure 47:  Runtime performance for file 13. 
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5.2.15  Summary Statistics 

The following figures give summary statistics for the previous files.  Indicating 

identical trends, the top two charts provide summation results while the bottom two give 

an average.  Summation results are a sum of the respective counts, or runtimes, compared 

against other sums.  Average results are the average of the respective counts, or runtimes, 

compared against each other.  Figures 48 and 50 show accuracy performance of the 

prototype, and Figures 49 and 51 indicate runtime performance of the prototype. 

 

Figure 48:  Accuracy performance summary - sum. 

 

Figure 49:  Runtime performance summary – sum. 
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Figure 50:  Accuracy performance summary - average. 

 

Figure 51:  Runtime performance summary - average. 

The following figure compares correct and missed field counts for each of the real 

data files which are indicated by number and type.  These are the results for 150 records, 

the number of records for which the prototype consistently performed best.  This figure 

relates to the chart provided for the synthetic data files.  As is indicated in the chart, the 

many sparse fields in file seven provides an area for improvement. 
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Figure 52:  Results for thirteen real data files. 

5.3  Runtime 

Due to the highly configurable nature of the prototype, it is difficult to propose an 

encompassing runtime analysis in an understandable and concise manner.  What can be 

provided are the two factors that determine the runtime’s theoretical upper bound:  the 

record length and the number of records examined.  The most computationally intensive 

step is the identification stage when PF are located using a combinatoric approach that 

considers the sequence of characters from all the available records corresponding to each 

possible start position and length.  This indicates that the number of sampled records 

multiplied by the square of the record length is the computational upper bound of the 

layout engine.  Of course, this is different than the actual bound due to implemented 
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heuristics described in Section 4.1.  The runtimes provided for each of the thirteen files 

indicate that the run time is primarily influenced by record length and secondarily by the 

number of records.  Timings for other computational steps, with the exception of finding 

record length in fully fixed files, require immeasurably small amounts of time to 

complete. 
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6.  CLOSING REMARKS 

6.1  Conclusions 

As defined in the introduction, data file layout inference is the process of 

determining the organizational properties and characteristics, or layout, associated with a 

data file.  Character encoding, delimiting characters, file type, and record structure are all 

important features of data file layouts as they must be known if any data is to be extracted 

from a file.  Within this paper, an approach has been defined for the automatic detection 

of these properties.  This suggested approach has been implemented as a working 

prototype from which results have been obtained.  Beyond implementing the proposed 

methodologies for recognition of the various layout characteristics, the layout engine has 

also been architected in a general and extensible manner.  This provides an extensible 

way to add or change various components of the prototype (e.g., additional content types, 

other forms of evidence, and new methods for analysis).   The accuracy results returned 

by the layout engine indicate the correctness of the suggested approach.  Overall, the 

results are accurate more than 85% of the time which is better than or equal to the results 

of the IE and NER systems which provide the most comparable technologies.  For 

primary fields, fields that are not sparse or that do not contain extraneous information, the 

results are significantly better as evidenced by the results for files 1 and 2, among others. 

The impact of non-primary fields on the results suggests the importance of the 

assumptions presented in the introduction.  Of particular note is the second assumption 

which requires that errors (i.e., unrecognizable data) represent a statistically insignificant 

portion of the data.  When a field is sparse, mostly blank entries, each unrecognizable 

entry makes it much more difficult to accurately assign a content type to the 
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corresponding field.  Taken further, this suggests that the approach described for the 

layout inference problem may not return the correct layout all of the time.  There are files 

that do not conform to the statistical assumptions made by the given approach, data files 

that even humans might struggle with, that the layout engine cannot handle.  An example 

of which could be records with isolated middle initials or number fields such as a phone 

number or zip code among several other number fields. 

6.2  Future Work 

While the described approach has been shown to be appropriate, even providing 

encouraging results, for the layout inference problem, certain aspects remain to be 

explored.  From relatively minor expansions on existing logic to drastic revisions of the 

approach there are multiple possibilities to consider that could improve performance or 

expand capabilities. 

6.2.1  Content Types 

One candidate for future work involves content types and their associated domain 

definitions.  The oracles created for the existing prototype only recognize USA personal 

name and address type fields.  This set can be expanded to include other content types 

and other nationalities.   

Expanding the set to include other content types might introduce another sub 

problem, specifically identification of the type of data stored in the file.  Beyond 

recognition of individual fields, a more general data classification might be possible (e.g., 

a file containing records of purchase orders or business names and addresses).   
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Internationalization is another challenge worth considering.  By decoupling the 

recognition features provided by the oracles from the analysis algorithms, it is expected 

that such a transition would be a straightforward process with the only modifications to 

be to define and add new oracles.   

Beyond expanding the domain of the layout engine, another benefit of additional 

content types is that they can positively affect accuracy.  This is evidenced by improved 

prototype results from the inclusion of more oracles (e.g., when the Boolean oracle was 

added some directional false positives were updated to the correct type).  This is a direct 

consequence of the extra evidence provided by the new oracle (i.e., domain definition, 

oracle ranking, and any applicable analysis steps). Once the recognition functionality is 

properly defined and generated, any necessary oracles can be easily included in the 

prototype via the configuration file by specifying the oracle’s qualified name along with 

any associated parameters. 

When creating an oracle for a content type, the domain definition is an important 

component and thus is a topic of continued work.  An incomplete domain definition can 

cause an oracle to under-perform generating an incorrect layout.  Using the existing 

prototype as a reference, this problem can be shown in two specific instances.  First was a 

first name field that included many partial business names.  Second was a street name 

field that included the partial entry “PO Box.”  While the address line one composite 

oracle was defined to handle post office boxes, the simple street name oracle was not.  

These instances provide examples of potentially incomplete domain definitions that if 

updated may improve the prototype’s results. 
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An unexplored area that could provide significant improvements in accuracy, 

particularly by better differentiating between correct fields and false positives, is the 

ranking of domain entries.  If each entry has a corresponding ranking associated with it, 

then the evidence can include a more direct indication of reliability in conjunction with 

the already acquired counts.  This type of evidence seems appropriate given the statistical 

assumptions dictated by the approach.  In fact recording the probabilities of the entries 

could eliminate the need for many instances of vertical analysis.  With this approach the 

difficulty lies in determining the correct probabilities for each entry.  For some content 

types such as names, available census data makes this process very easy, but for others 

such as number fields such a ranking may prove to be meaningless if not impossible.  The 

concept of ranked entries is partially included in the prototype, but unintentionally and 

not explicitly.  Certain oracles’ domains do not include all possible entries because it is 

either impossible or unnecessary.  In this case the included entries are obviously ranked 

higher than the excluded entries.  Intentionally or necessarily restricting an oracle’s 

domain definition can cause problems though and should not be considered a direct 

substitute to individual domain entry ranking. 

Specific to the prototype, both the combinatorics and vertical analysis processing 

stages present an area for computational improvement.  Specifically these analyses are 

embarrassingly parallel as each oracle is considered independently of the others.  While 

currently designed to run on a single processor these processing stages provide a simple 

opportunity to divide the workload among multiple processing units.  Previous analysis 

including character encoding and delimiter recognition could also be divided among 

multiple computational machines, but not as easily as these two stages.  Parallelization 
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provides an obvious opportunity to significantly reduce the runtime required by the brute 

force, combinatoric, search without any effect on the analysis performed. 

6.2.2  Additional Evidence 

6.2.2.1  Blank Threshold 

The current prototype includes the concept of a minimum threshold.  Essentially 

this property is used to specify the minimum valid count, as a percentage of non-blank 

records, required for a sequence of characters to be considered a potential field (PF).  

Another possible piece of evidence worth considering is the blank count.  By creating a 

blank threshold, a maximum number of blank entries as a percentage of the record count, 

any fields whose blank count is greater than or equal to this threshold could be eliminated 

or at least marked as uncertain due to a lack of statistical evidence. 

In order to test the potential relevance of this form of evidence, updates to the 

prototype were made in several analysis stages.  This was particularly necessary in order 

to be able to mark fields as uncertain.  To include this evidence, changes were made in 

the combinatoric, conflict resolution, and record update stages.  In the combinatoric, or 

counting, stage the blank counts were tallied and PF that did not comply with their 

corresponding blank threshold were marked as uncertain.  During the conflict resolution 

stage, these uncertain fields were not even considered as candidates for the record 

structure.  After conflict resolution, the record cleansing stage was invoked per the usual 

in order to remove inappropriate fields through contextual and cross-reference analysis.  

Once complete, the record update stage attempts to fill empty, unspecified, regions with 

available PF including those marked as uncertain, recycling such fields.  Once 
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accomplished the record cleansing stage is invoked again as the final step to analyze any 

updated fields.  These changes to the prototype were necessary to include the concept of 

uncertainty or ambiguity at a basic level. 

The following figures compare the prototype results for three instances:  without a 

blank threshold, eliminating all PF that exceed the blank threshold, and marking PF that 

exceed the blank threshold as uncertain.  Only the results for a few files that showed 

marked changes are included here.  The sample size was 150 records for each file.  The 

actual thresholds were user defined as seemed appropriate based on the minimum 

threshold, domain definitions, oracle rankings, etc… 

 

Figure 53:  Blank threshold results for File 3.  
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Figure 54:  Blank threshold results for File 4. 

 

Figure 55:  Blank threshold results for File 7. 
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Figure 56:  Blank threshold results for File 13. 

The usefulness of a blank threshold has only been briefly explored and as a 

consequence the presented results are introductory and coarse.  Current results indicate 

little to no change.  Proper integration of the additional evidence is probably yet to be 

attained within the layout engine and correct values for each threshold that provide the 

best statistical results are yet to be determined.  These characteristics define the blank 

threshold to be an area of continued work. 

6.2.2.2  Additional Sampling of Sparse Fields 

As discussed at various points throughout this paper, PF containing many blank 

entries are often prone to error.  Another possible approach, separate from a blank 

threshold, is to gather more data from the original data file.  This data would involve only 

the PF under consideration and thus the computationally intensive combinatoric analysis 

would be unnecessary, making the time footprint of further sampling relatively 

inconsequential.  The desired goal of further sampling would be to extract more non-

blank entries from the file lessening the impact of individual entries upon the result. 
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6.2.2.3  Ternary Oracle Output 

Another possible expansion of the prototype involves the oracles’ results.  As 

previously defined the oracles return a binary result.  The impact if this result were 

expanded to include three possible values (i.e., definitely not, possibly but not defined by 

this oracle, and definitely yes) could be significant.  Particularly it could be easier to 

identify incorrect PF based on just a few values.  This type of result would have a definite 

affect on the conflict resolution stage, and possibly on the analysis stages, which would 

have to be updated to handle this new type of evidence.  Also important is the assumption 

that allows for a certain amount of error in the data, and thus the definitely not result must 

be handled accordingly. 

6.2.2.4  Learning from the Data 

As many of the oracles are list based, performing validation by comparing an 

incoming entry against a list of known, valid values, another improvement to the process 

would be to update the list from entries encountered in the files examined.  Ideally, this 

would be one way to dynamically enhance the prototype’s reliability for ever changing 

content types such as name fields.  Other rule based oracle types could also profit from 

such an addition, specifically those that were adaptive in nature such as Hidden Markov 

Models or decision trees.  Not only could new values be learned, but if the list items or 

rules were ranked, as suggested in 6.2.1, then this value could be updated based on 

frequency counts acquired from the data.  Pulling usage statistics directly from the data 

might prove problematic though as some files might represent a very limited population 

and the rankings could be skewed.  If carefully designed to allow for small population 



 104 

sizes, the addition of expanding domains suggests the means by which to continually 

improve the layout engine without making any manual modifications. 

6.2.2.5  Feature Integration 

Feature collection is a generic term used here to describe the consideration of 

potentially disparate, relatively high level pieces of evidence.  This is a concept used 

heavily in many of the technologies common to IE and NER.  Essentially, this would be 

necessary when the information associated with a single PF is not enough to make a 

decision.  Instead several properties must be combined to identify the best solution.  The 

layout engine already uses this approach in the final analysis stage (i.e., contextual and 

cross-reference analysis) where the evidence from potentially multiple fields is compared 

to remove false positives from the record structure.  These forms of analysis define 

relationships among content types and use the rules of the association as extra evidence 

from which a better decision can be made.  Other eventualities must be considered where 

these relationship rules do not exist. 

A prime example involves data files that are sorted on a single field.  In this or 

similar situations a field may contain a single entry which due to domain overlap could 

equally well be identified as multiple types:  types with no other relational properties 

from which to make a decision.  While vertical analysis may be able to recognize this 

feature, it would be impossible at that stage to make a determination with respect to the 

correct course of action.  In this circumstance a higher, record level decision must be 

made combining information in a manner heretofore unconsidered and unattainable in the 

layout inference approach. 
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6.2.3  Testing 

Another refinement to explore is the sensitivity of individual content types.  

Current tests indicate the sensitivity of the prototype with respect to the record count, but 

this can be expanded to determine the number of values generally required to assign a 

content type to a field.  In considering this property the issue of domain overlap must also 

be allowed for.  It is required that not only the correct content type be identified, but also 

that the evidence be so overwhelming that other similar content types are not identified.  

This adds to the complexity in defining such an attribute.  Tests for a single type would 

necessarily involve all other content types as an appropriate value must that discriminates 

the individual type from all others. 

Due to restrictions associated with the usage of real data, testing on actual data 

files was regrettably limited.  While this corpus was supplemented with the synthetic data 

set, its value was limited, a fact already discussed.  Expanding the data set to include 

additional real data is an important next step for this project. 

6.2.4  Use Cases 

The current approach defines the functionality necessary to providing an 

automated solution.  As such it is ideal for a workflow or batch process, but other useful 

designs can be envisioned as well.  These designs would involve significant alterations to 

the architecture and possibly to the general approach as well. 

6.2.4.1  Interactive Use Case 

Between fully manual and fully automated approaches to the layout inference 

problem lie interactive approaches.  As human involvement increases, the level of 
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automation decreases.  The goal of this scenario is to find an equilibrium that optimally 

combines human intelligence with the computational abilities of a machine [46].  As 

manual interaction is often an expensive resource, it is important to limit the time users 

spend waiting on the system.  This requires modifications to the architecture.  One 

alteration is to decrease the runtime through adapted heuristics and thresholds and even 

smaller sample sizes.  Since a human is now involved, it is no longer necessary to 

emphasize high accuracy of the results.  It is instead possible to allow for more ambiguity 

in the intermediary results.  The fuzziness in an answer might become evident in field 

boundaries that are not entirely accurate or multiple content type listings for a single 

field.  Beyond actually improving runtime performance improvements can be simulated 

by taking advantage of the process’ iterative nature.  This entails providing intermediary 

results in stages, performing computations while the user alters and checks the results 

from the previous stage.  Any decrease in accuracy can easily be handled by a user while 

the layout engine quickly performs identification in a support role. 

6.2.4.2  Verification Use Case 

Another use case is to use the knowledge contained within the oracles to provide 

verification for existing layouts.  The primary result of the verification process could be 

statistical measures associated with each field as returned by the oracles and suggested 

revisions when the returned evidence is incompatible with the existing layout.  As the 

combinatoric stage is reduced or entirely unnecessary, the runtime of this process would 

be insignificant. 



 107 

6.3 Summary 

In summation, the layout inference problem is the recognition and reporting of 

certain structural and formatting properties associated with a structured data file.  In order 

to automate recognition, an approach has been described that is statistical in nature.  

Another key feature to this approach is the use of oracles as expert agents.  While 

building evidence at the various analysis stages throughout the process, these oracles play 

an important role in recognition.  Even though data files are prone to certain features that 

can make inference difficult (e.g., domain overlap and sparsely populated fields), the 

implemented prototype has shown the proposed approach to be an appropriate solution.  

This has been shown through the encouraging results acquired by running the prototype 

against both synthetic and real data sets.  Finally, in recognition of the potential of the 

proposed approach, several opportunities for improving or expanding the design have 

been suggested.  Ultimately, layout inference provides a challenging problem requiring a 

knowledge-based, adaptive solution. 
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APPENDIX A.  CONFIGURATION FILE 

Following is an example of a configuration file encoded in XML and used to 

define the prototype at instantiation.  Values associated with each parameter can be 

viewed as the default values for the prototype. 

<config> 

  <global_parameters> 

    <parameter>PrintTextOutput:TRUE</parameter> 

    <parameter>RecordsToTest:20</parameter> 

    <parameter>AcceptableRecordCount:2</parameter> 

    <parameter>OptimalRecordCount:150</parameter> 

    <parameter>SamplePartitionCount:5</parameter> 

    <parameter>HeaderRecordsToSkip:5</parameter> 

    <parameter>SampleSize:100000</parameter> 

    <parameter>EbcdicPercentage:0.10</parameter> 

    <parameter>LineUpPercentage:0.65</parameter> 

    <parameter>HeaderLabelSourceFile:HeaderLabels.dat</parameter> 

    <parameter>recordDelimiter:10;13;13,10</parameter> 

    <parameter>fieldDelimiter:9;44;124</parameter> 

    <parameter>textDelimiter:34;39</parameter> 

  </global_parameters> 

  <oracles> 

    <oracle> 

      <qualified_name>oracles.NamePrefixOracle</qualified_name> 

      <rank>250</rank> 

      <parameters> 

        <parameter>TypeName:name prefix</parameter> 

        <parameter>MinimumSourceFile:/data/NamePrefix_Limited.dat</parameter> 

        <parameter>MaximumSourceFile:/data/NamePrefix_CompleteSorted.dat</parameter> 

        <parameter>MaximumLength:25</parameter> 

        <parameter>MinimumThreshold:0.68</parameter> 

        <parameter>MaximumBlankPercentage:0.98</parameter> 

        <parameter>MaximumNumberPercentage:0.95</parameter> 

        <parameter>Grouping:1</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.FirstNameOracle</qualified_name> 

      <rank>1000</rank> 

      <parameters> 

        <parameter>TypeName:first name</parameter> 

        <parameter>MinimumSourceFile:/data/FN_Top2000.dat</parameter> 

        <parameter>MaximumSourceFile:/data/FN_13785.dat</parameter> 

        <parameter>MaximumLength:50</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>MaximumBlankPercentage:0.15</parameter> 

        <parameter>Grouping:1</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.MiddleNameOracle</qualified_name> 

      <rank>500</rank> 

      <parameters> 

        <parameter>TypeName:middle name</parameter> 

        <parameter>MaximumLength:0</parameter> 

        <parameter>MinimumThreshold:0.90</parameter> 

        <parameter>MaximumBlankPercentage:1.00</parameter> 

        <parameter>Grouping:1</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.LastNameOracle</qualified_name> 
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      <rank>1000</rank> 

      <parameters> 

        <parameter>TypeName:last name</parameter> 

        <parameter>MinimumSourceFile:/data/LN_Top2000.dat</parameter> 

        <parameter>MaximumSourceFile:/data/LN_88698.dat</parameter> 

        <parameter>MaximumLength:50</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>MaximumBlankPercentage:0.15</parameter> 

        <parameter>Grouping:10</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.NameSuffixOracle</qualified_name> 

      <rank>250</rank> 

      <parameters> 

        <parameter>TypeName:name suffix</parameter> 

        <parameter>MinimumSourceFile:/data/NameSuffix_Limited.dat</parameter> 

        <parameter>MaximumSourceFile:/data/NameSuffix_CompleteSorted.dat</parameter> 

        <parameter>MaximumLength:25</parameter> 

        <parameter>MinimumThreshold:0.70</parameter> 

        <parameter>MaximumBlankPercentage:0.98</parameter> 

        <parameter>MaximumNumberPercentage:0.95</parameter> 

        <parameter>Grouping:10</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.FullNameOracle</qualified_name> 

      <rank>1000</rank> 

      <parameters> 

        <parameter>TypeName:full name</parameter> 

        <parameter>MaximumLength:60</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>MaximumBlankPercentage:0.15</parameter> 

        <parameter>Grouping:11</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.StreetNumberOracle</qualified_name> 

      <rank>30</rank> 

      <parameters> 

        <parameter>TypeName:street number</parameter> 

        <parameter>MaximumLength:15</parameter> 

        <parameter>MinimumThreshold:0.50</parameter> 

        <parameter>MaximumBlankPercentage:0.25</parameter> 

        <parameter>Grouping:100</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.DirectionalOracle</qualified_name> 

      <rank>50</rank> 

      <parameters> 

        <parameter>TypeName:directional</parameter> 

        <parameter>MaximumLength:20</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>MaximumBlankPercentage:1.00</parameter> 

        <parameter>Grouping:100</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.StreetNameOracle</qualified_name> 

      <rank>750</rank> 

      <parameters> 

        <parameter>TypeName:street name</parameter> 

        <parameter>MinimumSourceFile:/data/StreetNames_Top800.dat</parameter> 

        <parameter>MaximumSourceFile:/data/StreetNames_Top50000.dat</parameter> 

        <parameter>MaximumLength:50</parameter> 

        <parameter>MinimumThreshold:0.65</parameter> 

        <parameter>MaximumBlankPercentage:0.50</parameter> 

        <parameter>Grouping:100</parameter> 

      </parameters> 

    </oracle> 
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    <oracle> 

      <qualified_name>oracles.StreetSuffixOracle</qualified_name> 

      <rank>750</rank> 

      <parameters> 

        <parameter>TypeName:street suffix</parameter> 

        <parameter>MaximumSourceFile:/data/StreetSuffixes_CompleteSorted.dat</parameter> 

        <parameter>MaximumLength:35</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>MaximumBlankPercentage:0.80</parameter> 

        <parameter>Grouping:100</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.AddressLineOneOracle</qualified_name> 

      <rank>1000</rank> 

      <parameters> 

        <parameter>TypeName:address line one</parameter> 

        <parameter>MaximumLength:60</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>MaximumBlankPercentage:0.15</parameter> 

        <parameter>Grouping:100</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.UnitDesignatorOracle</qualified_name> 

      <rank>500</rank> 

      <parameters> 

        <parameter>TypeName:unit designator</parameter> 

        <parameter>MaximumSourceFile:/data/UnitDesignator_CompleteSorted.dat</parameter> 

        <parameter>MaximumLength:35</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>MaximumBlankPercentage:1.00</parameter> 

        <parameter>Grouping:100</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.SecondaryRangeNumberOracle</qualified_name> 

      <rank>20</rank> 

      <parameters> 

        <parameter>TypeName:unit number</parameter> 

        <parameter>MaximumLength:15</parameter> 

        <parameter>MinimumThreshold:0.10</parameter> 

        <parameter>MaximumBlankPercentage:1.00</parameter> 

        <parameter>Grouping:100</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.AddressLineTwoOracle</qualified_name> 

      <rank>800</rank> 

      <parameters> 

        <parameter>TypeName:address line two</parameter> 

        <parameter>MaximumLength:50</parameter> 

        <parameter>MinimumThreshold:0.15</parameter> 

        <parameter>MaximumBlankPercentage:1.00</parameter> 

        <parameter>Grouping:100</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.AddressLineOracle</qualified_name> 

      <rank>1000</rank> 

      <parameters> 

        <parameter>TypeName:address line</parameter> 

        <parameter>MaximumLength:75</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>MaximumBlankPercentage:0.15</parameter> 

        <parameter>Grouping:100</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.CityNameOracle</qualified_name> 

      <rank>1000</rank> 
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      <parameters> 

        <parameter>TypeName:city</parameter> 

        <parameter>MinimumSourceFile:/data/Cities_Top7500.dat</parameter> 

        <parameter>MaximumSourceFile:/data/Cities_CompleteSorted.dat</parameter> 

        <parameter>MaximumLength:50</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>MaximumBlankPercentage:0.10</parameter> 

        <parameter>Grouping:1000</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.StateOracle</qualified_name> 

      <rank>800</rank> 

      <parameters> 

        <parameter>TypeName:state</parameter> 

        <parameter>MaximumSourceFile:/data/States_CompleteSorted.dat</parameter> 

        <parameter>MaximumLength:50</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>MaximumBlankPercentage:0.10</parameter> 

        <parameter>Grouping:1000</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.ZipcodeOracle</qualified_name> 

      <rank>500</rank> 

      <parameters> 

        <parameter>TypeName:zipcode</parameter> 

     <parameter>CrossReferenceSourceFile:/data/StateCityZip_SortedByState.dat</parameter> 

        <parameter>MaximumSourceFile:/data/ZipCodes_CompleteSorted.dat</parameter> 

        <parameter>MaximumLength:15</parameter> 

        <parameter>MinimumThreshold:0.60</parameter> 

        <parameter>CrossReferenceThreshold:0.70</parameter> 

        <parameter>MaximumBlankPercentage:0.20</parameter> 

        <parameter>Grouping:1000</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.PhoneNumberOracle</qualified_name> 

      <rank>250</rank> 

      <parameters> 

        <parameter>TypeName:phone number</parameter> 

        <parameter>MaximumSourceFile:/data/NpaNxxStateZip.dat</parameter> 

        <parameter>MaximumLength:20</parameter> 

        <parameter>MinimumThreshold:0.50</parameter> 

        <parameter>MaximumBlankPercentage:0.98</parameter> 

        <parameter>Grouping:10000</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.EmailOracle</qualified_name> 

      <rank>800</rank> 

      <parameters> 

        <parameter>TypeName:email</parameter> 

        <parameter>MaximumSourceFile:/data/EMAIL-US-TLD.dat</parameter> 

        <parameter>MaximumLength:100</parameter> 

        <parameter>MinimumThreshold:0.15</parameter> 

        <parameter>MaximumBlankPercentage:1.00</parameter> 

        <parameter>Grouping:10000</parameter> 

      </parameters> 

    </oracle> 

    <oracle> 

      <qualified_name>oracles.BooleanOracle</qualified_name> 

      <rank>75</rank> 

      <parameters> 

        <parameter>TypeName:boolean</parameter> 

        <parameter>MaximumLength:1</parameter> 

        <parameter>MinimumThreshold:0.95</parameter> 

        <parameter>MaximumBlankPercentage:0.10</parameter> 

        <parameter>Grouping:10000</parameter> 

      </parameters> 

    </oracle> 
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  </oracles> 

</config> 
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APPENDIX B.  OUTPUT 

Included in this appendix are example outputs for a fully delimited and a hybrid 

file (the output for a fully fixed file is essentially the same as that of a hybrid file).  As 

mentioned the end user should determine the correct format for the output.  Currently the 

prototype includes functionality for a formatted text output and XML.  While the 

meaning of most of the headings is evident some of the abbreviations contained in the 

formatted text output are not necessarily intuitive. 

 J is the justification of the associated field.  Can assume values ‘L’ for left, 

‘R’ for right, and ‘C’ for center justified. 

 SP is the start position of the associated field:  character offset for both fixed 

file types and relative field position for fully delimited files. 

 EP is the end position of the associated field:  character offset for both fixed 

file types and not applicable for fully delimited files. 

 LEN is the length, EP minus SP plus one, of the associated field:  character 

count for both fixed file types and not applicable for fully delimited files. 

 PC is the primary count determined during the field identification stage. 

 SC is the secondary count determined after any applicable oracle’s domains 

have been reduced to address the domain overlap problem.  The value is 

negative if the oracle’s domain is not reduced. 

 BC is the blank count.  This is how many fields contain only whitespace. 

Given the entry: 

   1.)   full name               L    1   27  27 --   150  141    0 
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…the first field in the record structure has been associated with the “full name” content 

type.  The field is left justified, begins at offset 1, ends at position 27, has length 27, has a 

primary count of 150, a secondary count of 141, and there were no blank entries. 

B.1  Hybrid File 

The following is the text output of the prototype for a hybrid file. 

FILE NAME: Hybrid.txt 

RUN TIME: 13922 

CHARACTER ENCODING: ASCII 

FILE TYPE: 2 - hybrid 

HEADER: false 

RECORD DELIMITER 

  POSSIBLE: 13,10;13;10 

  FOUND: 13,10 

FIELD DELIMITER 

  POSSIBLE: 9;44;124 

  FOUND:  

TEXT DELIMITER ( string literals ) 

  POSSIBLE: 34;39 

  FOUND:  

RECORDS EXAMINED: 150 

RECORD LENGTH: 107 

LAYOUT --- 

       CONTENT TYPE NAME         J   SP   EP LEN       PC   SC   BC 

   1.)   full name               L    1   27  27 --   150  141    0 

   2.)   address line one        L   28   54  27 --   128   85    0 

   3.)   address line two        L   55   81  27 --    80   -1   70 

   4.)   city                    L   82   99  18 --   150  100    0 

   5.)   state                   L  100  102   3 --   150   -1    0 

   6.)   zipcode                 L  103  107   5 --   150   -1    0 

---------- 

 

POTENTIAL FIELD LOCATIONS --- 

          CONTENT TYPE NAME         J   SP   EP LEN       PC   SC   BC 

  4-  1.)   last name               C    8   27  20 --    93   77    0 

  4-  2.)   last name               L   33   37   5 --   149   66    0 

  6-  1.)   full name               L    1   27  27 --   150  141    0 

  7-  1.)   street number           R   16   29  14 --   118   -1    0 

  7-  2.)   street number           L   28   31   4 --   150   -1    0 

  7-  3.)   street number           L   31   32   2 --   137   -1   13 

  7-  4.)   street number           L   60   74  15 --    80   -1   70 

  7-  5.)   street number           L  103  107   5 --   150   -1    0 

  8-  1.)   directional             L   33   37   5 --   149   -1    0 

  9-  1.)   street name             L   82   99  18 --   119   26    0 

 10-  1.)   street suffix           L   56   57   2 --    80   -1   70 

 11-  1.)   address line one        L   28   54  27 --   128   85    0 

 13-  1.)   unit number             L    1    4   4 --   150   -1    0 

 13-  2.)   unit number             L    5    5   1 --   141   -1    9 

 13-  3.)   unit number             L    6    6   1 --   121   -1   29 

 13-  4.)   unit number             L    7    7   1 --   107   -1   43 

 13-  5.)   unit number             L    8    8   1 --   111   -1   39 

 13-  6.)   unit number             L    9    9   1 --   130   -1   20 

 13-  7.)   unit number             L   10   10   1 --   140   -1   10 

 13-  8.)   unit number             L   11   11   1 --   146   -1    4 

 13-  9.)   unit number             L   12   12   1 --   124   -1   26 

 13- 10.)   unit number             L   13   13   1 --   110   -1   40 

 13- 11.)   unit number             L   14   14   1 --    84   -1   66 

 13- 12.)   unit number             R   16   29  14 --   118   -1    0 

 13- 13.)   unit number             L   28   31   4 --   149   -1    0 
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 13- 14.)   unit number             L   28   32   5 --   150   -1    0 

 13- 15.)   unit number             L   33   35   3 --   150   -1    0 

 13- 16.)   unit number             L   36   38   3 --   149   -1    1 

 13- 17.)   unit number             L   39   40   2 --   150   -1    0 

 13- 18.)   unit number             L   41   41   1 --   143   -1    7 

 13- 19.)   unit number             L   42   42   1 --   138   -1   12 

 13- 20.)   unit number             L   43   43   1 --   122   -1   28 

 13- 21.)   unit number             L   44   44   1 --   118   -1   32 

 13- 22.)   unit number             L   45   45   1 --   124   -1   26 

 13- 23.)   unit number             L   46   46   1 --   126   -1   24 

 13- 24.)   unit number             L   47   47   1 --   138   -1   12 

 13- 25.)   unit number             L   48   48   1 --   122   -1   28 

 13- 26.)   unit number             L   49   49   1 --   118   -1   32 

 13- 27.)   unit number             L   50   50   1 --   100   -1   50 

 13- 28.)   unit number             L   51   51   1 --    74   -1   76 

 13- 29.)   unit number             L   52   52   1 --    60   -1   90 

 13- 30.)   unit number             C   54   55   2 --    76   -1   56 

 13- 31.)   unit number             L   55   57   3 --    80   -1   70 

 13- 32.)   unit number             L   60   74  15 --    80   -1   70 

 13- 33.)   unit number             L   82   83   2 --   150   -1    0 

 13- 34.)   unit number             L   84   84   1 --   147   -1    3 

 13- 35.)   unit number             L   85   85   1 --   141   -1    9 

 13- 36.)   unit number             L   86   86   1 --   137   -1   13 

 13- 37.)   unit number             L   87   87   1 --   131   -1   19 

 13- 38.)   unit number             L   88   88   1 --   107   -1   43 

 13- 39.)   unit number             L   89   89   1 --    83   -1   67 

 13- 40.)   unit number             R   98   99   2 --   147   -1    0 

 13- 41.)   unit number             L  100  107   8 --   150   -1    0 

 14-  1.)   address line two        L   55   81  27 --    80   -1   70 

 15-  1.)   address line            L   28   54  27 --   128   85    0 

 16-  1.)   city                    L   33   37   5 --   113   66    0 

 16-  2.)   city                    L   82   99  18 --   150  100    0 

 17-  1.)   state                   L   19   20   2 --     1   -1  149 

 17-  2.)   state                   R   98  100   3 --   147   -1    0 

 17-  3.)   state                   L  100  102   3 --   150   -1    0 

 18-  1.)   zipcode                 L  103  107   5 --   150   -1    0 

 21-  1.)   boolean                 L   18   18   1 --     4   -1  146 

----------------------------- 

 

CONTENT TYPES: 

name prefix 

first name 

middle name 

last name 

name suffix 

full name 

street number 

directional 

street name 

street suffix 

address line one 

unit designator 

unit number 

address line two 

address line 

city 

state 

zipcode 

phone number 

email 

boolean 

 

The following is the XML output of the prototype for a hybrid file. 

<?xml version="1.0" encoding="UTF-8"?> 

<layout> 

  <filename>Hybrid.txt</filename> 

  <runtime>13547</runtime> 
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  <encoding>ASCII</encoding> 

  <filetype>2</filetype> 

  <header>FALSE</header> 

  <delimiters> 

    <record> 

      <possible>13,10;13;10</possible> 

      <found>13,10</found> 

    </record> 

    <field> 

      <possible>9;44;124</possible> 

      <found></found> 

    </field> 

    <textquote> 

      <possible>34;39</possible> 

      <found></found> 

    </textquote> 

  </delimiters> 

  <recordsexamined> 

    <count>150</count> 

  </recordsexamined> 

  <contenttypes> 

    <type>name prefix</type> 

    <type>first name</type> 

    <type>middle name</type> 

    <type>last name</type> 

    <type>name suffix</type> 

    <type>full name</type> 

    <type>street number</type> 

    <type>directional</type> 

    <type>street name</type> 

    <type>street suffix</type> 

    <type>address line one</type> 

    <type>unit designator</type> 

    <type>unit number</type> 

    <type>address line two</type> 

    <type>address line</type> 

    <type>city</type> 

    <type>state</type> 

    <type>zipcode</type> 

    <type>phone number</type> 

    <type>email</type> 

    <type>boolean</type> 

  </contenttypes> 

  <record> 

    <length>107</length> 

    <fields> 

      <field> 

        <position> 

          <start>1</start> 

          <end>27</end> 

          <length>27</length> 

        </position> 

        <headerlabel> 

          <label></label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>full name</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>150</primary> 

          <secondary>141</secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>28</start> 

          <end>54</end> 

          <length>27</length> 
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        </position> 

        <headerlabel> 

          <label></label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>address line one</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>128</primary> 

          <secondary>85</secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>55</start> 

          <end>81</end> 

          <length>27</length> 

        </position> 

        <headerlabel> 

          <label></label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>address line two</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>80</primary> 

          <secondary></secondary> 

          <blankcount>70</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>82</start> 

          <end>99</end> 

          <length>18</length> 

        </position> 

        <headerlabel> 

          <label></label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>city</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>150</primary> 

          <secondary>100</secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>100</start> 

          <end>102</end> 

          <length>3</length> 

        </position> 

        <headerlabel> 

          <label></label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>state</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>150</primary> 

          <secondary></secondary> 
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          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>103</start> 

          <end>107</end> 

          <length>5</length> 

        </position> 

        <headerlabel> 

          <label></label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>zipcode</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>150</primary> 

          <secondary></secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

    </fields> 

  </record> 

  <potentialfieldlocations> 

    … 

  </potentialfieldlocations> 

</layout> 

 

B.2  Fully Delimited File 

The following is the text output of the prototype for a fully delimited file. 

FILE NAME: Delimited.txt 

RUN TIME: 266 

CHARACTER ENCODING: ASCII 

FILE TYPE: 3 - fully delimited 

HEADER: true 

RECORD DELIMITER 

  POSSIBLE: 13,10;13;10 

  FOUND: 13,10 

FIELD DELIMITER 

  POSSIBLE: 9;44;124 

  FOUND: 44 

TEXT DELIMITER ( string literals ) 

  POSSIBLE: 34;39 

  FOUND:  

RECORDS EXAMINED: 118 

RECORD LENGTH: 12 

LAYOUT --- 

       CONTENT TYPE NAME           SP       PC   SC   BC 

   1.)   * UNSPECIFIED *            1 --     0   -1    0 

   2.)   name prefix                2 --    43   -1   75 

   3.)   first name                 3 --   118  113    0 

   4.)   middle name                4 --     0   -1    0 

   5.)   last name                  5 --   118  113    0 

   6.)   name suffix                6 --    15   -1  103 

   7.)   address line one           7 --   112   75    0 

   8.)   city                       8 --   118   81    0 

   9.)   state                      9 --   118   -1    0 

  10.)   zipcode                   10 --   118   -1    0 

  11.)   * UNSPECIFIED *           11 --     0   -1    0 
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  12.)   * UNSPECIFIED *           12 --     0   -1    0 

---------- 

 

POTENTIAL FIELD LOCATIONS --- 

          CONTENT TYPE NAME           SP       PC   SC   BC 

  1-  1.)   name prefix                2 --    43   -1   75 

  2-  1.)   first name                 3 --   118  113    0 

  2-  2.)   first name                 5 --   101   63    0 

  4-  1.)   last name                  3 --   113   58    0 

  4-  2.)   last name                  5 --   118  113    0 

  5-  1.)   name suffix                6 --    15   -1  103 

  7-  1.)   street number              1 --   118   -1    0 

  7-  2.)   street number             10 --   118   -1    0 

  7-  3.)   street number             11 --   118   -1    0 

  9-  1.)   street name                3 --   118   45    0 

  9-  2.)   street name                5 --   114  101    0 

  9-  3.)   street name                8 --    94   26    0 

 11-  1.)   address line one           7 --   112   75    0 

 13-  1.)   unit number                1 --   118   -1    0 

 13-  2.)   unit number                4 --   118   -1    0 

 13-  3.)   unit number                6 --     8   -1  103 

 13-  4.)   unit number               10 --   118   -1    0 

 13-  5.)   unit number               11 --   118   -1    0 

 13-  6.)   unit number               12 --   118   -1    0 

 15-  1.)   address line               7 --   112   75    0 

 16-  1.)   city                       3 --    99   60    0 

 16-  2.)   city                       5 --   103   87    0 

 16-  3.)   city                       8 --   118   81    0 

 17-  1.)   state                      9 --   118   -1    0 

 18-  1.)   zipcode                   10 --   118   -1    0 

----------------------------- 

 

CONTENT TYPES: 

name prefix 

first name 

middle name 

last name 

name suffix 

full name 

street number 

directional 

street name 

street suffix 

address line one 

unit designator 

unit number 

address line two 

address line 

city 

state 

zipcode 

phone number 

email 

boolean 

 

The following is the XML output of the prototype for a fully delimited file. 

<?xml version="1.0" encoding="UTF-8"?> 

<layout> 

  <filename>Delimited.txt</filename> 

  <runtime>516</runtime> 

  <encoding>ASCII</encoding> 

  <filetype>3</filetype> 

  <header>TRUE</header> 

  <delimiters> 

    <record> 

      <possible>13,10;13;10</possible> 

      <found>13,10</found> 
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    </record> 

    <field> 

      <possible>9;44;124</possible> 

      <found>44</found> 

    </field> 

    <textquote> 

      <possible>34;39</possible> 

      <found></found> 

    </textquote> 

  </delimiters> 

  <recordsexamined> 

    <count>118</count> 

  </recordsexamined> 

  <contenttypes> 

    <type>name prefix</type> 

    <type>first name</type> 

    <type>middle name</type> 

    <type>last name</type> 

    <type>name suffix</type> 

    <type>full name</type> 

    <type>street number</type> 

    <type>directional</type> 

    <type>street name</type> 

    <type>street suffix</type> 

    <type>address line one</type> 

    <type>unit designator</type> 

    <type>unit number</type> 

    <type>address line two</type> 

    <type>address line</type> 

    <type>city</type> 

    <type>state</type> 

    <type>zipcode</type> 

    <type>phone number</type> 

    <type>email</type> 

    <type>boolean</type> 

  </contenttypes> 

  <record> 

    <length>12</length> 

    <fields> 

      <field> 

        <position> 

          <start>1</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>Seq#</label> 

          <probability>1.00</probability> 

        </headerlabel> 

        <contenttype>* UNSPECIFIED *</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>0</primary> 

          <secondary></secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>2</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>NPrefix</label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>name prefix</contenttype> 

        <justification>LEFT</justification> 
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        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>43</primary> 

          <secondary></secondary> 

          <blankcount>75</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>3</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>FName</label> 

          <probability>0.15</probability> 

        </headerlabel> 

        <contenttype>first name</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>118</primary> 

          <secondary>113</secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>4</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>MI</label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>middle name</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>0</primary> 

          <secondary></secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>5</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>LName</label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>last name</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>118</primary> 

          <secondary>113</secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>6</start> 
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          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>NSuffix</label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>name suffix</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>15</primary> 

          <secondary></secondary> 

          <blankcount>103</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>7</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>Address1</label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>address line one</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>112</primary> 

          <secondary>75</secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>8</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>City</label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>city</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>118</primary> 

          <secondary>81</secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>9</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>ST</label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>state</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 
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          <primary>118</primary> 

          <secondary></secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>10</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>Zipcode</label> 

          <probability>0.00</probability> 

        </headerlabel> 

        <contenttype>zipcode</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>118</primary> 

          <secondary></secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>11</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>Salary</label> 

          <probability>1.00</probability> 

        </headerlabel> 

        <contenttype>* UNSPECIFIED *</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>0</primary> 

          <secondary></secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

      <field> 

        <position> 

          <start>12</start> 

          <end></end> 

          <length></length> 

        </position> 

        <headerlabel> 

          <label>Date</label> 

          <probability>1.00</probability> 

        </headerlabel> 

        <contenttype>* UNSPECIFIED *</contenttype> 

        <justification>LEFT</justification> 

        <fillcharacter></fillcharacter> 

        <validcount> 

          <primary>0</primary> 

          <secondary></secondary> 

          <blankcount>0</blankcount> 

        </validcount> 

        <certain>FALSE</certain> 

      </field> 

    </fields> 

  </record> 

  <potentialfieldlocations> 

    … 

  </potentialfieldlocations></layout>



 

 

 


