
Chapter 2

Linear Logic for Narrative Structure

2.1 Introduction

What makes up a story? In computer science research, this question has been invoked re-
peatedly by artificial intelligence and computational linguistics researchers. The moti-
vation for answering it includes several potential applications: autonomous agents that
can collaborate on building stories with people (interactive storytelling) [CCM02, MS99];
computational understanding of narrative structure from natural language text (narra-
tive extraction) [CJ08]; and the automatic generation of stories, a kind of investigation on
the boundaries of computational creativity (narrative generation) [Mee76].

Besides these computational applications, understanding narratives can lend insight
into human learning and cognition: narratives are an important way that humans make
sense of the world around us [Her03, Bru90]. Narrative researchers have achieved
consensus that causality is an important aspect of stories for narrative models to cap-
ture [TS85, Ada89, MW00, Dah12], even if it only barely scratches the surface of inter-
esting facets of narrative [RFW09]. To understand causality in stories, we first need to be
able to break them apart into events between which causal relationship may be found.

As described in Chapter 1, we are interested not only in the structure of existing
stories but in systems that allow or describe collaborative construction of story. Under-
standing a story as made of separable pieces is a good first step for this purpose, too,
since narrative play involves at least one human mediating between story components.

In this chapter, we aim to give a foundational account of narrative systems. We
are interested in representations of narrative that can be interpreted by a computer for
the sake of analysis, generation, and interaction, while also using high-level language
constructs that are not bound by particular machine models.

We present intuitionistic linear logic (ILL) as a formalism to serve as the founda-
tion for modeling narratives and their structure. Linear logic, first devised by Gi-
rard [Gir87], was originally suggested as a suitable representation for narratives by
Bosser et al. [BCC10], whose work we largely recapitulate here.

15

Figure 2.1: Fabula versus Sujet in Memento

Diagram created by Steve Aprahamian, from https://en.wikipedia.org/wiki/File:Memento_
Timeline.png, used on the conditions of the Creative Commons license described therein.

2.2 Modeling Narratives
We aim to give a composable formalism for narrative, so we must make clear what
aspects of narrative we aim to make formal. In particular, we make the distinction
between fabula and sujet made by Russian formalists in the 1920s [Bro74]: the fabula
is the plot events, the “what happens” part of a story, whereas the sujet is the telling or
orchestration of story elements into a (usually linear) digestible tale. In this work we aim
only to formalize the fabula, while recognizing that there are many interesting research
questions in the formalization of sujet and relating fabula to sujet (see, for example, the
conflicting structure between the two in the film Memento) [Nol00] (see Figure 2.1).

The formal modeling of fabula has a long history in AI research, but until recently
has depended on ad-hoc, genre-specific ontologies such as Propp’s “morphology of a
folktale” [Pro10]. Instead, we would like the particular genre or conflict structure to be
reflected in the formalism, but not constrained by it. The core structure we would like to
constrain with the formalism instead includes things like causality, action, and change.
These properties are essential to enforcing coherence of a narrative [You99].

Folktales as a domain contain many interesting examples for the study of fabula,

16

since their tellings vary with every storyteller, but their component events remain rel-
atively consistent. Let us consider as an example the folktale The Three Little Pigs. This
folktale consists of the following narrative events:

1. The mother pig sends her three baby pigs away from home, warning them about
a big bad wolf.

2. The first pig builds a house out of straw.
3. The second pig builds a house out of sticks.
4. The third pig builds a house out of bricks.
5. The big bad wolf visits the straw house and blows the house down.
6. The big bad wolf visits the stick house and blows the house down.
7. The big bad wolf visits the brick house and attempts to blow it down, but cannot.

Even within formalization of fabula, there are many conflicting ideas about what
parts of this story to include in narrative state and how to model relationships between
these narrative elements. Some candidates for narrative components include:

• Characters in the story: the three little pigs, their mother, and the big bad wolf.
• Resources or props in the story that are needed to drive the story forward, such

as the straw, sticks, and bricks that the pigs use to build their houses, and subse-
quently the houses themselves.

• Relationships between any of the above entities: feelings of family and allyship
between the pigs; feelings of enmity between the pigs and the wolf; locations and
possessions of characters.

• Scenes, or story events, which require availability of the above story elements and
may change them. The first pig builds a house out of straw might be understood as
changing the state of the pig, the straw, and the house.

• Establishment of initial configurations for characters, resources, and relationships.
The first line of the story establishes the three little pigs, their mother, and the wolf
as characters in the story.

• Endings, or narrative goals established by the author. “Happily ever after” is a
common goal ending for fairy tales; in variants of The Three Little Pigs, the defeat
of the wolf is an important constant.

Finally, we may also need to represent relationships between scenes. These relation-
ships may not be represented explicitly by an author, but they are important for compu-
tational applications of story. For instance, in the context of interactive stories, we may
need to include or derive links between story scenes to represent alternatives. In the
context of story analysis, we may care about the ability to determine causal relationships
between scenes, as mentioned in the introduction.

17

2.2.1 Linear Logic by Example

Modeling a story in logic means mapping the above concepts to the constructs of logic,
which is to say propositions and the notion of derivability between propositions. Propo-
sitions can either be atomic or compound. An atomic proposition is something like “The
straw house is standing,” which we might abbreviate with the notation straw house.
Compound propositions are how we combine atomic propositions into more complex
statements, analogous to English usage of and, or, and implies to combine statements.
The logical analog of these conjoning words are the connectives.

The following linear logic proposition could model the story event of the wolf blow-
ing down the straw house:

wolf ⌦ straw house (wolf

The atomic propositions shown here are wolf and straw house. The connectives are
((“lolli,” linear logic implication) and ⌦ (“tensor,” linear logic conjunction). ⌦ binds
more tightly than (, so the rule can be read as, “If the wolf is present and the straw
house is standing, then transition to a state where (only) the wolf is present.”

Note that this reading avoids the word implies or an if-then reading, although we as-
serted that (is linear logic’s form of implication. In linear logic, derivability is defined
in such a way that it represents state change more than inference about permanent truth.
This mechanism lets us treat propositions as resources, or in this case, slices of narra-
tive state, and implication (embodied by derivability) can be read as replacement of one
piece of state with another.

Logical connectives need not always form compound propositions: for instance, the
“connective” 1 represents the empty or null resource, and we can use it to model the
removal, rather than replacement, of a piece of state. For instance, the following propo-
sition models removing the wolf from the story:

wolf (1

On the other hand, this proposition models introducing the wolf into the story from
out of thin air:

1 (wolf

Another connective in linear logic, & (“with”), allows us to represent choices be-
tween alternatives. The following proposition models a transition from the pig state
(representing a pig with no house) to either a straw, stick, or brick house:

pig (straw house & stick house & brick house

Note that we could equally well represent this choice-yielding event as instead a
choice between events:

(pig (straw house) & (pig (stick house) & (pig (brick house)

18

So far, all of these propositions are just syntax; we have not attempted to explain
what they mean in terms of logical derivability, except at an intuitive level. But one
of the more important omissions we have made is the status of these propositions that
represent story events: how do we intend to compose them?

Linear logical implications do not really accurately model concrete story events: they
instead describe a possible event that could occur given the fulfillment of the antecedent.
We are instead describing a story world, a set of possibilities that we intend to give rise
to a story or set of stories through logical deduction.

In this sense, we can imagine composing implications E1 . . . En representing story
events as the compound proposition

E1 ⌦ . . .⌦ En

meaning that all events are simultaneously available for use. However, if we have
two events A (B and A (C, and A is some narrative state that we only expect to
happen once, then one of the events will go unused, which is disallowed in linear logic.

Sometimes we want to enforce the usage of a given event because we are interested
in narrative drive: the idea that an author needs certain scenes to occur to fulfill certain
dramatic intent. In this case, the tensoring-together of narrative events should suffice,
and any conflicting scenes would need to be carefully crafted as alternatives (e.g. A (
B & C).

On the other hand, sometimes we are interested in modeling a more exploratory
possibility space where some events may not take place at all, and others may take place
multiple times. The unary connective ! gives us exactly this meaning: !A is a proposition
A that may be ignored or repeated. Thus, we can represent the more exploratory story
world as follows:

!E1 ⌦ . . .⌦!En

We hereafter refer to a proposition of the form !(A (B) as a rule. Since we may
refer to rules multiple times in a story, we will often name them using the syntax r : R,
where r is a name and R is a rule.

In the next section, we seek to clarify the meaning of these propositions and simplify
our representations by explaining them in terms of a few carefully-considered, meta-
logical principles.

2.3 Linear Logic

Any representation of fabula needs to include models of action and change, phenomena
for which many formalisms have been investigated over several decades [MH69, KS89,
Lam94]. The cited works effectively solve the variability problem by indexing every
proposition with a time parameter and modeling actions as incrementing that parame-
ter. As a consequence, they all need to explicitly manage inertia, or the fact that when a

19

rule describes changes of one part of the world state from time t to t+ 1, the remaining
parts of the world state are updated in t+ 1 to retain their state at time t.

Linear logic is an approach to the logical modeling of action and change that does
not depend on explicit time indexing. This approach has the advantage that it is possible
to conceive of distinct parts of the state changing independently of one another.

We note that, unlike Girard’s original formulation of logic, our chosen formulation
is intuitionistic in that we only consider sequents � ` A where A is a single proposition,
rather than a disjunction of multiple propositions. The intuitionistic version of linear
logic (ILL) was first presented by Girard and Lafont [GL87]. We select it mainly for
its computational interpretations as described by Andreoli [And92], although we note
that this choice may not be canonical, and classical linear logic bears investigating as an
alternative in future work.

Intuitionistic linear logic was later reformulated [CCP03] according to the method-
ology of logic design espoused by Gentzen and Martin-Löf [Gen35, ML96] in which in-
ference rules operate over judgments, or meta-logical syntax pertaining to propositions,
and inference rules also obey certain meta-theoretic properties that make soundness of
the logic easy to establish, and proof search within the logic easy to automate. This
methodology, which includes giving a sequent calculus formulation of the logic, is de-
scribed below.

First, we assert that to be a logic means to have a notion of consequence:

A1, . . . , An ` A

The above syntax can be read, “A is a consequence of A1, . . . , An,” where A and all
Ai are propositions (defined by the particular logic). Such a statement is called a sequent,
and an arbitrary collection of assumptions A1, . . . , An is often notated as � and called
the context.

A logic may have inference rules of the form

J1 . . . Jn
J

where each J and Ji is a sequent, the J at the root of the rule is the conclusion sequent,
and each Ji is a premise that must be satisfied in order for the inference to be valid.

A proof of sequent J is a composition of inference rules forming a tree whose leaves
are rules with no premises and whose root is J .

Finally, to count as a logic, the notion of consequence must be transitive; that is, if it
is possible to build proofs of � ` A and �

0, A ` C, then we can also build a proof of
�

0,� ` C.
This property, having a transitive notion of consequence, is also known as Admis-

sibility of Cut [Gen35]. It is a meta-property of a system of inference rules and part of
what gives it meaning. There are other such properties, called structural properties, that
have often been previously considered part of what it means to be a logic:1

1In the literature, the terminology “consequence relation” has sometimes implied these properties.
We depart from this tradition by using “consequence” without including weakening and contraction by

20

Weakening. If � ` C then �, A ` C: in other words, adding unneeded assumptions
does not affect derivability.

Contraction. If �, A,A ` C then �, A ` C: in other words, having two copies of a
proposition available is not any better than a single copy.

These properties encapsulate the idea that in a proof from assumptions, each as-
sumption may be used arbitrarily many times to reach the goal. Linear logic, however,
denies these properties, leading to a “use exactly once” treatment of assumptions in a
proof. Put another way, if ordinary logic treats the context � as a set of assumptions, in
linear logic � can be thought of as a multiset [Gir95] i.e. the multiplicity of assumptions
matters.

Thus linear logic’s notion of consequence � ` A embodies a sort of conservation
property, and can be read “Resources � may be transformed into A.” Connecting this
notion back to narrative, we can think of � as an initial narrative situation and A as a
narrative ending.

To include the ! connective in linear logic, we need to reintroduce a context that is
subject to weakening and contraction. If we change our basic judgment (sequent form)
to

�;� ` A

where assumptions in � may be weakened and contracted, then we have the machin-
ery we need to define !, effectively reintroducing ordinary, persistent notions of logical
fact into the by-default resource-oriented logic. In this sense, intuitionistic linear logic
can be thought of as a refinement on ordinary intuitionistic logic.

In this more foundational account of the logic, we can rewrite our story world rep-
resentation from Section 2.2.1 as simply a specification for the context �: instead of
imagining

!E1 ⌦ . . .⌦!En

as an assumed proposition in �, we can instead stipulate that

� = E1, . . . , En

We can now describe the mapping between story world and logical sequent that we
will use as our primary model of representation going forward. The sequent �;� ` A
represents a story world with rules (and persistent facts) in �, initial narrative configu-
ration described by �, and narrative goal (or story ending) A.

Now that we have sketched the judgmental framework in which we intend to model
story worlds, we can finally give the formal definition of linear logic as a sequent calcu-
lus.

default.

21

2.3.1 Intuitionistic Linear Logic: Sequent Calculus
In a sequent calculus, every connective is defined by two rules: instructions for how to
prove it when it appears on the right-hand side of the turnstile (`) in a sequent, and in-
structions for how to use it when it appears on the left-hand side of the turnstile. These
instructions come in the form of left and right inference rules. We now present the infer-
ence rules of linear logic that define the connectives we need for narrative modeling.

The ⌦ connective models simultaneous conjunction between two resources:

�;�1 ` A �;�2 ` B

�;�1,�2 ` A⌦ B
⌦R

�;�, A,B ` �

�;�, A⌦ B ` �
⌦L

From a proof search perspective, we read these inference rules from the bottom up.
So the right rule says that a proof of A ⌦ B can be formed from a context that can be
partitioned into pieces �1 and �2, which can prove A and B respectively. The left rule
says that an assumption of A ⌦ B can be interpreted as two separate assumptions, A
and B.

Note that the persistent context � is simply repeated in every sequent in this rule
(i.e. from a proof search perspective, it is passed unchanged to both subgoal sequents).
The � context will be “carried through” in this manner for all inference rules that do not
refer to it; that is, all rules except those defining !.

The rules for the tensorial unit, 1, are as follows:

�; · ` 1

1R
�;� ` �

�;�, 1 ` �
1L

The null resource may be proven only when the linear context � is empty, and it may
be used by simply removing it from the context.

The rules for implication (() follow a similar pattern to those for ⌦, except inverted
with respect the the left and right rule:

�;�, A ` B

�;� ` A (B
(R

�;�1 ` A �;�2, B ` �

�;�1,�2, A (B ` �
(L

The right rule for (says that to prove A (B, add A to our set of assumptions and
work on proving B. The left rule requires again that we partition the context into the
part that proves the antecedent A, and another part that, when given the consequent B,
continues to prove the original goal.

The inference rules for & are given below – but note that we do not use this connec-
tive in the remaining chapters of the thesis, so understanding it is optional.

�;� ` A �;� ` B

�;� ` A&B
&R

�;�, A ` �

�;�, A&B ` �
&L1

�;�, B ` �

�;�, A&B ` �
&L2

The right rule says that to prove A&B, we need to be able to prove A and B from
the same context �. The left rule says that if we have a choice A&B, we can make either
selection to continue the proof.

22

The rules for ! are the ones that interact with the persistent context �:

�; · ` A

�; · `!A !R
�, A;� ` �

�;�, !A ` �
!L

The !R rule says that a resource A can be thought of as a fact !A so long as it is
proven only with factual propositions (the ones in �). Thus the rule enforces that the
linear context � must be empty.

The left rule allows us to move a !A from the linear context into the persistent context
as just A.

Finally, there are two structural rules that interact with the contexts � and �. One of
these is the copy rule:

�, A;�, A ` �

�, A;� ` �
copy

This rule allows us to copy any persistent assumption A into � (without also remov-
ing it from �, meaning we may do this as many times as needed).

Finally, we need a structural rule for proving (and equivalently using) atomic propo-
sitions:

�; p ` p
init

This rule allows us to finish a branch of proof search by observing that the context
and goal match up exactly (modulo persistent assumptions �).

We could imagine a more general init rule

�;A ` A init

0

where A can be any proposition, not just atomic p, but it turns out that this rule
is admissible in a well-designed logic, i.e. the rules already allow it for any given A.
Furthermore, testing for its admissibility is a way to determine that the logic is well-
designed; it is considered an internal completeness property.

2.3.2 Some Derivation Examples

We can see each of the connectives (, ⌦, &, and ! as internalizing some property of
the judgmental framework: (internalizes consequence, ⌦ internalizes the comma for
conjoining contexts, & internalizes a choice between two alternatives, and ! internalizes
persistence.

In future chapters of this thesis, we will use all of these connectives frequently except
for &; in fact, refinements on this formalism will not include &. We omit & because in
settings where all implications are rules (live in the persistent context), occurrences of
& to the right of a rule can be accounted for by adding multiple rules. In other words,

23

a rule of the form A (B & C can be replaced by two rules, A (B and A (C, in a
sound and complete way. 2

We now prove this fact—that & is an unneeded connective in the context of persis-
tent rules—which will also serve as an example of how to put the inference rules above
together into proofs.

Claim:
!(A (B & C)

is interderivable with
!(A (B)⌦!(A (C)

That is, we need to show that

!(A (B & C) `!(A (B)⌦!(A (C)

is derivable, as is its converse

!(A (B)⌦!(A (C) `!(A (B&C)

Recall that a proof is a composition of inference rules forming a tree whose leaves are
rules with no subgoals and whose root is the sequent being proved. We form a proof
by applying inference rules to the current goal sequent, resulting in a new set of goal
sequents (the premises to the rule), until there are no more premises.

The first derivation works as follows:
Let � = A (B & C.

�;A ` A

�;B ` B

�;B&C ` B
&L1

�;A (B&C,A ` B
(L

�;A ` B
copy

�; · ` A (B
(R

�; · `!(A (B)

!R

�;A ` A

�;C ` C

�;B&C ` C
&L2

�;A (B&C,A ` C
(L

�;A ` C
copy

�; · ` A (C
(R

�; · `!(A (C)

!R

A (B & C; · `!(A (B)⌦!(A (C)

⌦R

·; !(A (B & C) `!(A (B)⌦!(A (C)

!L

The leaves of this derivation are all of the form �;A ` A which we know to be
derivable for any proposition A by way of the identity admissibility theorem.

The second derivation works as follows:
Let � = A (B,A (C in the derivation below.

2Rules of the form A&B (C, on the other hand, do not have a direct translation into the &-less
fragment. However, we have not encountered a need for such rules in any of the examples we investigate.

24

�;A ` A �;B ` B

�;A (B,A ` B
(L

�;A ` B
copy

�;A ` A �;C ` C

�;A (C,A ` C
(L

�;A ` C
copy

�;A ` B & C
&R

�; · ` A (B & C
(R

A (B,A (C; · `!(A (B & C)

!R

·; !(A (B), !(A (C) `!(A (B & C)

!L2

·; !(A (B)⌦!(A (C) `!(A (B & C)

⌦L

2.4 Alternative and Simultaneous Story Structure

Linear logic provides the tools we need to specify story worlds in such a way that we
can define relationships of interest between story events, but there are still quite a few
choices about which components to model in the story world that give rise to different
event relationships. Let us now be more specific about what kinds of event relationships
we would like to aim to model, and explain how we can use linear logic to model them.

2.4.1 Alternative Storylines

One kind of narrative structure of interest to interactive storytelling is alternative story-
lines. This structure is present in any Choose Your Own Adventure or Twine game: a
reader is presented with multiple choices and, upon selecting one, is cut off from the
other choices until replay (or until that scene is presented again, in the case of cyclic
stories). These stories have a natural representation as a graph, with story scenes (or
passages in Twine parlance) modeled by graph vertices, and possible consequences y of
a scene vertex x modeled as directed edges from x to y. Sometimes this kind of nar-
rative structure is called branching, but by calling attention to alternatives rather than
branching, we aim to include story graphs that are not simply trees: paths that diverge
(branch) may converge in a later scene, and divergence is not given any priority over
convergence.

The graph structure just described is depicted in the Twine editor for the sake of
the author to visualize their story structure. To relate this idea to our example, we can
render the Three Little Pigs fabula as a Twine story in which the choices represent the
alternatives between building a house out of straw, sticks, or bricks:

25

This depiction of the story structure can be seen as containing three alternative story-
lines, each corresponding to one “playthrough” of the game. Two of those playthroughs
end in the “bad” passage in which the wolf blows down the house, and the third ends
in the “good” passage in which the wolf cannot blow down the house. The story graph
is a more compact representation of these three stories that makes use of the shared
structure between the first and second story, as well as their shared beginning. It can be
understood as a potential narrative because each interaction with a player generates one
of the three stories.

Alternative structure in stories already yields many interesting authoring choices. In
an online article, Sam Kabo Ashwell reviews several patterns in the edges-as-alternatives
graph structure for interactive storytelling, such as those in Figure 2.2. 3

However, many rich interactive storytelling examples make use of complex state
tracking, such as inventories in parser interactive fiction. These graphs do not depict
how the story will vary depending on that state.

3The article is available at
https://heterogenoustasks.wordpress.com/2015/01/26/standard-patterns-in-choice-based-games/.

26

Figure 2.2: Four structural patterns in branching narrative.
Diagrams created by Sam Kabo Ashwell, used with permission.
Color key: red nodes are endings representing failure; green nodes are endings repre-
senting success; blue nodes are the start of the story; orange nodes are choice points;
yellow nodes are waypoints (they only have a single out-edge).

The time cave, in which branches never converge and every path is distinct:

The branch-and-bottleneck, in which outward-branching alternatives occasionally
re-converge on common passages:

The gauntlet, in which one particular path serves as the backbone for the story, and all
other paths lead to dead ends:

The open map, in which symmetric connections are made between nodes, often used to
simulate reversible movement through physical space:

27

2.4.2 Simultaneous Storylines

Alternative structures are one way to conceptualize a story in terms of constituent
pieces, but they are not the only way. Rather than imagining making choices from the
perspective of one of the three little pigs, we might like to model all of the characters’
actions and interactions together. We can map a narrative onto a graph in a different
way: edges are characters in certain states of the narrative, and nodes are scenes where
those characters interact.

In one strip of the online comic XKCD, Randall Munroe depicts several popular
movie plots in this style, such as this plot graph for The Lord of the Rings: 4

Along the vertical axis, characters are placed near one another to represent sharing
a scene or far apart to represent independent activity. The horizontal axis is the forward
progression of time. The ring, an imporant narrative resource, is drawn as an overlay
atop the character holding it.

This version of narrative structure lends itself to the analysis of a plot more readily
than alternative structure: we can see, for instance, that climactic moments correspond
to the convergence of a large number of characters, and we can trace the thread of a par-
ticular character or group of characters to examine their overall influence on the plot.
More relevantly to narrative play, we can envision the story in terms of autonomous,
interacting characters who might have independent motives, interiority, and relation-
ships.

To model the Three Little Pigs narrative in this way, we need to break down our
story into smaller component pieces: one for each pig and the wolf, and perhaps also
the building materials they use for their houses. If we are more precise than Munroe’s
drawing about what exactly a “scene” does, in terms of how it transforms these narra-
tive resources, then we can draw the story’s simultaneous structure as follows:

4Larger version can be found at https://xkcd.com/657/.

28

RKI

RKI

RKI

YQNH

UVTCY

DTKEMU

UVKEMU

UVTCYAJQWUG

UVKEMAJQWUG

DTKEMAJQWUG

T�

DWKNF�UVTCY�

JQWUG�

T�

DWKNF�UVKEM�

JQWUG�

T�

YQNH�XU��DTKEMU�T�

DWKNF�DTKEM�
JQWUG�

T�

YQNH�XU��UVKEMU�

T�

YQNH�XU��UVTCY�

YQNH

YQNH

DTKEMAJQWUG

This diagram represents something more static than the Twine game version: it does
not present clear affordances for interaction. However, it is also more systematic, in that
it forces us to imagine a world model in which the events in the story could logically
and physically take place. What we present in the next sections is a formal setting in
which both of these valuable aspects of structural expression are available.

2.4.3 Alternatives and Simultaneity in Linear Logic

Linear logic’s resource-oriented mechanisms enables connectives that neatly map onto
alternative (A&B) and simultaneity (A⌦B). Due to the “use once” principle of assump-
tions in linear logic, these manifest as two forms of logical conjunction (“and”). The first
one of these we will explain is A⌦B, which means that resources A and B are available
simultaneously.

The ⌦ and (connectives together give us the ability to write propositions such as
pig ⌦ bricks (brick house, modeling a resource exchange that characterizes the “pig
builds a brick house” scene in The Three Little Pigs. Here, the ⌦ connective serves
to conjoin the two atomic pig and bricks propositions into a more complex proposition.
There is a unit of the ⌦ connective indicating the null resource, spelled 1.5

The other form of conjunction, A&B, means that a choice between A and B is avail-

5For 1 to be a unit of ⌦ means that, for any A, A⌦ 1 is equivalent to (interprovable with) A and 1⌦A.

29

able. This connective lets us model the first passage in our Twine game representation
of The Three Little Pigs as pig (brick house&straw house&stick house. 6

To model stories in linear logic, we map atomic propositions onto pieces of narrative
state. In the case of purely alternative story structures, a single piece of narrative state
representing each scene/passage will suffice. In the case of narratives with simulta-
neous structure, propositions will model potentially more complex narrative elements
and their relationships.

Here is a model of the additive story world for Three Little Pigs:
Let � =

{pig ((straw house & stick house & brick house),

straw house (wolf wins,

stick house (wolf wins,

brick house (pig wins,

pig}

Stories will be proofs of the sequent

� ` wolf wins

or

� ` pig wins

Here is a model of the simultaneous story world, in which we make use of linear
logic’s notion of simultaneity (⌦) to introduce three copies of the pig narrative resource,
and we also represent finer-grained narrative resources such as the building materials
for the pigs’ houses:

Let � =

{pig ⌦ straw (straw house,

pig ⌦ sticks (stick house,

pig ⌦ bricks (brick house,

wolf ⌦ straw house (wolf,

wolf ⌦ stick house (wolf,

wolf ⌦ brick house (brick house,

wolf, pig, pig, pig, straw, sticks, bricks}

Stories will be proofs of the sequent

6There is a unit of & as well, spelled >, which we do not include here because it is not needed for our
examples.

30

� ` brick house

Note that in both of these models, scenes (represented as propositions of the form
A (B) appear on the same level as atomic narrative resources like pig. This means that
the logic will enforce a use exactly once semantics for those scenes, embodying a kind of
narrative drive (we are required to include those scenes to prove the sequent). If we want
to make a scene A optional, all we need to do is create a choice between that scene and
the null resource: A&1. Persistence (!A) can be used to model stories where scenes may
repeat an arbitrary number of times.

2.4.4 Proofs as Stories
Finally, we can present concretely the mapping of stories onto proofs. For the Twine-
based version of the story, where story events are related as alternatives, we can model
the story world with � =

r1 : pig ((straw house & stick house & brick house)

r2 : straw house (wolf wins

r3 : stick house (wolf wins

r4 : brick house (pig wins

The initial state �0 will be the single resource pig, corresponding to the initial Twine
passage.

Here is a derivation corresponding to the story of the pig that builds the straw house
in the additive story world:

pig ` pig

straw house ` straw house wolf wins ` wolf wins

straw house ` wolf wins

(L(r2)

straw house & stick house & brick house ` wolf wins

&L1

�; pig ` wolf wins

(L(r1)

The above derivation can also be thought of as a proof that the wolf can win (against
a pig who makes a straw or stick house). Below is a proof that the pig can win , repre-
senting the story in which the pig builds the brick house:

pig ` pig

brick house ` brick house pig wins ` pig wins

brick house ` pig wins

(L(r4)

straw house & stick house & brick house ` pig wins

&L3

pig ` pig wins

(L(r1)

Every different proof with �;�0 ` � at its root corresponds to a different potential
narrative embodied by the alternative structure.

To describe simultaneous relationships between story events, we need to divide up
the monolithic state of “which Twine passage are we in” into smaller pieces, such as

31

each pig, the wolf, the building materials the pigs use to make their houses, and the
completed houses.

The story ending is now not a a single fact (the wolf or the pig winning) but rather
some composition (specifically, a ⌦ conjunction) of outcomes for different narrative re-
sources.

In this version of the story, � =

r1 : pig ⌦ straw (straw house

r2 : pig ⌦ sticks (stick house

r3 : pig ⌦ bricks (brick house

r4 : wolf ⌦ straw house (wolf

r5 : wolf ⌦ stick house (wolf

r6 : wolf ⌦ brick house (brick house

The initial configuration for the story is the state

�0 = {pig, pig, pig, straw, bricks, sticks,wolf}

And we can create proofs of the sequent

�0 ` brick house

to represent stories ending with just the brick house standing, i.e. the canonical
Three Little Pigs folktale ending. Here is a proof that the brick house can be the only
one left standing, representing the canonical Three Little Pigs story:

Let D1 =

pig ` pig bricks ` bricks

pig, bricks ` pig ⌦ bricks

⌦R

Let D2 =

pig ` pig straw ` straw

pig, straw ` pig ⌦ straw

⌦R

Let D3 =

pig ` pig sticks ` sticks

pig, sticks ` pig ⌦ sticks

⌦R

Let D4 =

wolf ` wolf straw house ` straw house

wolf, straw house ` wolf ⌦ straw house

⌦R

Let D5 =

wolf ` wolf stick house ` stick house

wolf, stick house ` wolf ⌦ stick house

⌦R

in

32

D1

D2

D3

D4

D5

wolf ` wolf brick house ` brick house

brick house,wolf ` wolf ⌦ brick house brick house ` brick house

brick house,wolf ` brick house

(L(r6)

stick house, brick house,wolf ` brick house

(L(r5)

stick house, straw house, brick house,wolf ` brick house

(L(r4)

straw house, brick house, pig, sticks,wolf ` brick house

(L(r2)

brick house, pig, pig, straw, sticks,wolf ` brick house

(L(r1)

�0 ` brick house

(L(r3)

Note the lopsided structure of the above proof: we only apply (L rules up the
entire tree except to derive rules’ premises from the context. The proof could almost be
read as a sequence of rule applications r3; r1; r2; r4; r5; r6 that navigate from the bottom
sequent (in which the context represents the initial story configuration) to the top-right
sequent (in which the context represents the final story configuration). On the other
hand, by tracking exactly which resources in the context are consumed and produced by
each rule application, we can extract a partial ordering between these rule applications,
yielding the diagram depicted in Section 2.4.2. The rule sequence plus its input-output
dependency links with other rules is exactly the information captured in the formal
proof term syntax that we interpret as stories in Chapter 3.

Another note about the above proof is that it is not the only one that may follow from
the story world rules and initial configuration �;�0. We can derive different outcomes
where two or three of the houses are left standing, i.e.

�0 ` brick house⌦ stick house

and

�0 ` brick house⌦ stick house⌦ straw house

That these sequents are provable suggests that even in our “simultaneous” story
world, there is some alternative structure to consider—i.e. there is nondeterminism in
the system of inference rules, and several might apply.

To see what stories these unconventional endings might give rise to, let us examine
a proof of the sequent � ` brick house ⌦ straw house ⌦ stick house (where we abbreviate
the right-hand side of the sequent A).

Let D6 =

brick house ` brick house

straw house ` straw house stick house ` stick house

straw house, stick house ` straw house⌦ stick house

⌦R

brick house, straw house, straw house ` A
⌦R

in

33

D1

D2

D3

wolf ` wolf brick house ` brick house

brick house,wolf ` wolf ⌦ brick house

⌦R D6

straw house, brick house, stick house,wolf ` A
(L(r6)

straw house, brick house, pig, sticks,wolf ` A
(L(r2)

brick house, pig, pig, straw, sticks,wolf ` A
(L(r1)

� ` A
(L(r3)

Again reading the named rules used in the proof from bottom to top, we can see we
have a shorter story wherein after each pig builds their house, the wolf simply visits
the brick house first and is eliminated from the narrative state there, leaving all three
houses standing.

Some computational narrative researchers would consider such a story to be poorly
formed, particularly according to popular Western story aesthetics: it can hardly be
argued that this narrative has any conflict. Furthermore, two characters in the story (the
straw house and brick house pig) are seemingly only referred to once, when they build
their houses, and never interact with the narrative again, making their role in the story
seem inessential. Riedl and Young [RY04] have investigated means of manipulating
similar inference systems (planning) to introduce conflict by way of individual character
goals that compete over shared resources. In future work we would like to investigate
the applicability of their techniques to linear logic.

2.5 First-Order Linear Logic

One advantage of working with the logical methodology we have chosen is that it is
easy to enrich the logic with orthogonal constructs. For instance, we can enrich our logic
of atomic propositions to allow us to state more complex relationships between entities,
such as at pig straw house to represent location or has pig straw to represent possession. If
we additionally introduce a quantifier connective 8 (“for all”), we can write a proposition
modeling a parametric action where a pig in any location L where there is a building
material M can be replaced by the pig possessing M :

8L,M.at pig L⌦ at M L (has pig M

For modeling pre-established narratives like The Three Little Pigs, modeling the
story world at this level of detail and parametricity seems unnecessary. However, for
the invention of more flexible story worlds prone to expressive collaboration from a
human interactor, parametric rules like this one become essential.

The creators of social physics systems like Prom Week emphasize that creating a
wide possibility space for narrative unfoldings is essential to the player’s discovery
of “emergent solutions and surprising, yet satisfying, outcomes.” [MTS+11] Express-
ing the kinds of rules that make up Prom Week’s social physics engine (Comme il
Faut [MTS+10]) requires that they not be specialized to any particular character in the

34

story but depend only on certain properties of characters and their relationships. The
first-order extension of linear logic enables us to express rules of this form.

Most prior work on the use of linear logic to model stories and games focus only
on the non-parametric, or propositional, fragment of the logic (see Section 2.6.2), and so
its range of considered examples has mostly been limited to hand-authored, branching
narratives. In Chapter 3, we will show how first-order linear logic scales to account for
a richer narrative possibility space. We note that, as a side-effect, we will be able to
use the same formalism to describe Twine games, command-line (“parser”) interactive
fiction, and multi-agent social models like Comme il Faut, and compare the narrative
structures that arise from them.

2.6 Related Work

Bosser et al. [BCFC11] similarly identify structures in stories that can be identified as
simultaneous and alternative, also modeled in linear lofic. In their case, simultaneous
structure is represented by proof terms that record uses of the ⌦R rule as “stories in
parallel.” However, such proofs still sequentialize story events that we identify as for-
mally independent from one another. Our notion of independence aligns better with the
permutability of proof rules than with the commutative structure of the linear context.

We identify two other formalisms that are very closely related to linear logic for story
formalization: planning and Petri nets.

2.6.1 Planning

Interactive storytelling research communities have historically used planners (such as
STRIPS [FN71] and IPOCL [YPM94]) to model and generate stories [You99, CMC01,
RY10]. The planning approach to modeling actions, i.e. by designating facts as pre-
conditions, deleted by the action, and added by the action, has a great deal in common
with modeling actions as linear logic implications. In fact, Masseron et al. [Mas93] have
shown how linear logic can be used to support planning and equate a proof to a plan.
Others have demonstrated the use of linear logic for specific problems thought of as
typical planning problems [DSB09, DST09].

So, in the interactive storytelling domain, linear logic can effectively be seen as a
logic-based alternative to planning. We see the advantages to a basis in logic as twofold:
first, that a long tradition of logics connecting to human epistemology means a wide
range of epistemological extensions are available, and there is vast precedent for de-
signing logics so that their different judgments (and corresponding connectives) may fit
together, composing into richer formalisms. For example, this precedent is what allows
us to seamlessly extend propositional linear logic with first-order quantification. An-
other, less-explored example is combining linear logic’s resource orientation with logi-
cal connectives for knowledge of specific actors [GBB+06], which we hypothesize could
be quite fruitful for narrative modeling.

35

There are a few more technical differences between the expressivity of linear logic
and planning as formalisms. For instance, in linear logic, the multiplicity of a fact mat-
ters: we cannot write brick house (wolf to represent “deleting” the brick house fact in
the same way we can in planning, because there may be other copies of the brick house

resource available that we do not account for. (We would consider these statements
equivalent, though, when an invariant of the program includes having exactly zero or
one of a certain resource.) A consequence of this fact is that linear logic can refer to mul-
tiple instances of something (like money) without propositions indexed by a natural
number, while planning cannot.

Another (related) difference is that fact deletion in planning does not require that the
fact being deleted is actually present for the rule to fire. In linear logic, all “deleted” facts
are also “preconditions.” Finally, planners typically support negation of facts as precon-
ditions for actions. Both of these constructs (unconditional deletion, and negation as
failure) are inexpressible in linear logic, and in fact are inconsistent with purely logical
characterization in general, because they do not maintain the transitivity of the conse-
quence relation. However, when we consider the extension of our approach into a more
practical programming language, we do add support for similar idioms (see Chapter 4).

2.6.2 Petri Nets

Petri nets [Mur89] are a formalism studied in the 1970s primarily for concurrent com-
putation. They are easily interpreted in a graphical languages of nodes and arcs, where
nodes may be either places (represented with a circle) or transitions (represented as a
rectangle), where arcs connect places to transitions and transtions to place. Each place
may have zero or more markings on it.

A given Petri net and configuration of markings may evolve to a new configura-
tion as follows: if all of the places that point to (have an arc to) a given transition are
marked, the transiton may fire, or remove one marking from each input place and add a
marking to each output place. Places may have arcs to multiple transitions, suggesting
nondeterminism in the system.

Petri nets may be understood as a restricted fragment of linear logic: a Petri net place
is modeled by an atomic linear logic proposition, and a Petri net transition matches up
to a linear logic implication of the form !(a1 ⌦ . . .⌦ an (b1 ⌦ . . .⌦ bm), where each ai is
an input place to the transition and bis are output places. Every rule must be persistent
(thus the ! in front) so that it can model a transition that may fire arbitrarily many times.

The reachability problem in Petri nets—whether it is possible for a given configu-
ration to evolve through arbitrarily many rule firings to another configuration—was
shown equivalent to provability in this fragment of linear logic by Kanovich. [Kan95]

Note that this correspondence does not take into account the first-order extension of
linear logic. For some first-order programs, it may be possible to ground them, i.e. give
an equivalent propositional program, by instantiating every rule with every possible
term given in the domain (assuming the domain is finite, which it may not be), but even
when this is possible it results in a combinatorial explosion of the state space. This may

36

Figure 2.3: Petri net for the simultaneous Three Little Pigs story world.

U���EXLOG�VWUDZ�KRXVH� U���EXLOG�EULFN�KRXVH�U���EXLOG�VWLFN�KRXVH�

VWLFNV EULFNV

VWUDZ
KRXVH

VWUDZ

SLJ

ZROI

VWLFN
KRXVH EULFN

KRXVH

U���ZROI�YV�VWUDZ�
KRXVH� U���ZROI�YV�VWLFN�KRXVH� U���ZROI�YV�EULFN�

KRXVH�

make Petri nets as a formalism less scalable than first-order linear logic as an authoring
tool.

Despite this limit in expressiveness, quite a few applications of Petri nets to games
and interactive storytelling have been explored: first, Vega et al. investigate their use in
game design [VGN04]; Araújo and Licı́nio use them to model game mechanics [AR09];
Dang et al. use the equivalent fragment of linear logic to validate interactive story sce-
narios [DHCS11, DCA13]; and my coauthors and I use that same fragment for genera-
tion of story variants [MBFC13] on the fabula of Flaubert’s novel Madame Bovary [Fla01].
The main benefit of the limited expressiveness is that it is possible to do exhaustive
analysis, since proof search on that fragment (i.e. reachability for Petri nets) is decid-
able. [May84]

Petri nets also have the advantage of enjoying a direct visual representation that
nicely illustrates the relationship between alternative and simultaneous structure. The
Petri net in Figure 2.3 illustrates the Three Little Pigs story world given in Section 2.4.2,
and to find potential alternative structure we simply look for places (circles) with mul-
tiple out-edges.

Finally, we note that a Petri net-inspired system of markings and transitions, called
Machinations, has been built as a visual game design tool [Dor11]. Later work for-
malized the core of this system and its semantics (“micro-machinations”) [VRD14] to
find that they differ substantially from Petri nets, losing the correspondence with linear
logic.

37

2.7 Conclusion
We have presented linear logic as a formalism that supports two kinds of structure in
narrative fabula, namely alternatives and simultaneity. We have built upon prior narra-
tive modeling methodologies to map entities, relationships, states, events, stories, and
story outcomes onto corresponding logical and proof-theoretic notions, completing the
conceptual basis on which the remainder of this thesis builds.

In particular, we have demonstrated several core properties of narrative structure
that correspond to the fundamental mechanisms of linear logic. Bosser et al. [BCC10]
point out three such characteristics of computational stories: generativity, or the deriv-
ability of a variety of different story unfoldings given the same beginning and ending
conditions; variability, or the open world assumption characterized by the story rules’
independence from the initial story configuration; and narrative drive, or the enforce-
ment of certain story rules (scenes) being used in the proof. These properties emerge
from the logic in the form of a nondeterministic inference system, the hypothetical judg-
ment (i.e. presence of the context � as an essential part of sequents), and the absence of
weakening making it possible to enforce the usage of assumptions.

We additionally observe the correspondence between linear logic connectives and
alternative and simultaneous relationships between story events. Our observation of the
logic’s ability to model alternatives is effectively the same as the variability property
mentioned above, but the simultaneity observation was mainly portrayed as causality in
prior work. We posit that simultaneity offers a more operational reading of the narra-
tive structure, in which we can imagine several moving parts to a complex interactive
narrative, whose independent evolutions compose into a coherent story. Many works
of interactive fiction already use such ideas by incorporating persistent state (such as
player inventory and tracking of game history), but the simple alternative models of
these fictions (e.g. Ashwell’s diagrams in Section 2.4) do not depict the more complex
story variability that arises from them. Reed and Garbe [RGWFM14] introduce the term
combinatorial narrative to suggest centralizing the idea of complex narrative states in in-
teractive story authoring, and we posit that linear logic would make a good candidate
for modeling and reasoning about those works.

In the next chapter, we will show how to put computers to use on the mathematical
formalism presented here in the form of logic programming to extract a computational
interpretation of story modeling in linear logic. Namely, we extend our mapping to
account for story world (or potential narrative) as a program that, when run, generates
coherent stories according to the authored rules.

38

