
University of Magdeburg

Faculty of Computer Science

D
S E
B

Databases

Software
Engineering

and

Master’s Thesis

Designing a Database Schema for
Survey Questions

Author:

Kurian John

February 24, 2022

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake

Department of Technical and Business Information Systems
Otto-von-Guericke-University Magdeburg

Dr.-Ing. David Broneske

Department of Infrastructure and Methods
German Centre for Higher Education Research and Science Studies

John, Kurian:
Designing a Database Schema for Survey Questions
Master’s Thesis, University of Magdeburg, 2022.

Abstract

Surveys are the research methodology used to gather data from a predefined group
of people about specific subjects. A survey has multiple survey questions related
to the inquisitive topic. The survey respondents answer these questions to gener-
ate the survey response data, which can be analyzed statistically to derive useful
information and insights. The surveys and their questions are important for the re-
producibility and comparability within surveys of different years or between different
survey projects. Hence, we need a database to store them permanently and access
them when designing new surveys. However, the storage of survey questions in the
database is a tedious task as the questions can be of different kinds without any
fixed schema. Therefore, in this thesis, we design an SQL and a NoSQL database
schema for the management of survey questions. Furthermore, both the schemas
are compared against each other in terms of different parameters to find out the
best-suited one for managing the survey questions.

Acknowledgments

This thesis work would not have been possible without the support of many people.
First of all, I would like to thank my advisors Prof. Dr. Gunter Saake and Dr.-Ing.
David Broneske for giving me the opportunity to write this thesis at the Department
of Databases and Software Engineering.

I must express my very profound gratitude to Dr.-Ing. David Broneske for the
supervision and support he has given me throughout this thesis work.

I would also like to thank Dr. Anja Gottburgsen and Rachid Laajouzi for their
valuable inputs and comments on this thesis.

I am grateful to my parents and my wife for providing me with unfailing support and
continuous encouragement throughout my years of study and through the process
of researching and writing this thesis.

Finally, I am grateful to God for the good health and well being that was necessary
to complete this thesis work.

Contents

List of Figures xiii

List of Tables xv

List of Code Listings xvii

1 Introduction 1

2 Background 5
2.1 DZHW Surveys . 5
2.2 Databases . 7

2.2.1 SQL Databases . 7
2.2.1.1 Characteristics of Relational Databases 7
2.2.1.2 Relational Database Model 8

2.2.2 NoSQL Databases . 10
2.2.2.1 Characteristics of NoSQL Databases 10
2.2.2.2 Classification of NoSQL Databases 10

2.3 Database Design . 11
2.3.1 SQL Database Design . 12

2.3.1.1 Requirement Analysis 12
2.3.1.2 Conceptual Data Modeling 12
2.3.1.3 Data Normalization 12

2.3.2 NoSQL Database Design . 12
2.4 ETL . 13

2.4.1 ETL Process . 13
2.4.1.1 Data Extraction . 13
2.4.1.2 Data Transformation 13
2.4.1.3 Data Loading . 14

2.4.2 ETL Tools . 14
2.4.3 Talend Open Studio . 14

2.4.3.1 Talend Open Studio Environment 15
2.4.3.2 Talend Open Studio Components 15

2.5 Summary . 16

3 Related Work 17
3.1 Unstructured Data in Relational Databases 17

3.1.1 Database Schema . 18
3.1.2 Alternative Data Model . 18

viii Contents

3.1.3 SQL Queries . 18
3.2 Hybrid Approach . 19
3.3 Summary . 19

4 Requirement Analysis and Conceptual Data Model 21
4.1 Analysis of the Survey . 21
4.2 Analysis of the Survey Questions . 23

4.2.1 Structure of Survey Questions 23
4.2.2 Classification of Questions . 23

4.2.2.1 Level 0 Questions . 24
4.2.2.2 Level 1 Questions . 24
4.2.2.3 Level 1 Grouped Questions 24
4.2.2.4 Level 0 Multiple Questions 25

4.2.3 Classification of Answers . 26
4.2.3.1 Single Choice Answer Type 26
4.2.3.2 Multiple Choice Answer Type 27
4.2.3.3 Drop-Down Answer Type 27
4.2.3.4 Free Text Answer Type 27
4.2.3.5 Range/Likert-Scale Answer Type 28

4.2.4 Special Cases . 28
4.2.4.1 Instructions . 29
4.2.4.2 Footnotes/Conditions 29
4.2.4.3 Additional Free Texts or Drop Downs 30
4.2.4.4 Grouped Answer Type Choices 30

4.2.5 Variable Names . 30
4.3 Requirements for Database Design 31
4.4 Conceptual Data Model . 34
4.5 Summary . 38

5 Selection of Databases 39
5.1 Selection of SQL Database . 39

5.1.1 Analysis and Comparison . 39
5.1.1.1 Microsoft SQL Server 39
5.1.1.2 MySQL . 39
5.1.1.3 Oracle . 40
5.1.1.4 PostgreSQL . 40

5.1.2 Selection . 40
5.2 NoSQL Database Selection . 41

5.2.1 Analysis and Comparison . 41
5.2.1.1 Couchbase . 42
5.2.1.2 CouchDB . 42
5.2.1.3 MongoDB . 43

5.2.2 Selection . 44
5.3 Summary . 44

6 Database Design 47
6.1 SQL Database Design . 47

6.1.1 Survey . 47

Contents ix

6.1.2 Survey Module . 48
6.1.3 Question . 48
6.1.4 Survey Module Question . 49
6.1.5 Question Part Text . 49
6.1.6 Question Part Instruction . 49
6.1.7 Question Part . 50
6.1.8 Choice Text . 51
6.1.9 Choice Group . 51
6.1.10 Answer Part . 51
6.1.11 Answer Part Choice . 52
6.1.12 Additional Answer Part . 53
6.1.13 Additional Answer Part Choice 53
6.1.14 Footnote . 53

6.2 NoSQL Database Design . 54
6.2.1 Survey Collection . 55
6.2.2 Question Collection . 56
6.2.3 Answer Part Collection . 57
6.2.4 Additional Answer Part Collection 59
6.2.5 Footnote Collection . 60

6.3 Summary . 61

7 Loading Survey Questions into Database 63
7.1 Entity Extraction . 63
7.2 Data Processing . 66

7.2.1 Data Processing for SQL Database 67
7.2.2 Data Processing for MongoDB Database 78

7.3 Summary . 86

8 Evaluation 91
8.1 Evaluation Setup . 91

8.1.1 Hardware Specifications . 91
8.1.2 Software Specifications . 92
8.1.3 Data Set . 92

8.2 Data Loading Analysis . 92
8.3 Storage Space Analysis . 94
8.4 Selection Query Tests . 96

8.4.1 Use Case 1: Select All Questions in a Survey Module 96
8.4.2 Use Case 2: Select Question by Id 98
8.4.3 Use Case 3: Select Questions by Question Part Text 99
8.4.4 Selection Query Tests: Summary 100

8.5 Full-Text Search Analysis . 100
8.6 Selectivity Analysis . 103
8.7 Summary . 104

9 Conclusion and Future Work 107

A Appendix 109

x Contents

Bibliography 117

List of Figures

2.1 Example Relation for Relational Database Model 9

2.2 ETL Workflow . 14

2.3 Talend Open Studio Elements . 16

4.1 Structure of the Survey . 22

4.2 Structure of a Question . 23

4.3 Example of a Level 0 Question . 24

4.4 Example of a Level 1 Question . 24

4.5 Example of a Level 1 Grouped Question 25

4.6 Example of a Level 0 Multiple Question 26

4.7 New Question Type Structure - 1 . 26

4.8 New Question Type Structure - 2 . 27

4.9 Example of a Single Choice Answer Type 27

4.10 Example of a Multiple Choice Answer Type 28

4.11 Example of a Drop Down Answer Type 28

4.12 Example of a Free Text Answer Type 28

4.13 Example of a Range/Likert-Scale Answer Type 29

4.14 Example of Instructions . 30

4.15 Example of Footnotes . 31

4.16 Example of Additional Free Texts or Drop Downs 32

4.17 Example of Grouped Answer Type Choices 32

4.18 Example: Variable Names . 33

4.19 Conceptual Data Model for Survey Questions 35

4.20 Example Question with Six Question Parts and Five Answer Parts . . 36

xii List of Figures

4.21 Example Question with an Additional Answer Part Associated with
a Question Part . 36

4.22 Example Question with an Additional Answer Part Associated with
an Answer Part Choice . 37

6.1 SQL Database Design . 48

6.2 Example Question IV . 50

6.3 Example Question with Answer Parts Choices 52

6.4 Footnote Examples from the Survey 54

6.5 Structure of Survey Collection . 56

6.6 Structure of Question Collection . 57

6.7 Structure of Answer Part Collection 58

6.8 Structure of Additional Answer Part Collection 59

6.9 Structure of Footnote Collection . 60

7.1 Data Loading Process . 63

7.2 Example Question for Data Loading 64

7.3 Already Available Entities of the Question 64

7.4 Identified Entities of the Question . 65

7.5 Structure of an Answer Part Choices Record in the Excel file 66

7.6 Talend Components for Loading the Input Data and Extracting the
Survey and Survey Module Details 68

7.7 Schema of the tFileInputExcel Component 69

7.8 Structure of tMap component used for Extracting Survey and Survey
Module Details . 70

7.9 Talend Components for Saving the Survey Details into the Database . 70

7.10 Structure of tMap Component for Adding the Survey Id to the Survey
Module Details . 71

7.11 Talend Component to Iterate Over the Question Numbers 71

7.12 Structure of the tMap component for Extracting the Details of a Sin-
gle Question Using the Question Number 72

7.13 Structure of the tMap component for Extracting the Details of a Sin-
gle Answer Part Using the Variable Name 73

7.14 Talend Components for Processing the Answer Part Choice Record . 74

7.15 Structure of the Partial Answer Part Choice Record 75

List of Figures xiii

7.16 Structure of the Complete Answer Part Choice Records 75

7.17 Structure of the Partial Question Part Records 76

7.18 Structure of the Complete Question Part Records 77

7.19 Structure of the Footnote Records . 77

7.20 Structure of the Records for ’Survey Module Question Table’ in the
Database . 78

7.21 Talend Components for Saving a Document into the Additional An-
swer Part Collection . 80

7.22 Talend Components for Reading the Additional Answer Part Collec-
tion Document . 81

7.23 Structure of the tMongoDDInput Component for Reading the Docu-
ments from Additional Answer Part Collection 81

7.24 Talend Components for Creating and Inserting Answer Part Collec-
tion Document . 82

7.25 Talend Components for Reading Answer Part Id 83

7.26 Structure of the tMongoDDInput Component for Reading the Docu-
ment from Answer Part Collection . 84

7.27 Talend Components for Creating a Survey Document with Input Sur-
vey Details, if it is not Already Present 85

7.28 Structure of the tMongoDBRow Component for Creating the Survey
Document . 86

7.29 Talend Components for Adding the Survey Module Details to the
Survey Document, if it is not Already Present 87

7.30 Structure of the tJava Component for Creating a new Survey Module
Id . 88

7.31 Structure of the tMongoDBRow Component for Adding the Survey
Module Details to the Survey Document 88

7.32 Talend Components for Creating and Saving the Footnote Documents
into the Footnote Collection . 89

8.1 ETL Job Execution Times for MySQL and MongoDB 93

8.2 Throughput of the ETL Jobs . 94

8.3 Query Execution Time - Select All Questions in a Survey Module . . 97

8.4 Query Execution Time - Select Question by Id 98

8.5 Query Execution Time - Select Questions by Question Part Text . . . 99

8.6 Query Execution Time - Full Text Search 102

8.7 Query Execution Time - Selectivity Analysis 104

xiv List of Figures

List of Tables

5.1 Overview of Relational databases . 41

5.2 Overview of Document Oriented databases 46

6.1 Example of Survey Module Question Table 49

6.2 Question Parts According to Conceptual Data Model 50

6.3 Question Parts According to Final Database Model 51

6.4 Answer Part Choices According to Conceptual Data Model 52

6.5 Answer Part Choices According to SQL Database Model 53

8.1 Total Number of Surveys, Survey Modules and Questions in the Sur-
vey Sets . 92

8.2 Data Size of MySQL and MongoDB Databases 95

8.3 Total Index Size of MySQL and MongoDB Databases 95

8.4 Size of the Text Indexes in MySQL and MongoDB for Different Survey
Sets . 103

8.5 Selected Keywords and Corresponding Selectivities 103

List of Code Listings

8.1 MongoDB Function for Calculating the Data Size 94
8.2 SQL Command for Calculating the Data Size 94
8.3 SQL Command for Calculating the Data Size 95
8.4 SQL Command for Calculating the Text Index Size 102
8.5 MongoDB Function for Calculating the Text Index Size 102
A.1 MongoDB Code for Selecting All Questions in a Survey Module . . . 109
A.2 SQL Code for Selecting All Questions in a Survey Module 114

xviii List of Code Listings

1. Introduction

Surveys are the research methodology used to collect data from a predefined group
of people about specific topics. The data collected from various survey respondents
are then analyzed statistically to derive useful information and insights [Gla05]. The
data is collected from the target audience via questionnaires that contain a set of
questions related to the topic under investigation. The surveys could be conducted
through different means such as online, offline, phone and interviews.

Each survey consists of multiple survey questions related to the survey’s topic. The
survey respondents answer these questions to generate the survey response data.
Apart from the response data as the major outcome of a survey, also the survey
questions are important for the reproducibility and comparability within surveys of
different years or between various survey projects. For example, the questions of
a particular survey might be useful in situations like conducting the same survey
in the future, creating similar surveys or using it as a reference for the researchers
who analyzes the survey response. Hence, the permanent storage of these survey
questions is important for the survey research.

Database systems are one of the most popular choices for the storage and manage-
ment of a huge amount of data [MK19]. Databases offer many features such as fast
data retrieval, data sharing, non-redundant data storage, data security and easy
maintenance for the efficient management of data. Therefore, databases would be a
good option for the storage of survey data as well. SQL and NoSQL databases are
the two different types of databases used for data management. SQL databases or
relational databases store the data in the form of tables or relations. On the other
hand, all the non-relational databases that implement a non-relational data model
(e.g., document-oriented model, graph model, key-value pairs, column stores) for
data storage are considered as NoSQL databases.

The storage of survey responses in the databases is often a straightforward task as
the data is well structured. The data usually consists of the answers given by the sur-
vey respondents for the different survey questions. Such well-structured data could
be easily managed using the databases. However, the storage of survey questions

2 1. Introduction

in a database raises some problems. The survey questions are not well structured
as compared to the survey response. The surveys can have different types of ques-
tions with different structures. A survey question can be open-ended, closed-ended
or a combination of both [Gla05]. The closed-ended questions can have different
ways of answering, such as multiple-choice, single choice, drop-downs or range se-
lection. Furthermore, a question can have multiple sub-questions as well, and these
sub-questions could be of different types as well. Therefore, the storage of survey
questions in the database is a tedious task.

Goal of this Thesis

The goal of this thesis is to design an SQL and a NoSQL database schema for
the management of survey questions at DZHW. Furthermore, both the schemas are
compared against each other in terms of different parameters to find out the best-
suited one for managing the survey questions. The major contributions that are
made over the course of this thesis are discussed below:

• A detailed analysis of the survey questions at DZHW is conducted to iden-
tify all the business requirements, which would provide a clear and precise
understanding of the database for managing the survey questions.

• A high-level conceptual data model is designed for the survey questions based
on the outcomes of the analysis of the survey questions, such that it can be
adapted to any of the required final databases. The conceptual data model is
independent of any technical or implementation details of the final database.

• An SQL and NoSQL database schemas are designed for managing the survey
questions by expanding the conceptual data model. The SQL schema is im-
plemented in the MySQL database, and the NoSQL schema is implemented in
the MongoDB database.

• Our evaluation and comparison of MySQL and MongoDB databases are carried
out in terms of different parameters such as data loading times, storage space,
query execution times, full-text search and selectivity analysis to find out the
best-suited database for managing the survey questions.

Structure of the Thesis

The structure of the thesis is as follows:

• Chapter 2: Background
The necessary background details required for the thesis is provided in Chapter
2.

• Chapter 3: Related Work
In Chapter 3, several relevant research works related to this thesis work is
discussed.

3

• Chapter 4: Requirement Analysis and Conceptual Data Model
Chapter 4 aims at a detailed analysis of the survey questions at DZHW to iden-
tify all the requirements that would provide a clear and precise understanding
of the database which is to be designed.

• Chapter 5: Selection of the Databases
In Chapter 5, we compare different the SQL and NoSQL databases to select
the best suited ones for implementing the database for managing the survey
questions.

• Chapter 6: Database Design
In Chapter 6, we design SQL and NoSQL database schemas for managing the
survey questions by expanding the conceptual data model.

• Chapter 7: Loading Survey Questions into Database
Chapter 7 discusses the process of loading the survey questions, present in
the portable document format (PDF) to the designed databases using ETL
workflows.

• Chapter 8: Evaluation
In Chapter 8, we compare and evaluate the designed MySQL and MongoDB
databases in terms of different parameters.

• Chapter 9: Conclusion and Future Work
Chapter 9 is the final chapter in which the thesis work is summarized, and the
possible future works are also discussed.

4 1. Introduction

2. Background

This chapter discusses the necessary background details required to design suitable
database schemas for holding the survey questions and also the important concepts
of ETL Tools, which could be used to store the semi-structured survey questions
into the designed database. Initially, we look into the surveys conducted at DZHW,
followed by the concepts of SQL and NoSQL databases. Further, we discuss different
design techniques for SQL and NoSQL databases. Finally, the concepts of ETL Tools
are also explained.

2.1 DZHW Surveys

Deutsche Zentrum für Hochschul- und Wissenschaftsforschung (DZHW), funded by
federal and state governments, conducts various surveys across Germany in order to
collect data for research and analysis to provide different research oriented services
for Universities across the country and in the field of science research1.

The social surveys, graduate panel surveys, DZHW panel study of school leavers
with a higher education entrance qualification surveys, scientists surveys and EU-
ROGRADUATE survey are some of the surveys that are conducted at DZHW. These
surveys are discussed in detail below.

Social Surveys

Social surveys are about the social and economic life of the students in Germany2.
These surveys were conducted from 1951 to 2016 among the students who were regis-
tered at a higher education institution in Germany3. The survey contains questions
regarding students’ study-related aspects, social and demographic features, financial
status, accommodation, time abroad for studies or study-related matters and time
management between studies and employment.

1https://www.dzhw.eu/en/gmbh
2http://www.sozialerhebung.de/
3https://www.dzhw.eu/en/forschung/projekt?pr id=460

6 2. Background

DZHW Graduate Panel Surveys

DZHW graduate panel surveys are conducted to obtain information about the aca-
demic and career developments of university graduates4. These surveys are con-
ducted among graduate students in Germany from the year 1989. The main topics
covered by the surveys are students’ academic careers, study conditions, career de-
mands and opportunities and career changes and their associated issues.

DZHW Panel Study of School Leavers with a Higher Education Entrance Quali-
fication Surveys

These surveys focus on the academic progress of school leavers who have a higher
education entrance qualification from schools to higher education institutions and
vocational education institutions5. These surveys are conducted among the students
who have higher educational qualifications after school from 1976.

DZHW Scientists Surveys

DZHW scientists surveys are trend surveys conducted among teachers and researchers
to learn about the influence of changes in the German science system on the academic
research conditions6. These surveys are conducted from 2010 among the scientists
(professors and research assistants) at German universities. The main topics cov-
ered by these surveys are scientists’ working and research conditions, issues regarding
current research policies and research priorities.

EUROGRADUATE Survey

The eurograduate survey was a pilot survey aimed at testing out the possibilities
of a European-wide graduate survey7. The survey was conducted in 2018 among
the students who were recently graduated from eight European countries such as
Austria, Czech Republic, Germany, Greece, Croatia, Lithuania, Malta, and Norway.
The aim of the survey was to learn about how happy are the students in their
studies, how did they manage to sustain themselves during their studies, whether
they travelled to other countries and what do they do after graduation.

Summary of DZHW Surveys

Most of these surveys are part of survey series which are carried out periodically
and many among these are related to each others as well. As a result these surveys
contain many common questions among them. However there is no centralized
and non redundant storage system which could be used to store all these survey
questions along with the relationships among the survey questions. Currently all
the survey questions are stored independently without considering the relationship
among them. Hence, a centralized and non redundant storage system would be very
helpful for the researchers at DZHW for reference and future survey creation.

4https://www.dzhw.eu/en/forschung/projekt?pr id=467
5https://www.dzhw.eu/en/forschung/projekt?pr id=465
6https://www.wb.dzhw.eu/en/about/index html
7https://www.eurograduate.eu/

2.2. Databases 7

2.2 Databases

A database is defined as a set of data or information stored according to a particular
structure in a computer system [CK19]. The data is stored permanently and could
be accessed by another person or a program to perform various operations on it
such as insertion, deletion and updation. The data in the database is managed
via a software called Database Management System (DBMS) using special query
languages. Two different types of databases that are currently being used are SQL
and NoSQL databases.

2.2.1 SQL Databases

SQL databases are often known as relational databases. As the name implies, re-
lational databases store data in the form of relations or tables. As a result, an
SQL database can be defined as a set of relations or tables with rows and columns
where each row represents a data record or entity. Each row or data record could
be uniquely identified by a column, called as primary key, containing unique values.
Two tables in the database could be linked together by using foreign keys which is
stored in both the tables [KK01].

The main advantages of relational databases when compared with other non rela-
tional databases are follows:

• SQL databases have an advanced and powerful yet simple querying language
that allows for easy access of data.

• SQL databases usually adhere to ACID (atomicity, consistency, isolation and
durability) properties which ensure data stability and security.

• SQL databases enables normalization of data, which prevents data redundan-
cies.

2.2.1.1 Characteristics of Relational Databases

Dr. Edgar F. Codd, an IBM research scientist, have proposed 12 different principles
that every relational database should follow [KK01]. A database must follow all
twelve of these rules in order to become completely relational. These principles are
generally known as Codd’s rules for relational databases and are discussed further
below.

1. All data and metadata stored in database should be in a table or relational
format.

2. Each data element in the database should be accessible using a combination
of table name, primary key and column name.

3. NULL values in the database should be systematically considered as ”missing
Information” in all the places.

4. Data which describes the database (metadata) should also be stored in the
database as tables like regular data.

8 2. Background

5. The entire database should be accessed by a common language. This lan-
guage should be used for data definition, manipulation and other transaction
management operations on data.

6. All the changes made in the database tables should be automatically reflected
on the views which are defined on the tables.

7. High level insertion, updation, selection and deletion queries should be sup-
ported by the database.

8. Physical independence of data stored in the database is desired. Physical data
independence is defined as the ability to make changes in the physical schema
of the database without affecting any schemas in the higher levels such as
conceptual schema and external views.

9. Logical independence of data stored in the database is desired. Logical data in-
dependence is defined as the ability to make changes in the conceptual schema
of the database without affecting any schemas in the higher levels such as
external views or application programs.

10. The database should be independent of all the applications which uses it. All
the integrity constrains should be incorporated within the database itself.

11. Distribution independence of the data stored in the database is desired. For
the end users data should appear to be stored in a central location even if it
is distributed.

12. Operations which provide access to the low level records(row level process-
ing) in the database should not pose any threat to the integrity and security
constraints.

2.2.1.2 Relational Database Model

Relational database model war first proposed by Dr. Edgar F. Codd in the year 1969
in his work ”A Relational Model of Data for Large Shared Databanks” [Cod70]. This
new model was initially introduced as a mathematical model based on set theory
and first order predicate logic to store huge volumes of data.

In relational model, data is stored in the form of tables [Her13]. The tables are
also called relations. Each data record, also known as tuple or entity, is stored as
a row in the relational model and is identified by a column which contains unique
values. This unique field is called primary key. Each column of the table represents
an attribute of the tuple.

Figure 2.1 shows an example table in the relational model. The relation, Employee
Relation, stores the data of two employees(2 tuples). Each employee has a name
and salary and is uniquely identified by using an EmployeeId (3 attributes with
EmployeeId as the primary attribute).

In relational model, data should be normalized and is stored as potentially multiple
tables to avoid data redundancy. Thus in a relational database, information about

2.2. Databases 9

Figure 2.1: Example Relation for Relational Database Model

a single entity could be stored in different tables and these different tables are con-
nected or related together using common attributes which are present in both the
tables[Her13]. The relationships between tables in the relational model could be
classified into three types as follows:

• One-to-one relations: Two relations are said to be one-to-one related if a record
in the first relation is related to only one record in the second relation and vice
versa. Such relationships are not very common and if they exists then the two
records should to stored together as a single record in a single relation unless
there exist some security or other organizational constraints.

• One-to-many relations: Two relations are said to be one-to-many related if
a record in the first relation is related to one or more records in the second
relation, whereas each record in the second relation should be related to only
one record in the the first relation. Such relationships are very common and
are implemented using the primary keys and foreign keys.

• Many-to-many relations: Two relations are said to be many-to-many related
if a record in the first relation is related to one or more record in the second
relation and vice versa. In case of many-to-many relations, the relation is
converted into two one-to-many relations by introducing a third table between
the two existing tables.

SQL Databases offers many advantages like efficient management of structured data,
high data integrity, atomicity, normalized storage of data and data consistency. On
the other hand, the SQL databases are not well suited for handling semi-structured
or unstructured data, lacks horizontal data scalability, and the fixed schema of the
SQL databases might sometimes create problems when the application requirement
changes. Therefore, SQL databases are mainly used when the data has a fixed
structure, and feature like data non-redundancy, data integrity and data security is
important.

10 2. Background

2.2.2 NoSQL Databases

NoSQL stands for ’Not Only SQL’ [HHLD11]. It is a common term used to describe
non relational databases. Thus a database could be called as NoSQL database if the
the data model used to store the data in the data is non relational, that is the data
is not stored as tables or relations and is not managed using SQL.

2.2.2.1 Characteristics of NoSQL Databases

Since any non relational database falls under the category of NoSQL databases it
is very difficult to list out specific properties that are followed by all the NoSQL
databases [HHLD11, MBNG15]. However, some of the high level characteristics
followed by most of the NoSQL databases are discussed below [SMP14].

• Flexible Schema: Even though NoSQL databases have different data models,
all of them allow to have a flexible schema. This enables easy modification of
the databases according to the timely change in the business requirements.

• Horizontal Scalability: NoSQL databases are scaled out horizontally which
makes it more suitable than relational databases.

• Replication of Data: In order to achieve data redundancy and load balancing,
many NoSQL systems store copies of the same data at different sites. However
this may affect the consistency of the stored data [GL12].

2.2.2.2 Classification of NoSQL Databases

As discussed in Section 2.2.2.1, NoSQL databases implements different data models.
Based on these data models, NoSQL databases can be mainly classified into four
different types.

1. Key-Value Stores: Key-value databases store data in collections in the form
of key-value pairs. Data is stored as values and each value contains a key
which could be used to access the data [See09]. All the keys in a collection are
unique and thus could not be duplicated in order to prevent access conflicts.
The main advantages of key-value stores are that they implement a simpler
data model as compared to its counterparts and also offers fast read and write
capabilities as compared to relational databases. However, they do not provide
the necessary database characteristics such as atomicity and data consistency.
Another shortcoming is that the data search using values stored in the collec-
tions are very difficult or sometimes even impossible. The data could be only
accessed using the keys [OBALB15]. Redis, Amazon DynamoDB, Microsoft
Azure Cosmos DB and Memcached are some of the examples of key-value
databases.

2. Document Oriented Databases: Document databases store data in the form
of documents. Depending on the type of document used, the data model may
differ. But generally, each of these documents has a unique key which could be
used to identify the documents. Different document formats which are being

2.3. Database Design 11

used among document oriented databases are JSON (JavaScript Object No-
tation), XML (eXtensible Markup Language) and BSON (Binary JavaScript
Object Notation) [Sha15]. Document databases store the data in a format
which is very close to the data format used in the applications thereby re-
ducing the application development efforts. In a document, data is stored as
key-value/array pairs and may even contain other embedded documents as
well. Unlike key-value stores, document databases allow search operations us-
ing keys, values or even metadata and hence they are more flexible [OBALB15].
MongoDB, Couchbase, Firebase Realtime Database and CouchDB are some
of the examples of popular document databases.

3. Column Oriented Databases: Column oriented databases are also called wide
column stores or extensible record stores. Such databases store data in columns.
Like relational databases, the data is stored as tables, but the table partition
is done vertically and each column is stored separately [Sri17]. Like the doc-
ument oriented model, this model is also derived from the key-value model
by incorporating the concept of columns into the key-value model architec-
ture. Column oriented databases offer high performance in case of aggregation
queries since the data is stored as columns and thus are mainly opted for data
warehousing and other analytical applications. Cassandra, HBase, Datastax
Enterprise and Microsoft Azure Table Storage are some of the examples of
column oriented databases.

4. Graph Databases: Graph databases are used to store data which could be
represented in the form of graphs. Graph databases implement the graph
model and store data in the form of graphs with nodes, edges and relations.
In a graph database a data entity is stored as a graph node. Two nodes
are connected together by an edge if there exists a relationship between the
entities stored in those node and this relationship is represented by an edge
label [kK15]. The main advantage of the graph database along with its highly
flexible schema is that it allows the users to not only store and analyse the data
but also the relationships between different data entities as well [OBALB15].
Neo4j, Virtuoso, ArangoDB and OrientDB are some of the examples of graph
databases.

NoSQL databases offers many advantages such as scalability, fast read and write
access and also offer a flexible schema as compared to the traditional SQL databases
and are suitable for applications that deal with huge volumes of data. On the other
hand they also have some disadvantages as well like lack of transactions, slower
or no join operations, data redundancy and data duplication. Therefore, NoSQL
databases are well suited when the data is semi-structured or unstructured and the
schema flexibility is important the data model.

2.3 Database Design

Database design may be defined as the process of developing a suitable design for
representing the data in the database by analysing the problem statement [Let15].

12 2. Background

The problem statement includes the scope of the problem along with all the require-
ments as well as the constraints of the data being analysed. The database is then
developed using this design.

Database design is a very important step in application development. It is very
crucial for the stability, correctness and integrity of the stored data [Her13]. A false
or improper design of the database might results in incorrect data retrieval which
would jeopardize the entire application. On the other hand a good and reliable
design would makes the database easy to manage and it also make the data retrieval
as well as the application development much more easier.

2.3.1 SQL Database Design

The traditional way of designing relational databases includes three steps: require-
ment analysis, data modeling and data normalization [Her13].

2.3.1.1 Requirement Analysis

Requirement analysis is the primary step in designing a database. It involves collec-
tion and analysis of all the business and information requirements of the problem.
This is done to get a clear and complete idea about the database which is to be
designed along with its practical uses.

2.3.1.2 Conceptual Data Modeling

Data modeling involves building an initial data model of the database using a data
modelling technique. This model is basic and only gives a general understanding
about the data. Different data modelling techniques which could be used in this
step are Entity Relationship (ER) modeling [SEP95], Object role modeling [BGJ03]
and UML modeling [EJN01].

2.3.1.3 Data Normalization

Data Normalization is the process of splitting of large tables into small tables to avoid
data redundancy and data duplication so that the data manipulation operations on
the data would become easier and error free.

2.3.2 NoSQL Database Design

NoSQL databases uses different data models and these data models offer high schema
flexibility as well. So, like SQL databases, there is no fixed database design strategy
which could be used to design NoSQL databases [ZBM20].

Over the years many researchers have proposed several design methodologies for
NoSQL databases. For example NoSQL Abstract Model (NoAM) is a design tech-
nique which is used to design different types of NoSQL systems discussed in Sec-
tion 2.2.2.2 except Graph databases [BCAT14]. NoAM creates an abstract data
model independent of the underlying database. However, the model is too abstract
that it does not focus on any of the main implementation characteristics of the the
underlying database. Similarly many other modeling techniques were also proposed

2.4. ETL 13

over the years such as NoSQL Schema Evaluator (NoSE) [MSAL16] and Model-
Driven Framework for NoSQL Database Design (Mortadelo) [dlVGSB+18]. How-
ever, none these works were able to produce a concrete modelling technique which
could be used to design NoSQL databases in general due to their flexible schema
and diverse data models.

After analysing the above techniques we have decided to follow a simple database and
use-case specific methodology to design the NoSQL database used in this thesis work.
It includes the requirement analysis (Section 2.3.1.1), high level data modelling
(Section 2.3.1.2) and then designing a physical schema of the database according to
the data model implemented by the selected NoSQL database and the use-cases of
the system which is to be build. The processes of requirement analysis and high
level data modelling could be done in the same way they are carried out for SQL
database design as these steps only aim at gaining a better understanding about the
problem and data without considering any implementation aspects of the database.

2.4 ETL

ETL stands for extract, transform and load. ETL may be defined as the process
of extracting data from different sources such as flat files, databases or APIs and
load the data into desired locations such as data warehouses, databases or flat files
after transforming the data into the desired format. ETL is generally used for
data warehousing. Data warehouses are a central storage system which stores the
integrated data from various data sources [Vas09, KSS14]. Data warehouses are
mainly used for analytical and reporting tasks on the collected data. The ETL
process was introduced to aid the population of data warehouses with data from
multiple sources by reducing the development efforts.

2.4.1 ETL Process

ETL process involves three steps for managing data: Extraction, Transformation
and Loading [WP15]. Figure 2.2 shows the basic workflow of an ETL process.

2.4.1.1 Data Extraction

Data extraction is the first step in the ETL process. It involves the extraction or
collection of data from different sources. Different data sources include flat files,
APIs (Application Programming Interface), databases or could be even generated
by the software itself. The loaded data is moved into a staging area for the next
step. The staging area could be considered as an intermediate storage area for the
loaded data. The data in the staging area is used in all the future data processing
steps and the intermediate data is also stored in this staging area.

2.4.1.2 Data Transformation

In the data transformation step, the loaded data is processed and transformed ac-
cording to the business requirements by using different operations. Different op-
erations which could be done during the data transformation involves splitting or
merging of data, data aggregation, filtering of data, cleaning of data, data transpose
operations, data verification and data validation.

14 2. Background

Figure 2.2: ETL Workflow

2.4.1.3 Data Loading

In the third and final step, the transformed data is loaded or stored into the preferred
destinations as per the business requirements. Different data destinations include
flat files, APIs, databases and data warehouses.

2.4.2 ETL Tools

ETL tools follow the ETL process for the fast processing of huge volumes of data.
ETL tools are used to collect data from different sources and process it effectively to
convert it into the desired format and finally storing the processed data in a location
preferred by the users [MS15]. Many ETL tools are GUI based and offer different
components for fast and efficient processing of huge volumes of data. The GUI based
tools also reduce the development effort by limiting the hand coding.

Talend Open Studio, Informatica Power Center, Microsoft-SQL Server Integrated
Services, Oracle Data Integrator and Xplenty are some of the ETL tools that are
currently available in the market today. In this thesis work, we use the Talend
Open Studio for the data processing operations as it is one of the most widely used
open-source ETL tools that are being used today in many applications. The main
features of the Talend Open Studio are discussed in the following section.

2.4.3 Talend Open Studio

Talend open studio is a GUI based open source ETL tool that is used for creating
efficient data integration processes [Bow12]. The tool has more than 800 connectors
or components for carrying out different operations such as connecting to different

2.4. ETL 15

databases, loading data from multiple sources, transforming data, writing data to
multiple data sources and defining complex data integration operations. Since it is
a GUI based tool that generates the code automatically, it is easy to learn and is
suitable for both experienced as well as less experienced developers.

2.4.3.1 Talend Open Studio Environment

The common elements of the Talend Open Studio such as workspace, project, job,
repository, design workspace, palette and configuration tabs are discussed in this
section.

• Workspace: Workspace is a directory in the computer which contains all the
Talend open studio projects.

• Project: A project in Talend Open Studio is a collection of several jobs.

• Job: A Talend job can be defined as the collection of several components that
are connected. Each job performs a particular data integration process.

• Repository: The repository window is present in the top left corner of the
Talend open studio. All the jobs present in the current projects are listed in
this window.

• Design Workspace: It is the main window at the centre of the Talend open
studio. The developers place different Talend components in this window and
configure them to create the required job.

• Palette: The palette window contains all the components available in the
Talend open studio. This window is present in the top right corner of the
application. The developers can search the required components from the
palette and place them in the design workspace to use them in the job.

• Configuration Tabs: The configuration tabs are mainly used to configure the
individual components in the design workspace. A component in the design
workspace can be configured in the configuration tab by selecting it. These
are present at the bottom of the Talend open studio application.

The repository, design workspace, palette and configuration tabs are shown in Fig-
ure 2.3.

2.4.3.2 Talend Open Studio Components

A component or connector in Talend can be defined as the basic functional block
which performs a specific operation. For example, the tMysqlInput component is
used to read data from the MySQL database and the tFilterRow component filter
the input data based on certain conditions. All the components are available in
the palette window in the Talend open studio. The developers can select different
components from the palette and place them in the design window to use them in
a Talend job. Talend open studio has more than 800 components in total8. Some
example components are shown in Figure 2.3.

8https://www.talendforge.org/components/index.php

16 2. Background

Repository

Configuration Tabs

Palette

Design Workspace

Components

Figure 2.3: Talend Open Studio Elements

2.5 Summary

In this chapter, we provided the necessary background details required for this thesis
work. Initially, a brief introduction was given to the different surveys conducted at
DZHW. Further, we discussed the concepts of SQL and NoSQL databases, such
as their characteristics and corresponding data models. Additionally, the SQL and
NoSQL database design processes were also explained. Finally, we discussed the
important concepts of the ETL process and also introduced Talend Open Studio,
which is an open-source ETL tool.

3. Related Work

This chapter discusses several relevant research works related to this thesis. Some
of the concepts discussed in these have aided in the successful completion of this
thesis work.

[PWJD03] presents a database model for dynamic online web surveys. The survey
questions are divided into multiple components so that each component can be
represented as a database table record. Different independent question components
are combined to form a complete question. The same question component can be
used in multiple survey questions as well. However, this paper only provides limited
information regarding the representation of survey questions in the database.

The goal of this thesis is to design and compare an SQL database and a NoSQL
database for the management of survey questions at DZHW. In other words, we
can say that we need to store the unstructured survey questions in a database.
Therefore, we look into the different ways in which unstructured data can be stored
in relational databases. Since NoSQL databases are designed exclusively for handling
unstructured data, we do not investigate further into this topic. Different ways in
which unstructured data can be permanently stored using relational databases are
following:

3.1 Unstructured Data in Relational Databases

Relational databases are primarily designed for structured data. Storing unstruc-
tured data in SQL databases is a difficult task mainly due their fixed data model.
However, over the years, many researchers have tried to store unstructured data in
relational databases. Some of such works are discussed in this section.

[AM10] presents a comparative analysis of three distinct methods for storing unstruc-
tured data in databases. In the first method, unstructured data is stored inside the
database as BLOB objects. The large files in the database cause speed and storage
concerns in the database, which is one of the main disadvantages of this technique.
The second option proposes storing unstructured data outside the database and as-
sociating these files to the database by recording their position or URLs. However,

18 3. Related Work

the externally stored files are not part of the database transactions. The final and
most effective technique is to save unstructured data using a novel hybrid storage
method. This hybrid approach maintains unstructured data files in the file system
outside the database, but guarantees that they are consistent with database trans-
actions. However, the above-discussed methods only focus on storing the files of
unstructured data. They fail to handle the cases where one needs to access a part
of data stored in one of the files without loading the entire file.

[YAOI13] presents a detailed analysis of three different methods to handle unstruc-
tured data using relational databases. They are discussed as follows:

3.1.1 Database Schema

The first technique defines a database schema that can incorporate the unstructured
data and then extract and map different identified entities from the unstructured
data records into the database. For example, [MS06] proposes a system that could
be used to store text records like citations into relational databases by using machine
learning models. Initially, a structure could be inferred for the text records and the
relevant entities are identified from this structure. Then, a relational database is
designed using these identified entities. The text records are analysed using machine
learning models to extract the entities from them. Each of these extracted entities is
then mapped to the corresponding columns in the database and the corresponding
relationships between the different columns are also defined. This method is really
useful for data records from which a structure could be inferred.

3.1.2 Alternative Data Model

The second technique proposed by [YAOI13] suggests using new alternative data
models to handle unstructured data. [LL10] proposes a new data model called
tetrahedral data model for managing unstructured data. According to the tetrahe-
dral model, each data record is decomposed into four different components: basic
attributes that are common to all kinds of unstructured data, semantic attributes
which describe the data, low level attributes that are extracted from the data and
raw data containing the actual data. Relationships are also defined among these
components for fast access to data.

3.1.3 SQL Queries

The third way of managing unstructured data is to use the SQL queries to access data
stored in text databases [YAOI13]. This method is called query based approach and
usually require an intermediate system to extract information from the unstructured
data record according to the structured input query. QXtract [AG03] is a system
that implements this methodology. QXtract is used to retrieve documents from
large text databases from trained queries. The system learns the database search
queries from the user input of some example tuples. After extracting the best-fitted
documents from the learned queries, these documents are further processed by an
information retrieval system to generate the final relation or table with the values
corresponding to the user input.

3.2. Hybrid Approach 19

3.2 Hybrid Approach

Sometimes the data can contain both structured and unstructured parts or some
portion of the unstructured data could be converted into a structured format. For
example, a video file may have several attributes such as name, file type, size, dura-
tion and description along with the actual file. All the attributes could be considered
structured information, and the video file could be considered as unstructured in-
formation. In this case, a hybrid approach could be employed to store the data
by combing SQL and NoSQL databases. The SQL database accommodates all the
structured data whereas the unstructured information is managed by the NoSQL
systems. For example, [SMP15] proposes a hybrid approach, hybrid database archi-
tecture (HDA), for storing unstructured data using MongoDB. The structured data
is stored in a relational database and all the unstructured data is stored as files in
MongoDB. The GridFS feature of MongoDB is used for storing the files. The meta-
data of the files in MongoDB is stored in the relational database. In this way, the
connection is established between the two databases. For selecting a file, the rela-
tional database containing the metadata or details regarding the file is searched first,
and once the file is identified, the corresponding file is selected from the MongoDB
database.

3.3 Summary

In this chapter, we discussed several related works to this thesis. Initially, we dis-
cussed a database model which manages dynamic online web surveys. Further, we
discussed the different ways in which unstructured data can be stored using rela-
tional databases as the survey questions can be considered as unstructured data.
The first method involves storing the unstructured data in relational databases by
designing a database schema for the unstructured data or by using an alternative
data model or by using SQL queries to access data stored in text databases. The
second method involves storing the data using a hybrid approach using SQL and
NoSQL databases.

20 3. Related Work

4. Requirement Analysis and
Conceptual Data Model

Requirement analysis is the primary step in designing a database. In this step,
the features, purpose and possible constraints of the database are identified and
explained clearly so that a correct, complete and definite database design could be
developed in the subsequent steps.

This chapter aims at a detailed analysis of the survey questions at DZHW. To
this end, we analyse different survey questions in detail to collect all the business
requirements, which would provide a clear and precise understanding of the database
which is to be designed to store the survey questions. Furthermore, a conceptual
data model is also designed for the survey question, which would aid the database
design in the future.

Initially, we analyze a survey as a whole to understand the structure of the survey.
Furthermore, we analyze different questions in the survey to understand the general
structure of the survey questions and to identify different types of questions, answers
and some special cases that exist in the survey. Based on this analysis, we then
identify and list out all the requirements for the database design. Finally, we design
a conceptual data model using the outcomes of the requirement analysis.

4.1 Analysis of the Survey

For designing the database schema, we analyze the questions from the survey, ”Die
Studierendenbefragung in Deutschland”1. This survey is the most extensive one
carried out among the students in Germany. It is a combination of different surveys
carried out separately in the past such as the Social Survey, the Student Survey, the
EUROSTUDENT survey and the Studying with Impairments survey. The social
survey aims for studying the social and economic conditions of the students. The
Student Survey focus on the study conditions of the students. The EUROSTUDENT

1https://www.die-studierendenbefragung.de/en/for-higher-education-institutions

22 4. Requirement Analysis and Conceptual Data Model

survey is conducted to understand the conditions of students in all the 28 European
countries. The Studying with Impairments survey is carried out among the students
to understand their academic conditions and challenges of the students with any
impairment that might affect their studies.

The main focus areas of the survey, ”Die Studierendenbefragung in Deutschland”,
include social, economic and political situations of the students, study conditions
and challenges of the students, career plans and options of the students and health
situations of the students that might affect their studies. The data collected from
the surveys are regularly used for educational reporting. Furthermore, it is also used
by various educational institutions across the country for their quality management.
The collected data is also published in the Research Data Centre of DZHW for
research purposes.

The survey, ”Die Studierendenbefragung in Deutschland”, contains different modules
which address different categories or subtopics in the survey. For example, the mod-
ule called ”Kulturelle Rahmenbedingungen” contains questions about the cultural
conditions of the students and the module called ”Studierende mit Kind” contains
questions to collect details about studying with children. Similarly, each of the sur-
vey modules contains different questions corresponding to the category or subtopic
it addresses. The survey contains nineteen different modules in total. Figure 4.1
shows the overall structure of the analyzed survey.

Figure 4.1: Structure of the Survey

Since the analyzed survey is a collection of different surveys conducted separately
in the past, it is very important to identify and represent the relationships among
them. The new survey contains many questions that were already present in the
past surveys. Thus these shared questions should be stored non redundantly in
the database. Moreover, the relationship between various surveys via such shared

4.2. Analysis of the Survey Questions 23

questions should be well defined as well. Furthermore, the database which is to be
designed should take into account the structure of the survey as well.

4.2 Analysis of the Survey Questions

After analyzing the survey as a whole, in this section, we consider the survey ques-
tions that belong to different modules of the survey.

4.2.1 Structure of Survey Questions

A survey question mainly consists of two parts: the question part and the answer
part. An example of a simple question is shown in Figure 4.2. The question part
contains a mandatory main question part and optional sub-questions. The question
in Figure 4.2 only consists of the main question. The answer part varies depending
on the type of answer. However, in general, an answer part contains the information
regarding the type of answer and zero or more options/choices associated with the
answer. The respondents of the survey have to select one or more options as the
answer to that particular question. Sometimes instead of selecting options, the
answer has to be given as free texts as well.

The question in Figure 4.2 has an answer part with the answer type as a ”single
choice type” (only one could be selected from a group of choices) and has two choic-
es/options associated with it.

Question Part

Answer Part

Figure 4.2: Structure of a Question

4.2.2 Classification of Questions

The analysed survey has different types of questions. Depending on how the question
part is structured, the survey questions can be classified into different groups. The
questions were analysed and grouped and each one of these groups was given a
unique name so that they could be easily referenced in the subsequent sections and
chapters of this thesis. Different groups of questions are level 0 questions, level 1
questions, level 1 grouped questions, level 0 multiple questions. They are discussed
below:

24 4. Requirement Analysis and Conceptual Data Model

4.2.2.1 Level 0 Questions

Level 0 questions are simple questions with only a main question part. This main
question has an answer part associated with it as well. Such questions do not have
any sub-questions. Figure 4.3 is an example of a level 0 question with a main
question and a corresponding answer part.

Main Question

Answer Part

Figure 4.3: Example of a Level 0 Question

4.2.2.2 Level 1 Questions

Level 1 questions are survey questions with sub-questions. Such questions have a
main question and this main question has one or more sub-questions. Each one of
the sub-question has an answer part associated with it. Figure 4.4 is an example of a
level 1 question with a main question having two sub-questions with corresponding
answer parts. A level 1 question can have any number of sub-questions ranging from
zero to n number of sub-questions. In the analyzed survey the highest number of
sub-questions which belonged to a question was twelve.

Main Question

Sub-Question 1

Sub-Question 2

Answer part for Sub-Question 1

Answer part for Sub-Question 2

Figure 4.4: Example of a Level 1 Question

4.2.2.3 Level 1 Grouped Questions

Level 1 grouped questions are the survey questions with sub-questions where the
sub-questions are arranged in different groups. Such questions have a main question
part and this main question part has one or more sub-question groups and each of
these groups has one or more sub-questions in them. Like the level 1 questions,

4.2. Analysis of the Survey Questions 25

each one of the sub-questions has an answer part associated with it. Figure 4.5 is
an example of level 1 grouped question with a main question having twelve sub-
questions which are grouped into three different groups. However, there is no limit
to the number of groups. A level 1 grouped survey question can have any number
of sub-questions and these sub-question should be grouped into at least two groups
as well.

Main Question

Sub-Question
Group 1

Sub-Question
Group 2

Sub-Question
Group 3

Sub-Questions

Sub-Questions

Sub-Questions

Figure 4.5: Example of a Level 1 Grouped Question

4.2.2.4 Level 0 Multiple Questions

Level 0 multiple questions are those survey questions that contain more than one
level 0 question under the same question number. A single question has multiple
main questions. A level 0 multiple question should have at least two main questions.
Figure 4.6 is an example of level 0 multiple Question with three main questions with
corresponding answer parts under one question number.

Even though, these are the only identified question groups in the analysed survey,
the database schema which is to be designed should not only accommodate these
identified groups but also should accommodate other possible questions which can
be created by combining two or more of these question groups or by extending the
structure of an existing question group. For example, by combing level 1 questions
and Level 0 multiple questions we could create a new question type that contains
multiple main question parts and each of these main question have multiple sub-
questions. A structure for such a question is shown in Figure 4.7. Another example
is to extend the structure of level 1 questions so that a new question type is created in

26 4. Requirement Analysis and Conceptual Data Model

Main Question 1

Main Question 2

Main Question 3

Answer for Main Question 1

Answer for Main Question 2

Answer for Main Question 3

Figure 4.6: Example of a Level 0 Multiple Question

which the question contains multiple sub-questions and each of these sub-questions
can have multiple sub-sub-questions as well. A structure for such a question is shown
in Figure 4.8.

Main Question - 1

Sub-Question 1.1

Answer Part 1.1

Sub-Question 1.2

Answer Part 1.2

Main Question - 2

Sub-Question 2.1

Answer Part 2.1

Figure 4.7: New Question Type Structure - 1

4.2.3 Classification of Answers

The questions analyzed in the survey have different types of answers. An answer type
determines how a survey respondent can provide the answer to a particular question.
Identification and analysis of different answer types would be useful while designing
the database model for the survey questions. The identified answer types are single
choice answer type, multiple choice answer type, drop-down answer type, free text
answer type and range/likert-scale answer type. The are discussed as follows:

4.2.3.1 Single Choice Answer Type

A question has a single choice answer type when its answer part has multiple choices.
The person taking the survey can only select one of these choices as the answer.
Figure 4.9 is an example for a question with the single choice answer type. The
survey respondent can select either the option ”in Deutschland” or the option ”in
einem anderen Land” as the answer.

4.2. Analysis of the Survey Questions 27

Main Question 1

Sub-Question 1.1

Sub-Sub-Question 1.1.1

Answer Part 1.1.1

Sub-Sub-Question 1.1.2

Answer Part 1.1.2

Sub-Question 1.2

Answer Part 1.2

Figure 4.8: New Question Type Structure - 2

Single Choice Answer

Figure 4.9: Example of a Single Choice Answer Type

4.2.3.2 Multiple Choice Answer Type

A question with a multiple choice answer type has multiple choices in the answer
part. The survey respondent may select one or more choices as the answer. Fig-
ure 4.10 is an example for a question with multiple choice answer type. The person
taking the survey can select multiple options from the list of nine choices as the
answer to this question.

4.2.3.3 Drop-Down Answer Type

In the case of drop-down answer type, the answer part of the question has a drop-
down list and the respondent of the survey can select one of the options from it as
the answer. An example for such a question is given in Figure 4.11. The survey
respondent can select one of the options from the drop-down list, ”Geburtsland”, as
the answer.

4.2.3.4 Free Text Answer Type

A survey question has a free text answer type if the survey respondent has to answer
that particular question as a free text in a provided text box. Figure 4.12 describes
such a question. The question has two sub-questions and each of them has a free

28 4. Requirement Analysis and Conceptual Data Model

Multiple Choice Answer

Figure 4.10: Example of a Multiple Choice Answer Type

Drop Down Answer

Figure 4.11: Example of a Drop Down Answer Type

text answer type. Thus the respondents of the survey can give free texts as their
answers to this question in the given text boxes.

Free Text Answer

Figure 4.12: Example of a Free Text Answer Type

4.2.3.5 Range/Likert-Scale Answer Type

To provide an answer to a survey question with range/likert-scale as the answer
type, the survey respondent has to select a value from a range of provided values.
The range could be having numeric or text values. A question with range answer
type is described in Figure 4.13. The question contains five sub-questions and each
one could be answered by selecting a value ranging from ”nie” to ”sehr häufig”.

4.2.4 Special Cases

During the analysis of the survey questions, some special cases were identified in
some of the questions. These special cases should be also addressed in the database
schema to be designed as they contain important information about the survey or
the questions. The identified special cases in the survey questions are instructions,

4.2. Analysis of the Survey Questions 29

Range Answer Type

Figure 4.13: Example of a Range/Likert-Scale Answer Type

footnotes/conditions, additional free texts or drop-downs and grouped answer type
choices. They are discussed beneath:

4.2.4.1 Instructions

Some survey questions have instructions on how to answer them. The instructions
are given to help the person answering the question. The instructions could be
associated with both main or sub-questions. Figure 4.14 gives an example of this
special case. Figure 4.14(a) shows a question with an instruction for the main
question and Figure 4.14(b) shows a survey question with an instruction for one of
its sub-questions.

4.2.4.2 Footnotes/Conditions

Some survey questions have footnotes associated with them. The footnotes describe
certain conditions or additional information regarding the question. So it is impor-
tant to save these footnotes as well. In the examined survey, it is found that the
footnotes could be associated with the main questions and/or the sub-questions.

If a question has a footnote associated with one of its question parts, it is indicated
by a superscript, usually a number, at the beginning or the end of that question
part. The actual footnote text is present at the bottom of the page. Figure 6.4 is an
example of this special case. Figure 6.4(a) shows a survey question with footnotes
associated with the main question as well as a sub-question. Figure 6.4(b) shows an
example of the actual footnote texts which are displayed at the bottom of the page.

30 4. Requirement Analysis and Conceptual Data Model

Instruction
For Main
Question

Instruction For
Sub-Question

(a) Example: Instruction For Main Question

(b) Example: Instruction For Sub-Question

Figure 4.14: Example of Instructions

4.2.4.3 Additional Free Texts or Drop Downs

In the analysed survey some questions have additional free text or drop-downs asso-
ciated with some question parts or choices. Such special cases should also be handled
in the database. Some questions with such special cases are shown in Figure 4.16.
Figure 4.16(a) shows an example of a question that has an additional free text as-
sociated with its last sub-question and the Figure 4.16(b) is a survey question in
which an answer choice has an additional drop-down associated with it.

4.2.4.4 Grouped Answer Type Choices

Some questions in the analysed survey contain answer type choices that are grouped
into different categories. Figure 4.17 is a question having such a special case. The
seven answer type choices are arranged into two groups as shown in the example.

4.2.5 Variable Names

Another important feature of the surveys conducted at DZHW is variable names.
A variable name is used to uniquely identify a question/sub-question. So no two
questions/sub-questions have the same variable name. The variable names are used
to identify the answers correctly given by each survey respondent. An answer given
by a survey respondent for a particular question or sub-question could be uniquely
identified using the respondent id and the corresponding variable name. Further-
more, the variable names also characterize a questioned person. Each variable is a
property of the respondent. Hence, they have a sociological meaning and importance
as well.

4.3. Requirements for Database Design 31

Footnote for Main Question

Footnote for Sub-Question

(a) Question with Footnote

(a) Footnote at the Bottom of Page

Figure 4.15: Example of Footnotes

A survey question can have multiple variable names associated with it depending on
the number of main/sub-questions in it. If a question has only a main question, then
it only has one variable name corresponding to that main question. On the other
hand, if a survey question has sub-questions, then each one of those sub-questions
has a variable name associated with it. Also the additional free texts and drop-downs
discussed in Section 4.2.4.3 also have separate variable names associated with them.

Figure 4.18 shows a survey question with variable names. The question has five
sub-questions and an additional free text associated with the last sub-question as
shown in the figure. Thus the question has six variable names, one for each sub-
question (pflegt1, pflegt2, pflegt3, pflegt4, pflegt5) and one for the additional free
text (pflegt5o). These variable names are also shown in the figure.

4.3 Requirements for Database Design

After analyzing the survey and the different questions in it, various implementation
requirements were identified. These requirements contain important information
about the survey and the survey questions and should be considered while designing

32 4. Requirement Analysis and Conceptual Data Model

Additional Drop Down

Additional Free Text

(a) Additional Free Text for a Sub-Question

(b) Additional Free Text for a Answer Choice

Figure 4.16: Example of Additional Free Texts or Drop Downs

Choice Group 1

Choice Group 2

Figure 4.17: Example of Grouped Answer Type Choices

the database for storing the survey questions. The requirements identified for the
database design are as follows:

• Structure of the Survey: The structure of the survey should be maintained
in the database. A survey contains different modules with multiple questions.
The database should be able to incorporate this hierarchy.

4.3. Requirements for Database Design 33

pflegt1

pflegt2

pflegt3

pflegt4

pflegt5

pflegt5o

Variable Names
of Sub-Questions

Variable Name of The Additional Text Box

Figure 4.18: Example: Variable Names

• Structure of Survey Questions: Each survey question has a question part and
an answer part. The database should be able to store these components non
redundantly.

• Non-Redundant Questions: A survey can contain questions that could be al-
ready present in some other surveys. Thus these shared questions should be
stored non redundantly in the database by defining all the necessary relation-
ships.

• Non-Redundant Answer Type Instances: Sometimes, multiple questions can
have the same answer type instances. For example, the same set single choice
options could be used in two separate survey questions. In such cases, the
shared answer type instances should be stored non redundantly in the database.

• Question types: The database should be flexible enough to handle the different
question types discussed in Section 4.2.2. The different question types are level
0 questions, level 1 questions, level 1 grouped questions and level 0 multiple
questions. Apart from the identified question types, the database should also
handle new question types as discussed in Section 4.2.2.

• Answer Types: Like the question types, the new database should be able to
incorporate all the different answer types such as single choice, multiple choice,
drop-down, free text and range/likert-scale discussed in Section 4.2.3.

• Special Cases: The special cases discussed in Section 4.2.4 such as instructions,
footnotes/conditions, additional free texts or drop-downs and grouped answer
type choices should also be successfully stored in the database along with the
questions as they contain important information about the survey.

• Variable Names: The database should be able to incorporate the variable
name feature of the survey. All the properties of variable names should be met
as well.

34 4. Requirement Analysis and Conceptual Data Model

4.4 Conceptual Data Model

In this section, we present a conceptual data model based on the outcomes of the
requirement analysis. This data model is a high-level model which provides only
a general understanding of the examined survey data. It can be considered as a
stepping stone in designing the final database. The conceptual model is only a basic
model and does not provide any implementation or technical details of the final
database. Instead, it explains the data in a way that is closer to how the users view
the data. The model presented in this section is expanded in the future steps to
build the final database model.

The data modelling technique used to create the conceptual data model is the Entity-
Relationship (ER) Model. The ER model consists of an ER diagram. The ER dia-
gram mainly consists of entities, attributes of the entities and relationships between
the entities. An entity is a data object and is represented using a rectangle in the ER
diagram. Attributes describe the properties of the entities and are represented using
oval shapes in the ER diagram. A relationship describes the relationship between
two entities and is represented using a diamond shape.

Figure 4.19 shows the conceptual data model for the analysed survey questions.
The different identified entities in the data are Survey, Survey Module, Question,
Question Part, Answer Part, Answer Part Choice, Additional Answer Part and
Additional Answer Part Choice. Various relationships among these entities and
their properties are discussed below:

• Survey Entity: The survey entity has survey name as its attribute, which
stores the name of the survey. Each survey contains different survey modules.
A survey should have one or more survey modules in it.

For example, the survey analysed in this thesis work could be considered as an
instance of the survey entity with the survey name ”Die Studierendenbefragung
in Deutschland”. The survey has nineteen different modules in it.

• Survey Module Entity: The survey module entity has a survey module name
attribute, which stores the name of the survey module. Each survey module
has multiple questions in it. A survey module should have at least one question.
Furthermore, each survey module belongs to one and only one survey.

For example, let us consider the survey ”Die Studierendenbefragung in Deutsch-
land”. Each survey module in this survey could be considered as an instance of
the survey module entity. Each survey module has multiple survey questions
as well.

• Question Entity: Question entity has a question id attribute, which is used to
uniquely identify the question. Each question has multiple question parts, like
the main question part, sub-question part and sub-sub-question part, depend-
ing on the type of question. The same question can belong to different survey
modules in multiple surveys. In such cases, the question number would be dif-
ferent depending on the survey. For example, consider a question Q present in
survey module SM1 and also in survey module SM2. Question Q is displayed

4.4. Conceptual Data Model 35

Survey Survey Module Question

Answer Part

Question Part

Answer Part
Choice

Survey Name

Additioanal Answer
Part

Survey Module
Name

has
1..n

Survey Question
Number

has
1..m 1..n

has
1

1..n

has has

has

Question Part Text

Footnote

Instruction

Answer Type

Choice Text

Choice Value

Group

Answer Type

has

Additional Answer
Part Choice

Choice Text

Choice Value

Variable Name

Additional
Variable Name

hasAdditional
Variable Name

0..1

1..n

0..n

1

0..1

0..n

0..n

1

0..1

0..n

1

Question Id

Figure 4.19: Conceptual Data Model for Survey Questions

as the second question in SM1, whereas in SM2, Q is displayed as the seventh
question. In this case, even though the same question is used in both surveys,
the question numbers are different. This is why the survey question number
attribute, which stores the question number of a question in a survey, is asso-
ciated with the relationship.

The question shown in Figure 4.20 could be considered as an instance of
the question entity. The question belongs to a module in the survey, ”Die
Studierendenbefragung in Deutschland”. The question has three question parts
as well as shown in the figure.

• Question Part Entity: The question part entity has five attributes: ques-
tion part text, footnote, instruction, variable name and additional variable
name. The question part text stores the text which is displayed in the survey.
The footnote attribute and instruction attribute store the footnote informa-
tion and instruction text, if any, associated with the corresponding question

36 4. Requirement Analysis and Conceptual Data Model

Question Part 1

Question Part 2

Question Part 3

Question Part 4

Question Part 5

Question Part 6

Answer Part 1 (for Question Part 2)

Answer Part 2 (for Question Part 3)

Answer Part 3 (for Question Part 4)

Answer Part 4 (for Question Part 5)

Answer Part 5 (for Question Part 6)

Answer Part Choice Texts for
all Answer Parts

Figure 4.20: Example Question with Six Question Parts and Five Answer Parts

Question Part 1

Question Part 2

Question Part 3

Question Part 4

Question Part 5

Question Part 6

Additional Answer Part

Answer Part Choice Texts for All Answer Parts

Answer Part 1 (for Question Part 2)

Answer Part 2 (for Question Part 3)

Answer Part 3 (for Question Part 4)

Answer Part 4 (for Question Part 5)

Answer Part 5 (for Question Part 6)

Figure 4.21: Example Question with an Additional Answer Part Associated with a
Question Part

part. If the question part has an answer part, then it has a variable name
which is stored in the variable name attribute. If an additional free text or
drop-down is associated with the question part, then also it has a correspond-
ing variable name. For the distinction between the normal variable name and
the variable name associated with the additional free text or drop-down, we
call it an additional variable name as is stored in the additional variable name
attribute.

While considering entity relationships, each question part belongs to a question
and can also have an optional answer part and/or an optional additional answer
part associated with it. The additional answer part includes the additional free
text or drop-down discussed as special cases in Section 4.2.4.

Consider the question in Figure 4.20. The question contains six question parts
as shown in the figure. Question Part 1 is the main question part and it does
not have any answer parts. Whereas, Question Part 2-6 have corresponding
answer parts and thus they have variable names associated with them. For
the question in Figure 4.21 there is an additional answer part of type free text
associated with the last question part (Question Part 6) as shown. Therefore,
the question part has an additional variable name associates with it.

• Answer Part Entity: An answer part entity has an answer type attribute. It
is used to store the answer type which describes how the question is answered.
Apart from this, an answer part may have multiple answer part choices de-
pending on the answer type. For example, if the answer type is a free text,

4.4. Conceptual Data Model 37

then there are no answer type choices associated with that particular answer
part. On the other hand, the answer part contains multiple choices if the
answer type is drop-down, range, multiple-choice or single choice. An answer
part can be a part of multiple survey questions as well.

The question in Figure 4.22 contains an answer part of type single choice. The
answer part has two choices as well.

Answer Part

Question Part

Answer Part Choice 1

Answer Part Choice 2

Additional Answer Part

Figure 4.22: Example Question with an Additional Answer Part Associated with an
Answer Part Choice

• Answer Part Choice Entity: The answer part choice entity has choice text,
choice value, choice group and additional variable name as its attributes. The
choice text attribute stores the text that is displayed as the choice in the sur-
vey. Each choice text has a value, usually a numeric value, associated with it
and it is stored in the choice value attribute. This value is used for the internal
representation of the choice text in programs and databases as they can handle
numeric values much easier than text values. If the choices of a particular an-
swer part are categorized into different groups then the choice group attribute
contains the name of the group to which a choice belongs. If the choice con-
tains an additional answer part (additional free text or drop-down) associated
with it, then the additional variable name attribute stores the variable name
of the additional answer part. In the case of entity relationships, an answer
part choice entity may have an additional answer part entity.

The answer part of the question in Figure 4.22 has two answer part choices as
shown. Each of these choices has a corresponding choice text and choice value
associated with it. The values are not shown as they are used for the internal
representation. The second choice, Answer Part Choice 2, has an additional
answer part associated with it and thus has a corresponding additional variable
name as well.

• Additional Answer Part Entity: An additional answer part entity has an
attribute called answer type, which stores the type of the additional answer.
In the survey which is analyzed for this thesis work, there exist only two types
for an ”additional answer part”, free text and drop-down (called additional
free text and additional drop-down). The additional answer part entity may
have multiple additional answer part choices as well depending on the answer

38 4. Requirement Analysis and Conceptual Data Model

type. An additional answer part might belong to one or more answer parts or
question parts.

The question in Figure 4.22 has an additional answer part associated with
the second answer part choice. It is of type drop-down and thus has multiple
additional answer type choices as well. Also, in Figure 4.21, the last question
part contains an additional answer part of type free text. Since the answer is
given as a free text there is no additional answer part choices associated with
it.

• Additional Answer Part Choice Entity: The additional answer part choice
entity has two attributes choice text and choice value. The choice text at-
tribute stores the text which is displayed as the answer choice in the survey.
The choice value attribute stores the corresponding value of the choice text.

The answer type of the additional answer part in Figure 4.22 is a drop-down
and thus it has multiple additional answer type choices. Each of these choices
has a choice text and a corresponding value as well.

4.5 Summary

In this chapter, we have done a detailed requirements analysis and conceptual data
modelling for designing a database for managing survey questions. We started the
requirement analysis by analyzing a survey, ”Die Studierendenbefragung in Deutsch-
land”, conducted at DZHW. Different features of the survey were examined, and the
structure of the survey was identified.

After analyzing the survey as a whole, we moved on to the analysis of individual
questions in the survey. Initially, we comprehended the general structure of the
survey questions. Furthermore, the different types of survey questions and answer
parts were identified. Different types of questions are level 0 questions, level 1
questions, level 1 grouped questions, level 0 multiple questions. Different types of
answer parts that describe how a question can be answered are single choice answer
type, multiple choice answer type, drop-down answer type, free text answer type
and range/likert-scale answer type. Additionally, we also discussed some special
cases such as instructions, footnotes/conditions, additional free texts or drop-downs
and grouped answer type choices that are present in the survey questions. These
special cases are important as they contain important information about the survey.
Finally, we also discussed an important feature of the surveys called variable names,
which are used to uniquely identify the survey questions/sub-questions.

After analyzing the survey and the survey questions, the requirements for database
design were identified and listed. Based on the outcomes of the requirement analysis,
a conceptual data model was designed. The designed conceptual data model is a
basic model without any implementation or technical details, which only provides a
general understanding of the examined survey data. This conceptual data model is
expanded to build the final database model in the future steps.

5. Selection of Databases

In this chapter, we select the SQL and NoSQL databases for implementing the
database schemas for managing the survey questions. For this, different SQL and
NoSQL databases are considered, and the most suitable ones are selected for imple-
menting the final database model. The selection was done before the final database
design, as the NoSQL database schema could only be designed after selecting the
database. The physical schema of the NoSQL database is designed according to the
data model implemented by the selected NoSQL database.

5.1 Selection of SQL Database

5.1.1 Analysis and Comparison

Different SQL databases which are considered and analysed for this thesis work are
discussed below. At the time of writing this thesis work, the selected relational
databases were the most popular among the available databases1. They are as
follows:

5.1.1.1 Microsoft SQL Server

Microsoft SQL Server is another popular relational database managed and developed
by Microsoft Corporation. It offers superior performance and reliability [VM21] and
is often considered as an enterprise database used in large-scale organizations with
complex functionalities [SJDM15]. Thus, like the Oracle database, Microsoft SQL
Server is also not desired for small to medium sized applications.

5.1.1.2 MySQL

MySQL is a widely used open-source SQL database. It is currently under the own-
ership of the Oracle Corporation and was first released in the year 1995 [Let15].
MySQL is supported by many different operating systems and programming lan-
guages without any memory leaks [WAA02]. Because of its open-source nature,
high availability, and superior performance, MySQL is considered the best relational
database for medium and small-scale applications [IAB+17].

1https://db-engines.com/en/ranking

40 5. Selection of Databases

5.1.1.3 Oracle

Oracle is one of the most popular commercial relational databases. Oracle was first
released in the year 1979 and is owned by the Oracle Corporation. Many companies
opt for Oracle as their database because of its scalability and definitive architec-
ture [KK01]. However, using Oracle for small scale applications is not advisable due
to its high complexity [BRA12] and difficulty in managing the database [KK01].

5.1.1.4 PostgreSQL

PostgreSQL is also an open-source relational database managed by the PostgreSQL
Global Development Group. It is a feature-packed database and is well ahead of
any other relational databases in terms of implementing SQL standards [KK01].
When comparing open source databases, PostgreSQL is slower as compared to
MySQL [PPJ17] and thus is less preferred when high performance is desired.

In Table 5.1, we provide a basic overview of the relational databases discussed in this
section. All four databases have the relational model as their primary data model.
MySQL and PostgreSQL are open-source systems, and the Oracle and Microsoft
SQL Server have a commercial licence. Both MySQL and Oracle databases were
implemented in C and C++. However, PostgreSQL is implemented only in C and
Microsoft SQL Server is implemented only in C++. In the case of programming
language support, Oracle is the winner with 24 supported programming languages,
followed by MySQL, which supports 19 programming languages. Microsoft SQL
Server supports 11 programming languages, whereas PostgreSQL supports only 10
languages. All the databases support ACID properties, which is an important feature
of all relational databases. Furthermore, all of them offers durability and consistency
as well.

5.1.2 Selection

Among the four previously discussed SQL databases, MySQL is selected to imple-
ment and analyze the SQL database schema designed to store the survey questions.
This selection is made based on the following reasons:

• At the time of writing this thesis, MySQL was the second most popular rela-
tional database, and among the open-source relational databases, it ranked as
the best as well2.

• MySQL is considered the best relational database for medium and small scale
applications. Even though Oracle and Microsoft SQL Server offer superior
performance, they are less suited for small or medium scale applications.

• MySQL has an open-source license which makes it more favorable for this
thesis work. On the other hand, Oracle and Microsoft SQL Server have a
commercial license with restricted free versions. Even though PostgreSQL has
an open-source license, it lacks behind MySQL in terms of performance.

2https://db-engines.com/en/ranking

5.2. NoSQL Database Selection 41

MySQL Oracle PostgreSQL Microsoft SQL Server
Primary
Data Model

Relational Relational Relational Relational

License open-source Commercial open-source Commercial
Implementation
Language

C and C++ C and C++ C C++

Supported
Programming
Languages

Ada
C
C#
C++
D
Delphi
Eiffel
Erlang
Haskell
Java
JavaScript
Objective-C
OCaml
Perl
PHP
Python
Ruby
Scheme
Tcl

C
C#
C++
Clojure
Cobol
Delphi
Eiffel
Erlang
Fortran
Groovy
Haskell
Java
JavaScript
Lisp
Objective C
OCaml
Perl
PHP
Python
R
Ruby
Scala
Tcl
Visual Basic

.Net
C
C++
Delphi
Java
JavaScript
Perl
PHP
Python
Tcl

C#
C++
Delphi
Go
Java
JavaScript
PHP
Python
R
Ruby
Visual Basic

Transaction ACID ACID ACID ACID
Durability yes yes yes yes
Consistency yes yes yes yes

Table 5.1: Overview of Relational databases

5.2 NoSQL Database Selection

5.2.1 Analysis and Comparison

Document oriented databases are selected to store the survey questions from the
different types of NoSQL databases discussed in Section 2.2.2.2. Document ori-
ented databases could be well suited to represent the survey questions as each of
the questions could be considered as a document with several attributes and mul-
tiple embedded documents. A survey question, for example, could be described as
a document with attributes such as question number, survey module, and survey
to which the question belongs, while the actual structure of the question and the
corresponding answer type could be stored as embedded documents.

Because of their simple architecture, the key-value stores were not chosen. A ques-
tion with a complex structure would be extremely difficult to represent using key-

42 5. Selection of Databases

value pairs. Furthermore, key-value stores also do not allow the search using values,
which would make the search of survey questions very difficult. Column stores
are primarily used for analytical and data warehousing applications, and design-
ing a schema for survey questions in column stores would be less feasible. Graph
databases are best suited for data that can be represented as graphs, as well as for
the analysis of relationships between data entities. However, in the case of survey
questions, the better representation model would be a document, and the analysis
of relationships between entities is only of minor importance.

Different document oriented databases that are considered and analysed for this
thesis work are discussed below. At the time of writing this thesis work, the selected
databases are the most popular open-source document oriented databases among
the existing ones3. They are as follows:

5.2.1.1 Couchbase

Couchbase is a multi-model NoSQL database from Couchbase, Inc. which supports
multiple data models. It was first released in the year 2010. The primary database
model of Couchbase is a document store. However, it also supports key-value storage
and spatial data storage [Gü94] as secondary database models. This thesis work
mainly concentrates on the document oriented feature of Couchbase. The main
characteristics of Couchbase [CB19] are as follows:

• Couchbase stores data in the form of JSON (JavaScript Object Notation)
documents.

• Couchbase uses an SQL like query language called N1QL for querying data.
This makes the development easier.

• Couchbase offers features like Map-Reduce, secondary indexes and server-side
scripting which improves the performance of the database.

• Like MongoDB, Couchbase also supports sharding which enables horizontal
scalability.

Even though development with Couchbase is easier due to its SQL like language, it
offers fewer functionalities, programming language support and security as compared
to MongoDB.

5.2.1.2 CouchDB

CouchDB is also a multi-model NoSQL database, developed by the Apache Soft-
ware Foundation. The initial version of CouchDB was released in the year 2005.
Like Couchbase, the primary database model of CouchDB is also the document
store along with Spatial data storage as the secondary model. The key characteris-
tics [CB19] of CouchDB are discussed in the following points.

• JSON (JavaScript Object Notation) is the data model implemented by CouchDB
to store documents.

3https://db-engines.com/en/ranking

5.2. NoSQL Database Selection 43

• CouchDB manages the documents via Restful HTTP APIs and uses JavaScript
as the querying language.

• Like Couchbase, CouchDB also implements features that improve its perfor-
mance like Map-Reduce, secondary indexes and server-side scripting.

• Shading in CouchDB enables horizontal scaling.

The main disadvantages of CouchDB are lack of ad-hoc queries, no transaction
support, lack of predefined data types and expensive arbitrary queries.

5.2.1.3 MongoDB

MongoDB is a popular document oriented database developed by MongoDB Inc.
The first version of MongoDB was released in the year 2009. The main features of
MongoDB [BBC13] include:

• MongoDB stores data in the form of BSON (Binary JavaScript Object Nota-
tion) documents. The BSON format is similar to the JSON (JavaScript Object
Notation) format and is generally easy to work with. A group of documents is
called a collection in MongoDB. A collection could be considered as an equiv-
alent of the table in the relational database. A group of collections forms a
database.

• MongoDB uses a JavaScript-based querying language to query data.

• MongoDB offers different indexing features such as single field indexes on a
single field of a document, compound indexed on multiple fields of a document,
multi-key indexes to index the array elements, geospatial indexes on geospatial
coordinate data, text indexes for performing efficient text searches and unique
indexes to ensure that the indexed fields do not have duplicate values.

• The aggregation pipeline feature of MongoDB enables complex aggregations
of data. An aggregation pipeline in MongoDB contains multiple document
processing stages. Each stage performs an data processing operation on the
input documents and passes the processed documents to the next stage for
further processing.

• MongoDB also offers special-purpose collections such as fixed-size collections
which could accommodate only a fixed amount of data and short-to-live col-
lections which would only live for a fixed duration.

• MongoDB offers queries which enable efficient management of data.

• The auto sharding feature of MongoDB efficiently handles the horizontal scal-
ing of the database automatically.

However, a major disadvantage of MongoDB is security [KES16]. MongoDB was
developed without giving much importance to security. Furthermore, the memory
usage of MongoDB is also very high.

44 5. Selection of Databases

In Table 5.2, we provide a basic overview of the three document databases dis-
cussed in this section. All three databases have the document as their primary data
model. As explained before, all of them have open-source licenses as well. The
MongoDB is implemented in C++, and the CouchDB is implemented using Er-
lang. However, Couchbase is implemented using C, C++, Go and Erlang. In the
case of programming language support, MongoDB is the winner with 29 supported
languages. CouchDB supports 17 programming languages, and PostgreSQL sup-
ports only 14 languages. Only MongoDB and Couchbase support ACID properties.
However, all of them offers durability and consistency. Additionally, MongoDB and
Couchbase offer SQL support as well. In MongoDB, SQL queries could be executed
using special connectors, and the Couchbase supports N1QL, which is an extension
of ANSI SQL to JSON.

5.2.2 Selection

Among the above-discussed document databases, MongoDB is selected to store the
survey questions in this thesis work. The main reasons for choosing MongoDB are
as follows:

• MongoDB is the most popular and widely used document database with good
community support as compared to its counter parts4.

• MongoDB supports more programming languages than Couchbase and CouchDB.

• The aggregation pipeline in MongoDB enables efficient processing of complex
data aggregations that would be useful for analyzing the survey data.

• Even though Couchbase offers a simple SQL like querying language, MongoDB
also provides connectors that enable the use of SQL queries against MongoDB
collections.

• MongoDB uses BSON that supports more data types than JSON, used in
Couchbase and CouchDB.

• MongoDB performs better than Couchbase and CouchDB in terms of func-
tionalities [CB19].

5.3 Summary

In this chapter, we have selected the SQL and NoSQL databases for implementing
the final database model for managing the survey questions. Initially, four different
SQL databases were considered. They are Microsoft SQL Server, MySQL, Ora-
cle and PostgreSQL. After comparing the four databases, MySQL was selected to
implement our database for managing the survey questions. The main reasons for
selecting the MySQL database are its high popularity, suitability, open-source nature
and comparable performance.

4https://db-engines.com/en/ranking

5.3. Summary 45

In the case of NoSQL databases, we selected the document-oriented databases for
managing the survey question from the different types of NoSQL databases as it is
well suited to represent the survey questions. From document-oriented databases,
three popular ones were considered and compared. They are MongoDB, Couchbase
and CouchDB. MongoDB is selected to implement our database after the compari-
son. The main reasons for choosing the MongoDB database are its high popularity,
good programming language support, aggregation pipelines for the efficient process-
ing of complex data aggregations, SQL support and better performance.

46 5. Selection of Databases

MongoDB Couchbase CouchDB
Primary Data Model Document Document Document
License open-source open-source open-source

Implementation Language C++

C
C++
Go
Erlang

Erlang

Supported
Programming Languages

Actionscript
C
C#
C++
Clojure
ColdFusion
D
Dart
Delphi
Erlang
Go
Groovy
Haskell
Java
JavaScript
Lisp
Lua
MatLab
Perl
PHP
PowerShell
Prolog
Python
R
Ruby
Rust
Scala
Smalltalk
Swift

.Net
C
Clojure
ColdFusion
Erlang
Go
Java
JavaScript
Perl
PHP
Python
Ruby
Scala
Tcl

C
C#
ColdFusion
Erlang
Haskell
Java
JavaScript
Lisp
Lua
Objective-C
OCaml
Perl
PHP
PL/SQL
Python
Ruby
Smalltalk

Transaction
Multi-document
ACID Transactions
with snapshot isolation

ACID -

Durability yes yes yes
Consistency yes yes yes

SQL Support
SQL queries via
MongoDB Connector

N1QL
(Extension of
ANSI SQL to JSON)

-

Table 5.2: Overview of Document Oriented databases

6. Database Design

In this chapter, we design an SQL and NoSQL database models for the survey ques-
tions. The conceptual data model presented in ?? is expanded for implementing the
database models. The SQL database model is implemented in a MySQL database
and the NoSQL model is implemented in a MongoDB database. The design, espe-
cially the NoSQL one, is done by considering the characteristics of the database in
which the models are implemented.

6.1 SQL Database Design

The conceptual data model discussed in ?? does not represent the fully normalized
data. One of the main characteristics of the SQL database is data normalization.
The data stored in a relational database should be normalized to prevent data redun-
dancies. Therefore, the conceptual model is normalized to obtain the final database
model. Figure 6.1 shows the final SQL database model.

According to the standard procedure, all entities in the conceptual data model are
converted into tables. Apart from these tables, we also introduce six new tables
in the SQL database design to ensure data normalization. The newly included
tables are Question Part Text, Footnote, Choice Group, Choice Text, Question Part
Instruction and Survey Module Question. Furthermore, some other modifications
are also done to ensure the correct implementation of the database such as extending
the structures of question part, answer part choices and additional answer part
choices. All the tables in the SQL database schema are discussed below.

6.1.1 Survey

The survey table stores the details of the surveys. It has two attributes. The
survey name attribute stores the name of the survey and, the survey id attribute
stores the ids that are used to uniquely identify the corresponding survey records.
Each survey record in the table should have one or more survey modules associated
with it.

48 6. Database Design

Survey

PK survey_id

NN, U survey_name

Survey Module

PK survey_module_id

FK, NN survey_id

NN, U survey_module_name

Survey Module-Question

PK, FK1, U survey_module_id

PK question_id

FK2, U question_number

Questions

PK question_id

Question Part

PK,FK1 question_id

PK part_sequence_number

Level

U variable_name

FK2 answer_part_id

FK3 question_part_text_id

FK4 question_part_instruction_id

U additional_variable_name

FK5 additional_answer_part_id

Question Part Text

PK question_part_text_id

U question_part_text

Question Part Instruction

PK question_part_instruction_id

U, NN question_part_instruction

Footnote

PK,FK1 survey_module_id

PK, FK1, FK2 question_id

PK,FK2 part_sequence_number

footnote_text

Answer Part

PK answer_part_id

NN answer_type

Answer Part Choice

PK,FK1 answer_part_id

PK choice_sequence_number

FK2, NN choice_text_id

NN choice_value

FK3, NN choice_group_id

U additional_variable_name

FK4 additional_answer_part_id

Additioanal Answer Part

PK additional_answer_part_id

NN additional_answer_type

Additional Answer Part Choice

PK,FK1 additional_answer_part_id

PK choice_sequence_number

FK2, NN choice_text_id

NN choice_value

Choice Text

PK choice_text_id

NN, U choice_text

Choice Group

PK choice_group_id

NN, U choice_group_text

1

1..n

1..n1 1

1..n

0..n

1

1..n

1

1

0..1

1

1..n

1..n0..1

0..11..n

0..n

1

1

0..n

0..1

0..n

0..1

0..n

0..1

1..n

0..n

1

0..n 1

Figure 6.1: SQL Database Design

6.1.2 Survey Module

The survey module table stores the details of the different survey modules. The table
has three attributes. The survey module id attribute is used to uniquely identify a
survey module record. The survey id attribute stores the id of the survey to which
the survey module belongs. The survey module name stores the name of the survey
modules. Each survey module should have multiple questions and, it should belong
to a survey as well.

6.1.3 Question

The question table stores the unique id of each survey question in the question id
attribute. A question should belong to at least one of the survey modules. So, each
question id should be present in at least one entry of the survey module question

6.1. SQL Database Design 49

table. Furthermore, each question record should have at least one question part as
well. So, each question id should be present in at least one record of the question
part table.

6.1.4 Survey Module Question

The survey module question table is used to handle the question number attribute
associated with the relationship connecting the survey module entity and the ques-
tion entity in the conceptual data model (Chapter 4). The question number at-
tribute is associated with the relationship because a question can belong to different
survey modules in multiple surveys. In such cases, the question number would be
different depending on the survey module. The new table, survey module question,
stores all the questions in a survey module with their corresponding question num-
ber. In this way, the survey questions are made independent of the surveys. The
table contains three attributes survey module id, question id and question number.
The survey module id stores the id of a survey module from the survey module table.
The question id stores the id of a question from the question table. Finally, the ques-
tion number stores the question number of the question in the survey module. Each
table record is uniquely identified using the combination of the survey module id
and the question id attributes.

For example, consider a survey module (survey module id = 1) with a question
(question id = 100) as its tenth question. Assume that the same question is also
present in another survey module (survey module id = 2) as its seventh question.
In this case, the entries in the survey module question table are shown in Table 6.1.
There is an entry for the same question for both the survey modules with the cor-
responding question number. Here, the considered question is a standalone object
which could be used in multiple survey modules.

survey module id question id question number
1 100 10
2 100 7

Table 6.1: Example of Survey Module Question Table

6.1.5 Question Part Text

The question part text table stores the texts of the question parts which are as-
sociated with each of the question parts. The table contains two attributes ques-
tion part text id and question part text. The question part text stores the texts as-
sociated with the question parts and the corresponding question part text id at-
tribute stores the ids which are used to uniquely identify the texts. For a saved text,
the corresponding id is stored in the question part table records that has the text.
This is done to prevent redundant storage of question part texts in the database.

6.1.6 Question Part Instruction

The question part instruction table stores the instructions associated with the ques-
tion parts. Each instruction text has a corresponding unique id. The table contains

50 6. Database Design

two attributes question part instruction id and question part instruction. The ques-
tion part instruction stores the instructions associated with the question parts and
the corresponding question part instruction id attribute stores the ids which are
used to uniquely identify the instructions. The instructions are linked to the ques-
tion part table records using the ids. Redundant storage of instruction texts in the
database is avoided using this strategy.

6.1.7 Question Part

A question can have multiple question parts (Figure 6.2). Saving the question parts
according to the definition given in the conceptual data model will create problems
as it would be difficult to retrieve the structure of the question from the saved
information. For example, consider the question given in Figure 6.2. The question
has two question parts, and according to the conceptual data model, we could save
these question parts as shown in Table 6.2. However, at a later stage, when we query
these question parts to retrieve the question, we would not be able to reconstruct
the question as we do not have sufficient information. We could not identify the
order of the question parts and, we also could not identify which question part is
the main question part and which one is the sub-question part.

Question Part 1 (Level 0)

Question Part 2 (Level 1)

Figure 6.2: Example Question IV

Question Part Text FootNote Instruction Variable Name Additional Variable Name
Um die Befragung passend... Null Null Null Null
Wo haben Sie erstmals Ihre... Null Null vsbdeba Null

Table 6.2: Question Parts According to Conceptual Data Model

Therefore, the sequential order of the question part in a question should be saved
along with the question part information. Furthermore, the level of the question part
should also be saved so that the correct structure of the question can be retrieved.
Therefore, the structure of the question part table should include this information
as well. As a result, in the database design, we have extended the attributes of
the question parts to include part sequence number and level as new attributes.
The part sequence number stores the sequential order of the question parts in the
question and the level attribute stores the level of the question part.

The remaining attributes of the question part table are as follows. The question id
stores the id of the corresponding question. The variable name attribute stores
the corresponding variable name if the question part has an answer part. The an-
swer part id stores the id of the answer part if the question part has one. The
question part text id stores the id of the question part text associated with the
question part. The question part instruction id stores the id of the instruction if

6.1. SQL Database Design 51

the question part has one. The additional variable name stores the corresponding
variable name if the question part has an additional answer part. Finally, the ad-
ditional answer part id stores the id of the additional answer part if the question
part has one. Each table record is uniquely identified using the combination of
question id and part sequence number attributes.

According to the SQL database model, the question parts of the question in Fig-
ure 6.2 could be saved as shown in Table 6.3.

question
id

part
sequence
number

level
variable
name

answer
part
id

question
part
text
id

question
part
instruction
id

additional
variable
name

additional
answer
part
id

100 1 0 Null Null 20 Null Null Null
100 2 1 vsbdeba 1000 30 Null Null Null

Table 6.3: Question Parts According to Final Database Model

6.1.8 Choice Text

The choice text table stores the texts associated with the answer part choices. The
table has two attributes choice text id and choice text. The texts associated with the
choices in the questions are stored in the choice text attribute and, the corresponding
choice text id attribute stores ids that could be used to uniquely identify the texts.
The id of a choice text is stored in the answer part choice and additional answer
part choice records that have the particular text. The choice texts are isolated to
ensure data normalization by preventing duplicate storage.

6.1.9 Choice Group

Like choice texts, the texts associated with the choice groups in case of grouped
answer part choices are also stored in a separate table. This table is named as
choice group and contains two attributes choice group id and choice group text. The
choice group text attribute stores the choice group descriptions. Each one of these
texts is identified by a unique id which is stored in the choice group id attribute.
Only the answer part choices could be grouped and, the choice records which are
grouped store the id of the group in which they belong. Duplicate storage of texts
could be avoided by this.

6.1.10 Answer Part

The answer part choice table stores the information regarding the answer parts in
the survey questions. It has two attributes: the answer part id attribute stores the
ids, which could be used to uniquely identify the answer parts and the answer type
attribute stores the corresponding answer type of the answer part, which explains
how the answer could be given. An answer part record may or may not have answer
part choices depending on its answer type attribute value. But, each answer part
should belong to at least one of the question part records in the question part table.

52 6. Database Design

6.1.11 Answer Part Choice

An answer part can also have multiple choices. Like the question parts, it is impor-
tant to save the sequential order of the answer part choices as well. Otherwise, we
would not be able to reconstruct the question with the correct order of the answer
part choices. For example, consider the question in Figure 6.3. The question has
a main question part with an answer type as a single choice. The answer part has
seven different options/choices. According to the structure of the answer part choice
in the conceptual data model, these choices could be saved as shown in Table 6.4.
However, at a later stage, when we retrieve the choices to reconstruct the question,
we would not be able to do so as we do not have the order in which the choices are
arranged.

Answer Part Choices

Figure 6.3: Example Question with Answer Parts Choices

Choice Text Choice Value Choice Group Additional Variable Name
allgemeine Hochschulreife 10 Null Null

fachgebundene Hochschulreife 20 Null Null
Fachhochschulreife 30 Null Null

Mittlere Reife 40 Null Null
Hauptschulabschluss 50 Null Null
anderer Abschluss 60 Null Null
keinen Abschluss 70 Null Null

Table 6.4: Answer Part Choices According to Conceptual Data Model

Thus, in this case also we need to save the sequential order of the choices along with
the existing information. Therefore, the answer part choice table should include
the choice order as well. This information is stored in the choice sequence number
attribute of the answer part choice table.

The remaining attributes of the answer part choice table are follows. The an-
swer part id stores the id of the answer part to which the choice belongs. The
choice text id stores the id of the choice texts. The choice value stores the value of
the particular choice. The choice group id attribute stores the id of the choice group
if the choices of the answer parts are grouped together. The additional variable name
stores the corresponding variable name of the additional answer part if the choice
has got one. Finally, the additional answer part id attribute stores the id the addi-
tional answer part if the choice has got one. Each table record is uniquely identified
by a combination of answer part id and choice sequence number attributes.

6.1. SQL Database Design 53

According to the structure of the answer part choice table, the choices in the question
Figure 6.3 are saved as shown in Table 6.5. With this structure we are able to
successfully reconstruct the choices in the question.

answer
part
id

choice
sequence
number

choice
text
id

choice
value

choice
group
id

additional
variable
name

additional
answer
part
id

100 1 1000 10 Null Null Null
100 2 1001 20 Null Null Null
100 3 1002 30 Null Null Null
100 4 1003 40 Null Null Null
100 5 1004 50 Null Null Null
100 6 1005 60 Null Null Null
100 7 1006 70 Null Null Null

Table 6.5: Answer Part Choices According to SQL Database Model

6.1.12 Additional Answer Part

The answer part choice table stores the information regarding the additional answer
parts in the survey questions. It has two attributes. The additional answer part id
attribute stores the ids, which could be used to uniquely identify the additional
answer parts. The additional answer type attribute stores the corresponding answer
type of the additional answer part which, explains how the answer could be given. An
additional answer part record may or may not have answer part choices depending
on its additional answer type attribute value. However, each additional answer part
should either belong to at least one of the question part records or answer part choice
records.

6.1.13 Additional Answer Part Choice

The additional answer part choice table stores the choices of the additional answer
parts. Like in the answer part choice table, it is important to store the sequential
order of the choices in this table as well for the correct reconstruction of survey
questions. This information is stored in the choice sequence number attribute of
the table. The additional answer part choice table has three more attributes. The
additional answer part id stores the id of the additional answer part to which the
choice belongs. The choice text id attribute stores the id of the text associated
with the choice from the choice text table. The choice value stores the value of the
choice. Each table record is uniquely identified using the additional answer part id
and choice sequence number attributes combined.

6.1.14 Footnote

In the conceptual data model, the footnote information in a question is stored in
the corresponding question part entity to which it belongs. However, it might create
some problems when the same question is used in different surveys. The footnotes

54 6. Database Design

usually contain information which is specific to the surveys such as how a question
is related to other questions in the survey. For example, Figure 6.4 shows two
example footnotes from the survey. The first footnote is a common footnote for
three questions (A 38a, A 38b and A 38c) and explains that these questions are
only given to international students. The second footnote explains that the question
which has this footnote is related to the previous question in the survey. Thus,
saving the footnotes in the question part entity might affect the independence of
questions as our main objective is to save the questions as standalone objects in the
database.

Figure 6.4: Footnote Examples from the Survey

Therefore, a new table called footnote is created for saving the footnote information.
An instance of a footnote table belongs to a question part and contains attributes to
store the survey module details and question details along with the actual footnote
text so that a footnote could be easily mapped to its question in a survey module.
This makes the survey questions standalone so that they could be used in different
surveys without any problems.

The footnote table has four attributes survey module id, question id, part sequence
number and footnote text. The survey module id stores the id of the survey module.
The question id stores the id of the question that belongs to the survey module. The
part sequence number stores the position of the question part in the question which
contains the footnote. Finally, the footnote text stores the actual footnote text which
is associated with the question. Each footnote record is uniquely identified using a
combination of survey module id, question id and part sequence number attributes.
The combination of survey module id and question id can verify whether the ques-
tion is present in the corresponding survey module by using the survey module ques-
tion table. Furthermore, the combination of question id and part sequence number
can verify the existence of question part from the question part table.

6.2 NoSQL Database Design

We select MongoDB as the NoSQL database for managing the survey questions.
MongoDB is a document-oriented database that uses the document data model.
Therefore, the survey questions should be saved in MongoDB in the form of BSON
(Binary JavaScript Object Notation) documents. The BSON format is similar to
the JSON (JavaScript Object Notation) format and is generally easy to work with.
A database in MongoDB contains multiple collections where each one holds multiple
documents in it.

Unlike SQL databases, NoSQL databases prefer de-normalized data, which leads
to data redundancy. However, one of our main objectives is to store the survey
questions non redundantly so that they could be shared among different surveys.

6.2. NoSQL Database Design 55

Furthermore, the answer parts and additional answer parts should also be stored
non-redundantly so that the questions that use the same answer parts or additional
answer parts have the same choice values. It is to establish uniformity in the answers
across the surveys. Therefore, we need to create multiple collections for making these
question sections non-redundant. Since the data is shared among different MongoDB
collections, we should establish connections between the related documents stored
in different collections. For this, MongoDB offers a feature called database reference
which, allows a document to refer to another document in the same or different
database. For example, A document D1 can refer to another document D2 by saving
the unique document id (called as id) of D2 as a field in D1. It works similar to the
primary key-foreign key concept in SQL databases but does not ensure referential
integrity.

For designing the NoSQL database, we have de-normalized the conceptual database
model. Different related entities in the conceptual data model are combined to form
MongoDB collections. While converting an entity into a MongoDB collection, all
the attributes in the entity will become document fields in the collection. Further-
more, when two related entities are combined to form a MongoDB collection, all the
attributes in the main entity will become document fields in the new collection. The
second entity which belongs to the main entity will be saved as a nested document in
the collection document corresponding to the main entity. The entities are combined
to create the collections without violating the requirements, such as non-redundant
questions and answer parts discussed in the previous paragraph.

The MongoDB database, which is designed for managing the survey questions has
five different collections: survey collection, question collection, answer part collec-
tion, additional answer part collection and footnote collection. These collections are
disused in detail in the following.

6.2.1 Survey Collection

The survey collection contains all the details about the surveys and survey modules.
The survey entity and survey module entity in the conceptual data model are merged
to form the survey collection. When comparing with the SQL database model, we
can see that the survey collection contains the data stored in survey, survey module
and survey module-questions tables in the SQL database model. The structure of
the survey collection is shown in Figure 6.5.

The survey collection contains survey documents. Each survey document contains
three attributes: SurveyId, SurveyName and SurveyModules. SurveyId stores the id,
that could be used to uniquely identify the survey document. SurveyName attribute
stores the name of the survey. The SurveyModules attribute contains an array of
SurveyModule documents.

Each SurveyModule document has three attributes: SurveyModuleId, SurveyModule-
Name and surveyModuleQuestions. The SurveyModuleId stores the id, which could
be used to uniquely identify the corresponding survey module. The SurveyModule-
Name attribute stores the name of the survey module, and the SurveyModuleQues-
tions attribute contains an array of SurveyModuleQuestion documents.

56 6. Database Design

SurveyCollection

[Survey]

Survey

SurveyId String

SurveyName String

SurveyModules [SurveyModule]

SurveyModule

SurveyModuleId String

SurveyModuleName String

SurveyModuleQuestions [SurveyModuleQuestion]

SurveyModuleQuestion

QuestionID String

QuestionNumber Integer

Array

Array

Array

Figure 6.5: Structure of Survey Collection

A SurveyModuleQuestion document contains information about a question that is
a part of the corresponding survey module. It has two attributes: QuestionId and
QuestionNumber. The QuestionId attribute refers to a question document in the
question collection by saving the question’s unique id. The QuestionNumber at-
tribute stores the question number that denotes the position of the question in the
survey module.

6.2.2 Question Collection

The question collection stores all the information about the survey questions and
their corresponding question parts. The question and question part entities in the
conceptual data model are merged to create the question collection. The question
collection stores the details present in the question, question part, question part
text and question part instruction tables in the previously discussed SQL database
design. The structure of the question collection is shown in Figure 6.6.

The question collection contains multiple Question documents. Each Question doc-
ument has two attributes: QuestionId and QuestionParts. The QuestionId attribute
stores the ids that are used to uniquely identify the corresponding Question docu-
ments. The QuestionParts attribute contains an array of QuestionPart documents.

A question may have multiple question parts. The QuestionPart document stores
the details of a question part. A QuestionPart document contains eight attributes:

6.2. NoSQL Database Design 57

Question

QuestionId String

QuestionParts [QuestionPart]

QuestionPart

PartSequenceNumber Integer

Level Integer

QuestionText String

VariableName String

AnswerPartId String

Instruction String

AdditionalVariableName String

AdditionalAnswerPartId String

QuestionCollection

[Question]

Array

Array

Figure 6.6: Structure of Question Collection

PartSequenceNumber, Level, QuestionText, VariableName, AnswerPartId, Instruc-
tion, AdditionalVariableName andAdditionalAnswerPartId. The PartSequenceNum-
ber attribute stores the sequential order of the question part in the question. The
level attribute stores the corresponding question part level. Both of these attributes
could be used to retrieve the correct structure of the question. The QuestionText
attribute stores the text associated with the question part. The VariableName con-
tains the corresponding variable name if the question part has an associated answer
part. The AnswerPartId stores the id of the answer part from the answer part
collection if the question part has one. If the question part has an instruction text
associated with it, then it is stored in the Instruction attribute. The Additonal-
VariableName attribute stores the corresponding variable name if the question part
has an additional answer part. The AdditionalAnswerPartId attribute refers to the
additional answer part associated with the question part if the question part has
one by saving the corresponding id of the additional answer part document, stored
in a separate collection.

6.2.3 Answer Part Collection

The details regarding the answer parts of different survey questions are stored in
the answer part collection. This collection could be considered as the combination

58 6. Database Design

of the answer part and the answer part choice entities in the conceptual data model.
When we compare it with the SQL database design, we can see that the answer part
collection stores the details that are distributed across the answer part, answer part
choice, choice text and choice group tables in the SQL database. Figure 6.7 shows
the structure of the answer part collection.

AnswerPartCollection

[AnswerPart]

AnswerPartChoice

ChoiceSequenceNumber Integer

ChoiceText String

ChoiceValue String

ChoiceGroup String

AdditionalVairableName String

AdditionalAnswerPartId String

Array

AnswerPart

AnswerPartId String

AnswerType String

AnswerPartChoices [AnswerPartChoice]

Array

Figure 6.7: Structure of Answer Part Collection

The collection contains multiple documents called AnswerPart documents and, each
document contains the details of an answer part. An AnswerPart document has
three attributes: AnswerPartId, AnswerType and AnswerPartChoices. Each An-
swerPart document has a unique id, and it is stored in the AnswerPartId attribute.
This id could be used to uniquely identify the corresponding AnswerPart document.
The AnswerType attribute stores the corresponding answer type of the answer part,
which explains how the answer could be given. The AnswerPartChoices attribute
contains an array of AnswerPartChoice documents.

If an answer part has multiple choices, then the details regarding each of these choices
are saved in an AnswerPartChoice document. An AnswerPartChoice document
has six attributes: ChoiceSequenceNumber, ChoiceText, ChoiceValue, ChoiceGroup,
AdditonalVariableName and AdditionalAnswerPartId. When an answer part has
multiple choices, it is important to save the sequential order of these choices so that
the question could be correctly reconstructed. The ChoiceSequenceNumber attribute
stores the position of the choice so that we can easily identify the sequential order
of the choices. The text associated with the choice which is displayed in the survey
is stored in the ChoiceText attribute. The ChoiceValue attribute stores the value of

6.2. NoSQL Database Design 59

the choice, which is used for its internal representation. Sometimes, the choices of
an answer part could be grouped. In such cases, the ChoiceGroup attribute stores
the name of the group to which the corresponding choice belongs. If the answer
part has an addition answer part, then the corresponding variable name is stored
in the AdditonalVariableName attribute and the AdditionalAnswerPartId attribute
refers to the corresponding additional answer part which is present in a separate
collection.

6.2.4 Additional Answer Part Collection

The Additional Answer Part Collection contains documents that store information
regarding the additional answer parts. The additional answer parts include free texts
or drop-downs that are associated with question parts or answer parts to get some
additional information along with the actual answer. This collection is created by
combing the details of the additional answer part and additional answer part choice
entities in the conceptual data model. The structure of the additional answer part
collection is shown in Figure 6.8. While analyzing the structure of the collection,
we can see that the additional answer part collection combines the details in the
additional answer part, additional answer part choices and choice text tables in the
previously discussed SQL database design.

AdditionalAnswerPartCollection

[AdditionalAnswerPart]

AdditionalAnswerPart

AdditionalAnswerPartId String

AdditionalAnswerType String

AdditionalAnswerPartChoices [AdditionalAnswerPartChoice]

AdditionalAnswerPartChoice

ChoiceSequenceNumber Integer

ChoiceText String

ChoiceValue String

Array

Array

Figure 6.8: Structure of Additional Answer Part Collection

The additional answer part collection has multiple AdditionalAnswerPart docu-
ments. Each AdditionalAnswerPart document stores the details of an additional
answer part and has three attributes: AdditionalAnswerPartId, AdditionalAnswer-
Type, and AdditionalAnswerPartChoices. Each AdditionalAnswerPart document
could be uniquely identified using an id which is stored in the AdditionalAnswer-
PartId attribute. The AdditionalAnswerType attribute stores the corresponding
answer type of the additional answer part, which explains how the answer could be
given. The AdditionalAnswerPartChoices attribute contains an array of Addition-
alAnswerPartChoice documents.

60 6. Database Design

An additional answer part might contain several choices from which the survey re-
spondents can select one/many as their answer. Each AdditionalAnswerPartChoice
document stores the information regarding these choices. The AdditionalAnswer-
PartChoice document has three attributes: ChoiceSequenceNumber, ChoiceText and
ChoiceValue. The ChoiceSequenceNumber attribute stores the position of the choice
so that we could easily identify the sequential order of the choices. The text which
is displayed as the choice in the survey is saved in the ChoiceText attribute. The
ChoiceValue attribute stores the value of the choice and is used for internal repre-
sentation.

6.2.5 Footnote Collection

The footnote collection stores the footnote details of the survey questions. The
survey questions should be stored as standalone objects so that they could be used in
multiple surveys. However, the footnotes usually contain survey specific information
such as how a question is related to other questions in the survey. The same question
present in different surveys might have different footnote information depending
on the survey it belongs. Therefore, it is not advisable to store the footnotes in
the question collection as it might affect the independence of the questions. To
overcome this problem, the footnote information is stored in a separate collection
called footnote collection. The structure of the collection is shown in Figure 6.9. The
footnote collection is an exact replication of the footnote table in the SQL database
design.

FootnoteCollection

[Footnote]

Footnote

SurveyModuleId String

QuestionId String

PartSequenceNumber Integer

FootnoteText String

Array

Figure 6.9: Structure of Footnote Collection

The footnote collection has multiple Footnote documents. Each Footnote document
contains the information regarding the footnote of a question in a particular survey
module. The document has three attributes: SurveyModuleId, QuestionId, PartSe-
quenceNumber and FootnoteText. The SurveyModuleId stores the id of the survey
module, which has the question with the footnote. The id of the question is stored
in the QuestionId attribute. The PartSequenceNumber attribute stores the position
of the question part in the question with which the footnote is associated. Finally,
the FootnoteText stores the actual footnote text displayed in the survey.

6.3. Summary 61

6.3 Summary

In this chapter, we have designed database schemas for managing the survey ques-
tions in the SQL and NoSQL (MongoDB) databases. For the SQL database, the
schema was designed by normalizing the conceptual data model. The conceptual
data model was created by analyzing various identified requirements of the sys-
tem. On the other hand, before designing the NoSQL database, we selected the
data model and the database which are best suited for the survey questions and
the schema was designed according to the selected database. We have selected
the document-oriented data model as it could best represent the survey questions.
Among different document-oriented databases, MongoDB was selected for managing
the survey questions. After the database selection, different MongoDB collections
were designed for storing the survey questions by de-normalizing the conceptual data
model.

MongoDB offers a flexible schema which would be beneficial for the survey questions
as they have a flexible structure. The flexibility of the database allows us to easily
incorporate future changes and future questions with a new structure. However,
the SQL database has a predefined and fixed schema which would be less beneficial
in terms of incorporating future questions with a new structure. The predefined
schema offers less flexibility and only incorporates questions with certain predefined
formats.

SQL offers a declarative and structured querying language. The SQL query language
would make data management easier as the language is popular, interactive and
standardized. On the other hand, MongoDB has a JSON based querying language
for data management. This query language is not as widely used as the SQL query
language. Additionally, it would be difficult to manage the data shared among
different collections, especially in the case of joins/look-ups that would lead to very
complex queries.

In the case of data retrieval or selection queries, the SQL system might perform
better than the NoSQL systems as it offers faster query processing, especially for
join operations. The data retrieval from MongoDB would be very expensive as the
data is shared among different collections and the joins or look-ups in MongoDB is
slower as compared to the SQL system.

Avoiding redundant storage of survey questions and answer parts are important
for the designed database. The SQL system is more suited for preventing data
redundancies. The duplicate storage of survey questions and answer parts could be
avoided by the primary and foreign key concepts of the SQL database. Furthermore,
the consistency of the data is ensured by the referential integrity constraint. On the
other hand, MongoDB also allows us to prevent duplicate storage of data objects by
object reference, but it does not guarantee any data consistency. Thus, we need to
have extra efforts at the application level to ensure data consistency.

In the case of storage space, the SQL database is expected to consume less space
for storing the survey questions as it contains normalized data. However, the data
stored in MongoDB is not as normalized as the data in the SQL system and therefore
is expected to consume more space. However, a conclusion is only possible after

62 6. Database Design

thorough evaluation as the storage space for foreign keys might also affect the results
in the SQL database.

The extent to which the data is normalized in both of the databases might affect the
data processing steps as well. For storing the survey questions in the SQL database,
more data processing is required as the data needs to be normalized. On the other
hand, fewer data processing efforts might be required for MongoDB as it stores less
normalized data.

7. Loading Survey Questions into
Database

In this chapter, we discuss the process of loading the survey questions, present in the
portable document format (PDF), to the designed databases. The survey questions
present in PDF documents need to be extracted, and the extracted texts should be
processed so that they can be stored in the SQL and MongoDB databases. To this
end, we need to identify different defined entities of each question such as survey,
survey module, question parts, answer parts, additional answer parts, footnotes and
choices should be identified from the PDF files, and these entities should be processed
according to the schema of the target database so that they can be permanently
stored in the database. The processing of data mainly involves data normalization.
The extent to which the data is normalized is less in the case of the MongoDB
database as compared to the SQL database.

Entity
Extraction

Survey Questions in
PDF files Database

Entities in Excel file Data processing

Figure 7.1: Data Loading Process

The flow of the data loading process is shown in Figure 7.1. The survey questions
are initially present in PDF files. Different entities are extracted from these PDF
files, and these identified entities are stored in an Excel file. The data in the Excel
file is processed using an ETL job which will finally load the data into the database.
Two processes involved in data loading are entity extraction and data processing.
These processes are explained in detail as follows.

7.1 Entity Extraction

The entity extraction process involves the identification of different defined entities
for each survey question present in the PDF documents. The identified entities are

64 7. Loading Survey Questions into Database

then stored in an Excel file for further processing. The different entities extracted
for each question are the survey details of the question, survey module details of the
question, question parts in the question, answer parts associated with the question
parts, choices of answer parts, additional answer parts, choices of additional answer
parts and footnotes present in the question.

The reason for selecting the Excel file to store the question entities is that we already
have an Excel file with some of the entities available at DZHW. These Excel files
contain the corresponding variable names of the survey questions and the question
texts associated with them. These Excel files are expanded by adding the remaining
question entities to make them suitable for our use case. For example, consider an
example question from the analyzed survey shown in Figure 7.2. The data present in
the already available Excel file corresponding to this question is shown in Figure 7.3.
The remaining entities should be identified and added to the Excel file. In this thesis
work, the entity extraction process is carried out manually. The survey question in
the PDF files are analyzed manually, and the different entities are identified and
stored in an Excel file.

Figure 7.2: Example Question for Data Loading

Figure 7.3: Already Available Entities of the Question

The question in Figure 7.2 is analyzed manually, and different entities are extracted
from it. These entities are then saved into an Excel file. The Excel file that contains
all the entities of the analyzed question is shown in Figure 7.4. The first column
in the Excel file contains the details of the survey. The second column contains
the details about the survey module of the question. The question number of the

7.1. Entity Extraction 65

Figure 7.4: Identified Entities of the Question

question in that particular survey module is present in the third column. From
Figure 7.2, we can see that the question has six question parts. The details regarding
these question parts are present in columns 4-9. Different attributes of the question
part entity such as part sequence number, level, variable name, additional variable
name, question part text and instruction are stored in these columns. The footnote
information associated with each question part is present in the tenth column. If
the question part has an answer part, then the corresponding answer type is present
in the eleventh column. Finally, the choices associated with the answer part are
present in the last column.

There is no column for the additional answer part entity in the Excel file. This is
because all the additional answer parts in the analyzed survey questions are free
texts. The free text answer type does not have any choices associated with it.
Therefore, we do not need separate columns for storing the answer type or choices
of the additional answer parts. If there is an additional variable name associated
with the question part, then the question part has an additional answer part of
type free text. For example, in the analyzed question, the last question part has an
additional free text associated with it. This free text has a corresponding variable
name (pflegt5o) stored in the corresponding column. By reading the additional
variable name only, we can say that the last question part has an additional answer
part of type free text associated with it.

If a question part has an answer part associated with it, then the corresponding
answer type is stored in the eighth column and the answer part choices, if any, are
present in the last column. Each non-empty cell in the last column may contain
multiple choices of the corresponding answer part. Since multiple choices are saved
in a single cell, the data in each of these cells are arranged in a particular format so
that the different choices could be easily retrieved. Each record in the cell contains
multiple rows, and each row contains the details of a single choice. A choice can

66 7. Loading Survey Questions into Database

have five attributes as part sequence number, choice value, choice text, additional
variable name and choice group. Each row in the cell contains values for all these
attributes separated using a semicolon (;). The structure of each cell record is shown
in Figure 7.5. The choice sequence number, which explains the position of the choice,
is present in the first place. In the second place, the value of the choice, used for the
internal representation, is given. The text that is displayed as the choice is present
in the third position. If the choice has an additional answer part associated with it,
then the corresponding variable name is present in the fourth position. Finally, if
the choices are grouped, the corresponding group details to which the choice belongs
is stored in the last position. The choice text, additional variable name and choice
group are optional fields, and if they do not have any values, these fields could be
ignored as well. For example, all the answer parts in Figure 7.4 have the same answer
part with six choices. None of the choices has an additional answer part, thus the
additional variable name field (fourth field) is empty for all choices. Additionally,
the choices are not grouped, and hence the choice group field (fifth field) is also
empty for all the choices. Furthermore, the third, fourth and fifth choices have no
choice texts, and thus the choice text field (third field) is empty for these choices.

choice_sequence_number, choice_value, choice_text, additional_variable_name, choice_group

choice_sequence_number, choice_value, choice_text, additional_variable_name, choice_group
choice_sequence_number, choice_value, choice_text, additional_variable_name, choice_group
choice_sequence_number, choice_value, choice_text, additional_variable_name, choice_group Choice 1

Choice 2

Choice n

Choice 3

Figure 7.5: Structure of an Answer Part Choices Record in the Excel file

After extracting all the entities and storing these entities in an Excel file according
to the defined format, the data in the Excel files are processed by an ETL job, which
loads them into the database after processing.

7.2 Data Processing

In the data processing step, the extracted entities of the survey questions are pro-
cessed according to the schema of the database to which the data is to be saved.
The main task involved in the data processing step is data normalization according
to the target database. The processed data is then saved into the corresponding
database. In this thesis work, ETL jobs are used to process the extracted entities.
The ETL job will load the survey question entities from the Excel files, and process
them according to the final database schema, and finally save the processed data
into the database. The ETL jobs for processing the extracted entities are designed
using Talend Open Studio.

The SQL and MongoDB databases have different schema, and the extent to which
the data is normalized is also different in these databases. The data need to be
less normalized in the case of the MongoDB database as compared to the SQL
database. For example, while saving a survey question into the SQL database we
need to save the question part texts and instructions in separate tables, and their

7.2. Data Processing 67

primary keys should be saved in the corresponding question part record for reference.
However, while storing the same survey question in the MongoDB database, we do
not need to store the question part texts and instructions separately. Instead, they
could be stored in the same single collection along with their corresponding question
parts. Therefore, we need separate ETL jobs for saving the data into the SQL and
MongoDB databases. They are discussed as follows.

7.2.1 Data Processing for SQL Database

For the SQL database, the data should be normalized more as compared to the
MongoDB database. The question part entities are processed by an ETL job, and
the processed data is finally stored into the MySQL database. The flow of the ETL
job is explained in Algorithm 1. Each step in the algorithm is also discussed in detail
as follows.

Algorithm 1 Algorithm Explaining the flow of ETL job for saving the survey ques-
tions to SQL Database
STEP 1: Load the Data from the Excel File
STEP 2: Extract Survey and Survey Module Details
STEP 3: Save Survey Details to Database
STEP 4: Save Survey Module Details to Database
STEP 5: Extract Footnote Details and Question Numbers
STEP 6: For Each Question Number

STEP 6.1: Extract the Corresponding Question Details

STEP 6.2: Extract Question Part Texts, Instructions, Variable Names and
Additional Variable Names

STEP 6.3: Save Question Part Texts, Instructions and Additional Variable
Names to Database

STEP 6.4: For Each Variable Name

STEP 6.4.1: Extract Answer Part Details corresponding to the Variable
Name

STEP 6.4.2: Convert Answer part Choice Record into Multiple Columns

STEP 6.4.3: Extract Answer Type, Choice Texts, Additional Variable
Names and Choice Groups

STEP 6.4.4: Save Choice Texts, Additional Variable Names and Choice
Groups to Database

STEP 6.4.5: Create Partial Answer Part Choice Records

STEP 6.4.6: Get Answer Part Id

STEP 6.4.7: Create and Save Complete Answer Part Choice Records to
Database

STEP 6.5: Create Partial Question Part Records

STEP 6.6: Get Question Id

STEP 6.7: Create and Save Complete Question Part Records to Database
STEP 7: Save the Footnote Details to Database
STEP 8: Save the Question Number to Database

68 7. Loading Survey Questions into Database

1. Load the Data from the Excel File: The data present in the Excel file is
loaded by the ETL job. For this the tFileInputExcel component of Talend
Open Studio is used. The schema of the Excel file should be also defined
for the correct retrieval of the data. Figure 7.6 shows the tFileInputExcel
component in the Talend job and Figure 7.7 shows its schema.

tFileInputExcel Component for Loading Data From the
Excel File

tMap Element for Extracting Survey and Survey Module
Details

Survey Details Survey Module
Details

Figure 7.6: Talend Components for Loading the Input Data and Extracting the
Survey and Survey Module Details

2. Extract Survey and Survey Module Details: After loading the data from the
Excel file, the survey and survey module details are extracted from it. The
tMap component of Talend is used for extracting these data. The extracted
survey and survey module details are then processed separately. Figure 7.6
shows the tMap component in the Talend job, which extracts the survey and
survey module details, and Figure 7.8 shows the structure of the tMap com-
ponent.

3. Save Survey Details to Database: The survey details extracted in step 2 are
inserted into the database in this step. After the insertion, the corresponding
survey id is saved in the buffer for future use. The ETL job components
handling the insertion of the survey details into the database are shown in
Figure 7.9. Initially, the survey details from step 2 are filtered using the
tFilterRow component to filter out the empty rows. The empty rows are
created while extracting the survey details in 2. The survey details are common
to all the questions and are present in only one row in the input Excel file.
Therefore, while extracting the survey details there will be empty rows in the
data. The tFilterRow component filters out these empty rows in the extracted
data. The survey details are then inserted into the survey table using the
tDBOutput component. The creation of duplicate records is also prevented

7.2. Data Processing 69

Figure 7.7: Schema of the tFileInputExcel Component

by the tDBOutput component. After the insertion, the corresponding auto-
generated id of the survey details is selected from the database using the
tDBRow component. The result from the database is of type object, and the
type should be converted into an integer as the survey id is an integer. This is
done the by the tParseRecordSet component. Finally, the id of the survey is
saved in the buffer using the tHashOutput (renamed as SurveyId in Figure 7.9)
component.

4. Save Survey Module Details to Database: This step is to save the survey mod-
ule details, extracted in step 2, into the survey module table in the database.
Each record in the survey module table needs the corresponding id of the sur-
vey to which the survey module belongs. For this, the survey id from step 3 is
added to the survey module details using a tMap component. The structure
of the tMap component is shown in Figure 7.10. Finally, the survey module
details are inserted into the database. The procedure used for the insertion
is similar to the one used in step 3. After the insertion, the auto-generated
survey module id is stored in the buffer for future use.

5. Extract Footnote Details and Question Numbers: In this step, the footnote
details and question numbers are extracted from the input data. In the case
of footnote details, the corresponding question numbers and part sequence
numbers of the question parts to which the footnotes are associated are also
saved. These additional details are needed to correctly identify the position of
the footnote when it is later saved in the database. The extracted details are
stored in the buffer for future use. Like in step 2, the ETL job uses the tMap
component for the extraction of required data.

6. Iterate Over Each Question Numbers: In this step, the ETL job loops over
the question numbers stored in the buffer in step 5. For example, if there are a
hundred questions, then the loop will run hundred times. For each iteration, a
question number is taken, and the corresponding question is processed. After

70 7. Loading Survey Questions into Database

Figure 7.8: Structure of tMap component used for Extracting Survey and Survey
Module Details

Survey Details from Step 2

Filter the Empty Rows

Insert Survey Details to Database

Select Survey Id as Object

Covert Survey Id Object to Integer

Store Survey Id in the Buffer for Future Use

Figure 7.9: Talend Components for Saving the Survey Details into the Database

saving each question to the database, the question numbers are saved in the
buffer along with the auto-generated question ids for future use. The Talend
components for this step is shown in Figure 7.11. Initially, the question num-
bers from step 5 are read using a tHashInput (renamed as QuestionNumbers
in Figure 7.11) component. The tFlowToIterate component then iterates over
the input question numbers and for each iteration the corresponding question
number is sent to the tRunJob component. The tRunJob component processes
the question details corresponding to the input question number. Finally, after
saving the question in the database the corresponding question id is stored in
the buffer along with the question number for future use using the tHashOutput
(renamed as QuestionNumberWithIds in Figure 7.11) component. The tasks
executed in the loop are discussed in the sub-tasks of this step.

6.1. Extract the Corresponding Question Details: The input data contains
details of multiple questions. From this data, the details of the question
with the question number from step 6 is extracted in this step for further
processing. For this, we perform an inner join with the question number

7.2. Data Processing 71

Survey Module Details from Step 2

Survey Id from Step 3 Survey Module Details with Survey Id

Figure 7.10: Structure of tMap Component for Adding the Survey Id to the Survey
Module Details

Question Numbers from Step 5

Iterate Over Each Question Number

Job for Processing Each Question

Question Numbers with

Corresponding Question Ids

in the Buffer for Future Use

Figure 7.11: Talend Component to Iterate Over the Question Numbers

from step 6 and the question number column of the input data. The
result will be the question details corresponding to the question number.
This could be done using a tMap component. The structure of the tMap
component is shown in Figure 7.12.

6.2. Extract Question Part Texts, Instructions, Variable Names and Ad-
ditional Variable Names: After getting the details of a single question
in step 6.1., the question part texts, instructions, variable names and
additional variable names from each question parts in the question are
extracted. This is done by using a tMap component. The procedure is
similar to that of the one discussed previously in step 2 and step 5.

6.3. Save Question Part Texts, Instructions and Additional Variable Names
to Database: The question part texts, instructions and additional vari-
able names are saved into the database in this step. The question part
texts and instructions are saved into the corresponding tables. After the
insertion, the question part texts and instructions are stored in the buffer
along with their auto-generated ids for future use. For each additional
variable name, a record is inserted, if not present, in the additional an-
swer part table with answer type as free text. After the insertion, the

72 7. Loading Survey Questions into Database

Details of All the Questions

Inner Join Question Number from Step 6 Details of the Question with the Question Number from Step 6

Figure 7.12: Structure of the tMap component for Extracting the Details of a Single
Question Using the Question Number

additional variable name is stored in the buffer with its corresponding
additional answer part id. The procedure used for insertion is similar to
the one used in step 3.

6.4. Iterate Over Each Variable Name: In this step, the ETL job iterates over
each variable name extracted in step 6.2.. For each iteration, a variable
name is taken, and the corresponding answer part is extracted. This
answer part is then processed and saved into the database. At the end
of each iteration, the variable name is saved in the buffer along with the
auto-generated id of the corresponding answer part. The ETL flow used
for looping over the variable names is similar to the one used in 6. The
tasks executed in the loop are discussed in the sub-tasks of this step.

6.4.1. Extract Answer Part Details corresponding to the Variable Name:
The answer part details corresponding to the variable name from
step 6.4. is extracted in this step. The procedure used in this step
is similar to the one used in step 6.1.. Using a tMap component we
perform an inner join of the input variable name with the variable
name field of the input data. The result contains the answer part
details (AnswerType and AnswerPartChoice columns from the input
data) corresponding to the input variable name. The structure of the
tMap component is shown in Figure 7.13.

6.4.2. Convert Answer part Choice Record into Multiple Columns: If the
answer part has choices, their details are present as a single record
of the AnswerPartChoice column of the input Excel file. The format

7.2. Data Processing 73

Inner Join Variable Name from Step 6.4 Answer Part Details Corresponding to the Variable Name from Step 6.4

Details of all the Questions

Figure 7.13: Structure of the tMap component for Extracting the Details of a Single
Answer Part Using the Variable Name

in which the details of the answer part choices are saved is shown in
Figure 7.5. In this step, we extract each field in this record and store
them separately. The Talend job flow for this is shown in Figure 7.14.
Initially, the record is split into multiple rows such that each row
contains the details of a single choice. This is done by using the
tNormalize component in Talend. Next, the different attributes of
the choices, which are separated using the semicolon (;), are extracted
into multiple columns using the tExtractDelimitedFields component.
An example for the input data, its intermediate result and the final
output are also given in Figure 7.14.

6.4.3. Extract Answer Type, Choice Texts, Additional Variable Names
and Choice Groups: The next step is to extract the answer type,
choice texts, additional variable names and choice groups from the
data generated as the output of step 6.4.2.. This is done by using a
tMap component, and the procedure is similar to the ones discussed
in step 2.

6.4.4. Save Choice Texts, Additional Variable Names and Choice Groups
to Database: The extracted choice texts and choice groups are saved
into the corresponding tables in the database. After the insertion,
the choice texts and choice groups are stored in the buffer along with
their auto-generated ids for future use. For each additional variable
name, a record is inserted, if not present, in the additional answer
part table with answer type as free text. After the insertion, the
additional variable name is stored in the buffer with its corresponding
additional answer part id. The procedure used for insertion is similar
to the one used in step 3.

74 7. Loading Survey Questions into Database

Input Example
VariableName AnswerType AnswerPartChoice

pflegt1 Range

1;1;nie
2;2;sehr selten
3;3;
4;4;
5;5;
6;6;sehr häufig

Intermediate Result Example
VariableName AnswerType AnswerPartChoice

pflegt1 Range 1;1;nie
pflegt1 Range 2;2;sehr selten
pflegt1 Range 3;3;
pflegt1 Range 4;4;
pflegt1 Range 5;5;
pflegt1 Range 6;6;sehr häufig

Output Example
VariableName AnswerType ChoiceSequence ChoiceValue ChoiceText AdditionalVariableName ChoiceGroup

pflegt1 Range 1 1 nie
pflegt1 Range 2 2 sehr selten
pflegt1 Range 3 3
pflegt1 Range 4 4
pflegt1 Range 5 5
pflegt1 Range 6 6 sehr häufig

Figure 7.14: Talend Components for Processing the Answer Part Choice Record

6.4.5. Create Partial Answer Part Choice Records: This step is to create
the partial answer part choice records. A partial answer part choice
record consists of all the fields in the answer part choice table except
the answer part id. Therefore, it contains the choice sequence num-
ber, choice value, choice text id, choice group id, additional variable
name and additional answer part id. The structure of the partial
records are shown in Figure 7.15. We have the choice sequence num-
bers, choice values and additional variable names from the input data.
Additionally, the corresponding ids of the choice texts, choice groups
and additional answer parts can be taken from the buffer as they are
saved in step 6.4.4..

6.4.6. Get Answer Part Id: This step is to get the id for the new answer
part. If the answer part is already present in the database, we can
take the existing id. Otherwise, we need to create a new record in the
answer part table using the answer type from step 6.4.3.. For this,
we save the partial answer part choice records from step 6.4.6. into a
temporary database table. Then, a MySQL function checks if there

7.2. Data Processing 75

Figure 7.15: Structure of the Partial Answer Part Choice Record

exists an answer part in the database with the given answer type and
choices. The answer type from step 6.4.3. is given as the input to
the MySQL function, and the choices are present in the temporary
table. If already present, then we take the existing answer part id.
Otherwise, the function creates a new record in the answer part table
and return its id. The answer part id is stored in the buffer along
with the variable name from step 6.4. for future use. If the answer
part is already present in the database, then the step 6.4.7. could be
ignored.

6.4.7. Create and Save Complete Answer Part Choice Records to Database:
The answer part id from step 6.4.6. is added to the partial answer
part records from step 6.4.6. to get the complete answer part choice
records. The structure of the records is shown in Figure 7.16. These
records are then inserted into the answer part choice table in the
database. The insertion could be done similar to the way it is done
in step 3.

Figure 7.16: Structure of the Complete Answer Part Choice Records

76 7. Loading Survey Questions into Database

6.5. Create Partial Question Part Records: After inserting the answer parts
of the question into the database and getting their corresponding answer
part ids, the next step is to save the question parts to the database. For
this, the ETL job firstly creates the partial question part records. A
partial question part record consists of all the fields in the question part
table except the question id. Thus, it contains the part sequence number,
level, question part text id, question part instruction id, variable name,
answer part id, additional variable name and additional answer part id.
The structure of the partial records is shown in Figure 7.17. The ETL job
now has the part sequence numbers, level, variable names and additional
variable names from the input data. Additionally, the corresponding ids
of the question part texts, question part instructions, answer parts and
additional answer parts can be taken from the buffer as they are saved in
step 6.3. and 6.4..

Figure 7.17: Structure of the Partial Question Part Records

6.6. Get Question Id: After creating the partial question part records, the
ETL job checks whether the question is already present in the database.
For this, the ETL job stores the partial question records from step 6.5.
into a temporary database table. Then, a MySQL function checks if there
exists the same question in the database. If there exists a question with
the same question parts saved in the temporary table, then the ETL job
takes the existing question id. Otherwise, the function creates a new
record in the question table and returns the corresponding question id.
The question id is stored in the buffer along with the question number
from step 6 for future use. If the question is already present in the
database, then the step 6.7. could be ignored.

6.7. Create and Save Complete Question Part Records to Database: After
getting the new question id in step 6.6., it is then added to the partial
question part records from step 6.5. to create the complete question part
records. The structure of the records is shown in Figure 7.18. These
records are then inserted into the question part table in the database.
The insertion could be done similar to the way it is done in step 3.

7.2. Data Processing 77

Figure 7.18: Structure of the Complete Question Part Records

7. Save the Footnote Details to Database: The footnote details saved in the
buffer in step 5 contains the footnote, question number and the part sequence
number of the question part with which the footnote is associated. At first,
the ETL job adds the survey module id from step 4 to the footnote details.
Then, the question numbers are replaced with the corresponding question ids
from step 6. Now, the footnote details could be inserted into the footnote
table in the database. The structure of the footnote table records is shown
in Figure 7.19. These records are then inserted into the footnote table in the
database. The insertion could be done similar to the way it is done in step 3.

Figure 7.19: Structure of the Footnote Records

8. Save the Question Number to Database: In this step, the ETL job saves the
question numbers of the questions to the ’survey module question’ table in
the database. We use the question numbers with corresponding question ids
from step 6. The ETL job then adds the survey module id from step 4 to
these records. The resultant records are then inserted into the survey module

78 7. Loading Survey Questions into Database

question table of the database. The structure of the table records is shown in
Figure 7.20.

Figure 7.20: Structure of the Records for ’Survey Module Question Table’ in the
Database

7.2.2 Data Processing for MongoDB Database

In the case of the MongoDB database, the data only needs to be less normalized
as compared to the SQL database. Since the data is processed differently, we use a
separate ETL job to process the extracted entities of the survey questions and store
them in the MongoDB database. The flow of the ETL job is explained in Algorithm
2.

Some of the steps in this algorithm are the same or similar as compared to the steps
in the previous algorithm for the SQL database. The steps are step1, step 2, step 3,
step 3.1, step 3.2, step 3.4, step 3.4.1, step 3.4.2 and step 3.4.3. Since the operations
performed in these steps are discussed in detail in Section 7.2.1, we only focus on the
remaining steps in this section. The only change in these steps is that the extracted
survey and survey module details are saved as global variables for future use instead
of storing them in the buffer as done in the previous algorithm. The concept of the
global variables is explained in step 3.4.6. Furthermore, the step 3.4.4 and step 3.5
are similar to step 3.3 and step 3.4.5 respectively. Hence, they are also not explained
in detail. The remaining steps are discussed in detail as follows.

3.3 Create and save documents in the additional answer part collection for each
additional variable name: If the question has additional variable names
associated with any of the question parts, then it means that the corresponding
question parts have an additional answer part of type free text. In this case,
the ETL job creates a corresponding document in the additional answer part
collection. The flow of the ETL job that saves a document into the additional
answer part collection is shown in Figure 7.21. Initially, all the question part
records with an additional variable name are filtered out using a tFilterRow
component. Then, a field called answer type is created for each of these records

7.2. Data Processing 79

Algorithm 2 Algorithm Explaining the flow of ETL job for saving the survey ques-
tions to MongoDB Database.
STEP 1: Load the data from the Excel file.
STEP 2: Extract survey details, survey module details, footnote details and ques-
tion numbers.
STEP 3: For each question number.

STEP 3.1: Extract the corresponding question details.

STEP 3.2: Extract variable names and additional variable names.

STEP 3.3: Create and save documents in the additional answer part collection
for each additional variable name.

STEP 3.4: For each variable name.

STEP 3.4.1: Extract answer part details corresponding to the variable
name.

STEP 3.4.2: Convert answer part choice record into multiple columns.

STEP 3.4.3: Extract additional variable names.

STEP 3.4.4: Create and save documents in the additional answer part
collection for each additional variable name.

STEP 3.4.5: Get additional answer part ids.

STEP 3.4.6: Create and save answer part collection document from the
answer part details.

STEP 3.4.7: Get the answer part id.

STEP 3.5: Get additional answer part ids.

STEP 3.6: Create and save question collection document from the question
details.

STEP 3.7: Get the Question Id.
STEP 4: If a survey document is not present with the input survey details in
database, then create a document in the survey collection.
STEP 5: If the survey document contains a survey module with the input survey
module details, then insert the survey module details to the survey document.
STEP 6: Insert the question details into the survey document.
STEP 7: Create and save footnote collection documents from the footnote details.

80 7. Loading Survey Questions into Database

with the value as ’free text’ using a tMap component. Since the additional
answer part does not have choices, the document only has the answer type
field. The document is then inserted into the ’additional answer part’ collection
in the MongoDB database. The insertion is done using the tMongoDBOutput
component in Talend. The insertion of duplicate documents is handled by the
tMongoDBOutput component itself. The id of the document is automatically
generated by the database at the time of insertion.

Select the Rows/Question Parts With Additional Variable Names

Creates an Additional Answer Type field for each input row

Inserts the Document Into the Additional Answer Type Collection

Figure 7.21: Talend Components for Saving a Document into the Additional Answer
Part Collection

3.4.5 Get additional answer part ids: The input data from step 3.4.1 contains all
the details for creating the ’answer part collection’ document, except the ’ad-
ditional answer part ids’ of the ’additional variable names’. The ’additional
answer part’ corresponding to the ’additional variable names’ is of type free
text, and the corresponding document should be read from the ’additional an-
swer part collection’ to get its id. The ETL job flow for reading the document
from the database is shown in Figure 7.22. The tMongoDDInput component
is used to read the document from the database. The selection query and the
collection from which the data is to be selected should be defined in the tMon-
goDDInput component. This is shown in Figure 7.23. The document is then
saved in the buffer using a tHashOutput (renamed ad ’AdditionalAnswerPart’)
component.

3.4.6 Create and save answer part collection document from the answer part de-
tails: The ETL job flow for creating the document for the ’answer part
collection’ and inserting it into the database is shown in Figure 7.24. Initially,
the ’additional answer part’ ids of the ’additional variable names’ from step
3.4.5 are added to the answer part details. This is done by using a tMap
component. The input answer part details and the answer part details with
the additional answer part ids are shown in Figure 7.24 (Table 1 & Table 2).
The ETL job now has all the details for creating the ’answer part collection’
document. These fields are then processed by a tWriteJSONField component,
which will create the JSON fields for the answer part document. Each answer
part document has two fields apart from its id: answer type and answer part

7.2. Data Processing 81

Read the Document from Additional Answer Part Collection

Save the Additional Answer Part Document in the Buffer

Figure 7.22: Talend Components for Reading the Additional Answer Part Collection
Document

Selection Query MongoDB Collection Name

Figure 7.23: Structure of the tMongoDDInput Component for Reading the Docu-
ments from Additional Answer Part Collection

choices. The answer type is a text field, and the answer part choices are rep-
resented as an array of nested documents where each document contains the
details of a choice. The output of the tWriteJSONField component is shown
in Figure 7.24 (Table 3). However, the syntax of the array element in Fig-
ure 7.24 (Table 3) is not correct according to MongoDB. In MongoDB, each
array should be represented by using square brackets ([]). Hence, the syntax
of the array should be changed. This is done by another tMap component and
the output of the tMap with correct array syntax is also shown in Figure 7.24

82 7. Loading Survey Questions into Database

(Table 4). The ETL job now has the complete and correct JSON fields for
creating the answer part document. Before inserting the document into the
database, the fields are saved as global variables for future use by using a
tSetGlobalVar component. Finally, the document is inserted into the answer
part collection using tMongoDBOutput component. The id of the document
is automatically generated by the database at the time of insertion.

Answer Part Details

Additional Answer Part Details with Ids

Adds Additional Answer Part Ids to Answer Part Details

Creates Answer Part Document Fields

Changes the Array Syntax of the Answer Part Choices Field

Saves the Document Fields for Future

Inserts the Document into the Database

(Table 1) Input Answer Part Details

Answer

Type

Choice

Sequence

Choice

Value

Choice

Text

Additional

Variable

Name

Choice

Group

Range 1 1 nie
Range 2 2 sehr selten
Range 3 3
Range 4 4
Range 5 5
Range 6 6 sehr häufig

(Table 2) Answer Part Details with Additional Answer part Ids

Answer

Type

Choice

Sequence

Choice

Value

Choice

Text

Additional

Variable

Name

Additional

Answer

PartId

Choice

Group

Range 1 1 nie
Range 2 2 sehr selten
Range 3 3
Range 4 4
Range 5 5
Range 6 6 sehr häufig

(Table 3) JSON Fields
AnswerType AnswerPartChoices

Range

loop: {

{

ChoiceSequenceNumber: 1,
ChoiceValue: 1,
ChoiceText: "nie",
AdditionalVariableName: "",
AdditionalAnswerPartId: "",
ChoiceGroup: ""

},
{

ChoiceSequenceNumber: 2,
ChoiceValue: 2,
ChoiceText: "sehr selten",
AdditionalVariableName: "",
AdditionalAnswerPartId: "",
ChoiceGroup: ""

},
.
.
.

 	 }

(Table 4) JSON Fields with new Syntax for Array
AnswerType AnswerPartChoices

Range

 [
{

ChoiceSequenceNumber: 1,
ChoiceValue: 1,
ChoiceText: "nie",
AdditionalVariableName: "",
AdditionalAnswerPartId: "",
ChoiceGroup: ""

},
{

ChoiceSequenceNumber: 2,
ChoiceValue: 2,
ChoiceText: "sehr selten",
AdditionalVariableName: "",
AdditionalAnswerPartId: "",
ChoiceGroup: ""

},
.
.
.

]

Figure 7.24: Talend Components for Creating and Inserting Answer Part Collection
Document

3.4.7 Get the answer part id: After saving an answer part into the database, the
id of the answer part document should be retrieved and saved along with the
corresponding variable name from step 3.4 so that they could be used in the

7.2. Data Processing 83

future while creating the question documents. For this, the id of the answer
part document, saved in step 3.4.6, should be retrieved. The ETL job flow for
this process is shown in Figure 7.25. Initially, a tMongoDBInput component
reads the answer part document, which was inserted in the previous step, from
the database. The document fields, saved as global variables in the previous
step, are used for the selection of the document. The selection query is shown
in Figure 7.26. The selected document has the id, and it is then added to the
variable name from step 3.4 using a tMap component. Finally, the variable
name and the answer part id is saved in the buffer using a tBufferOutput
component.

Read Answer Part Document Variable Name Variable Name and Answer Part Id in Buffer

Combines Answer Part Id and Variable Name

Figure 7.25: Talend Components for Reading Answer Part Id

3.6 Create and save question collection document from the question details:
The process involved in this step is similar to that of step 3.4.6. Initially,
the additional answer part ids from step 3.5 are added to the question details
from step 3.1. Then, the answer part ids from step 3.4.7 are also added to
the question details. Now, the ETL job has all the details for creating the
’question collection’ document. These details are converted into JSON fields
and then inserted into the question collection in the database.

3.7 Get the Question Id: After inserting a question document into the question
collection in the database, the corresponding auto-generated id of the question
should be retrieved for future use. This is done similar to the way it is done
in step 3.4.7. The question document inserted in the previous step is retrieved
using tMongoDBInput component, and the id is retrieved from it. The re-
trieved id is then stored in the buffer along with the corresponding question
number from step 3.

4 If a survey document is not present with the input survey details in database,
then create a document in the survey collection: In this step, the ETL job

84 7. Loading Survey Questions into Database

Collection Name Selection Query

Figure 7.26: Structure of the tMongoDDInput Component for Reading the Docu-
ment from Answer Part Collection

checks whether the survey collection already has a document with the survey
details extracted in step 2. The flow of the ETL job for doing this is shown
in Figure 7.27. A tMongoDBInput component tries to retrieve a document
with the input survey details. If a corresponding document is not found, then
a new document is created with the input survey details. The conditional
flow of the ETL job is achieved by an ’if trigger connection’ in Talend. The
insertion of the new document is done by a tMongoDBRow component. The
tMongoDBRow component executes the MongoDB command for creating the
new survey document. The structure of the tMongoDBRow with the insert
command is shown in Figure 7.28. On the other hand, if the survey document
is already found, then the ETL job moves to the next step.

5 If the survey document contains a survey module with the input survey
module details, then insert the survey module details to the survey docu-
ment: In this step, the input survey module details from step 2 are added to
the corresponding survey document. The previous step ensures that there is a
document in the survey collection for the input survey details. This step adds
the input survey module details into this document if it is not already present.
The process involved in this step is similar to that of the previous step. The
ETL job flow is shown in Figure 7.29. Initially, the ETL job retrieves the
document from the survey collection with the given survey and survey module
details using a tMongoDBInput component. If no document is found, then it
confirms that the survey module details are not present in the survey docu-
ment. In this case, the ETL job creates a survey module document from the
input survey module details and adds it into the ’SurveyModules’ array of the
survey document. Each survey module document has a survey module id and
survey module name. The ETL job has the survey module name from the
input survey module details and creates a new id for the survey module by
using a tJava component. The Java code executed by the tJava component,

7.2. Data Processing 85

If Connection Trigger Inserts a New Survey Document in Survey Collection

Reads a Document from Survey Collection with the Input Survey Details

Figure 7.27: Talend Components for Creating a Survey Document with Input Survey
Details, if it is not Already Present

which creates a new id for the survey module and saves it as a global variable,
is shown in Figure 7.30. The tLibraryLoad component shown in Figure 7.29
is for loading the necessary Java libraries for executing the Java code in tJava
component. Finally, the ETL job updates the survey document and adds
the survey module details to it using a tMongoDBRow. The structure of the
tMongoDBRow component with the update command is shown in Figure 7.31.

6 Insert the question details into the survey document: In this step, the ques-
tion details are inserted into the survey document. The question numbers of
all the questions in the input data along with their corresponding question ids
are inserted into the ’SurveyModuleQuestions’ array in the survey document.
Each pair of question numbers and question ids is stored as a document in the
array. The question numbers and question ids from step 3.7 could be directly
added to the survey document using a tMongoDBRow component. The up-

86 7. Loading Survey Questions into Database

MongoDB Command For Inserting a New Document into the Survey Collection

Figure 7.28: Structure of the tMongoDBRow Component for Creating the Survey
Document

date query to add the question details to the survey document is similar to
the one shown in Figure 7.31.

7 Create and save footnote collection documents from the footnote details: In
the final step, the ETL job creates the footnote documents from the footnote
details extracted in step 2 and saves these documents in the footnote collection
of the database. The footnote details extracted in step 2 contains the question
number, the part sequence number of the question part to which the footnote
is associated with and the footnote text. However, a footnote collection doc-
ument contains the survey module id, question id, part sequence number and
footnote text as its attributes. Therefore, the ETL job converts the input foot-
note details into the required format before inserting them into the MongoDB
collection. The flow of the ETL job for this process is shown in Figure 7.32.
Initially, the question numbers in the input footnote details are replaced by
corresponding question ids. This is done by using a tMap component. The
tMap component takes the question numbers and their corresponding ids from
step 3.7 and replaces each question number in the extracted footnote details
with the corresponding question id. Finally, the ETL job inserts the footnote
documents into the database using a tMongoDBRow component. The survey
module id attribute for the footnote documents is already saved as a global
variable in the previous step.

7.3 Summary

In this chapter, we have discussed the process of loading the survey questions from
portable document format files to the designed MySQL and MongoDB databases.

7.3. Summary 87

Reads the Document from Survey Collection with Input Survey and Survey Module Details

If Connection Trigger

Loads RequiredJava Libraries

Create Survey Module Id

Adds Survey Module Details to the Survey Document

Figure 7.29: Talend Components for Adding the Survey Module Details to the
Survey Document, if it is not Already Present

Initially, the different defined entities of the survey questions present in the PDF
documents are extracted. The different entities extracted for each question are the
survey details of the question, survey module details of the question, question parts
in the question, answer parts associated with the question parts, choices of answer
parts, additional answer parts, choices of additional answer parts and footnotes
present in the question. These extracted entities are then saved in excel files.

The extracted entities of the survey questions in the Excel files are then processed
and loaded into MySQL and MongoDB databases using ETL jobs. The extent
to which the data is normalized is different in both databases. The data is less
normalized in the MongoDB database as compared to the SQL database. Since the
data processing is different for both databases, separate ETL jobs were designed to
load the data into the MySQL and MongoDB databases. Since the number of data
processing is less in the MongoDB database, the ETL job for loading the data into
the MongoDB database is expected to perform better than the one for the MySQL

88 7. Loading Survey Questions into Database

Java Code for Creating a New Survey Module Id and Saving it as a Global Variable

Figure 7.30: Structure of the tJava Component for Creating a new Survey Module
Id

MongoDB Command For Adding the Survey Module Details to the Survey Document

Figure 7.31: Structure of the tMongoDBRow Component for Adding the Survey
Module Details to the Survey Document

database in terms of job execution times. However, it is only a hypothesis and
should be verified with proper evaluation of the ETL jobs.

7.3. Summary 89

Question Numbers with Question Ids

Footnote Details Replaces Question Numbers with Question Ids

Inserts Footnote Details into Footnote Colelction

Figure 7.32: Talend Components for Creating and Saving the Footnote Documents
into the Footnote Collection

90 7. Loading Survey Questions into Database

8. Evaluation

In this thesis work, SQL and NoSQL databases were designed and implemented for
managing the survey questions at DZHW. The relational database is implemented
in MySQL, and the document-oriented database is implemented in MongoDB. Fur-
thermore, ETL based workflows in Talend Open Studio were also designed and
implemented for loading the survey questions present into the designed databases.

The goal of this thesis is to design an SQL database and a NoSQL database for the
management of survey questions at DZHW. Furthermore, the best-suited database
should be identified by evaluating and comparing both databases. Therefore, in this
chapter, we compare and evaluate the designed SQL and NoSQL databases based
on different parameters. Firstly, the database systems are compared based on the
performance of their corresponding ETL workflows that load the survey data into
them. Secondly, the storage space requirements of the designed databases are evalu-
ated. Furthermore, the data retrieval performance of the two databases is analyzed
by comparing the performance of different selection queries in both databases. Ad-
ditionally, the performance of both databases in terms of their inbuilt text search
capabilities is also evaluated. Finally, a selectivity analysis of the databases is also
done to compare them in terms of the time taken to load a different number of
questions. Before discussing the evaluation steps in detail, the setup or framework
used for the evaluation is described.

8.1 Evaluation Setup
The framework used for conducting the various experiments for the evaluation of
the designed databases is explained in detail in this section. Initially, the hardware
specifications used for the experiments are discussed, followed by the explanation of
different software specifications. Furthermore, a description of the data set used for
the evaluation experiments is also given.

8.1.1 Hardware Specifications

The experiments were done in a machine with Intel(R) Core(TM) i7-9750H CPU @
2.60GHz 2.59 GHz. The read/write memory of the system was 32GB.

92 8. Evaluation

8.1.2 Software Specifications

The operating system used for running the experiments was Windows 10. The
edition of the operating system was Enterprise Edition, and the version was 21H1.
’MySQL 8.0.25(MySQL Community Server - GPL)’ is used for implementing the
relational database schema, and ’MongoDB 5.0.1 Community Edition’ was used to
implement the NoSQL database schema. The ETL jobs for loading the data into
the databases were designed using the ’Talend Open Studio for Big Data version
7.3.1’.

8.1.3 Data Set

In order to perform different experiments for the evaluation of the databases, four
different survey sets were prepared: survey set A, survey set B, survey set C and
survey set D. The total number of surveys, survey modules and questions in each
of the survey sets are given in Table 8.1. Survey set A contains one survey with
three survey modules and 80 questions. Survey set B contains one survey, six survey
modules and 160 questions. Survey set C has two surveys, twelve survey modules
and 320 questions. Survey set D contains four surveys, twenty-four survey modules
and 640 questions. Finally, the survey set E has eight surveys, forty-eight survey
modules and 1280 questions. Each survey set might contain repeated questions, but
these repeated questions are present in different survey modules.

The number of surveys, survey modules, and survey questions increases from survey
set A to survey set E. This is done to learn the changes in the performance of the
databases as the number of survey elements increases. Furthermore, the size of the
data also increases as we move from survey set A to survey set E. It allows us to
identify the changes in the databases’ performance with an increasing data load as
well. The survey sets were created by using the survey questions from the ”Die
Studierendenbefragung in Deutschland” survey discussed in Chapter 4.

Number of Surveys Number of Survey Modules Number of Questions Size
Survey Set A 1 3 80 0.0336 MB
Survey Set B 1 6 160 0.0674 MB
Survey Set C 2 12 320 0.1349 MB
Survey Set D 4 24 640 0.2698 MB
Survey Set E 8 48 1280 0.5398 MB

Table 8.1: Total Number of Surveys, Survey Modules and Questions in the Survey
Sets

8.2 Data Loading Analysis

In this section, we compare the performance in terms of the execution times of the
ETL workflows used for loading the data into the databases. It is done to find the
time required to load the data into the two databases. Even though the databases
store the same data, their structure of the data is different. In the MySQL database,
the data is stored in the form of tables, whereas in the MongoDB database, it is
stored as BSON documents. Moreover, the extent to which the data is normalized
in the MongoDB database is also less as compared to that in the SQL database.

8.2. Data Loading Analysis 93

Therefore, how the ETL jobs process and save the data is different in the case of
both databases. The data insertion time of MySQL and MongoDB databases also
plays a crucial role.

Survey Set A Survey Set B Survey Set C Survey Set D Survey Set E

MySQL 46.027 89.287 178.543 360.767 753.499

MongoDB 11.736 19.56 34.101 62.935 118.703

0

100

200

300

400

500

600

700

800

E
T

L
 J

o
b

 E
x
ec

u
ti

o
n

 T
im

e
(s

ec
o
n

d
s)

Figure 8.1: ETL Job Execution Times for MySQL and MongoDB

Each survey set, discussed in Section 8.1.3, was loaded into the MySQL and Mon-
goDB databases, and the execution times of both the ETL jobs were measured. The
execution times of the ETL jobs for the different survey sets are shown in Figure 8.1.
In the graph, we can see that the execution times of both the ETL jobs increases
with the size of the survey sets. However, the ETL job for loading the data into the
MongoDB database performs better than the ETL job for the MySQL database for
all the survey sets. This can be explained by the fact that the MongoDB database
is faster than MySQL in terms of insert operations [GGPO15]. Furthermore, the
data is less normalized in the MongoDB database and therefore, only less number of
data processing operations are present in the MongoDB ETL job. This could have
also played a major factor in its faster execution time.

Since the MySQL and MongoDB schemas are different, the amount of the data
written into both the databases are different even though the input data is the
same. Therefore, we also compare the throughput of both ETL jobs. Figure 8.2
shows the throughput of the ETL jobs for different survey sets. The throughput
values are calculated using the ETL job execution times in Figure 8.1 and the data
size values from Table 8.2. In Figure 8.2, we can see that the MongoDB database
has higher throughput values for all the survey sets. Even though the data sizes in
the MySQL database are higher for survey sets A, B and C, the corresponding ETL
job execution times are much higher as compared to that in the MongoDB database,

94 8. Evaluation

which resulted in low throughput. Therefore, we can conclude that the MongoDB
database performs better than the MySQL database in the data loading analysis

Survey Set A Survey Set B Survey Set C Survey Set D Survey Set E

MySQL 0.006450562 0.003850505 0.002100334 0.001255935 0.000829464

MongoDB 0.010378323 0.010240286 0.008419108 0.007320251 0.006806062

0

0.002

0.004

0.006

0.008

0.01

0.012

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Figure 8.2: Throughput of the ETL Jobs

8.3 Storage Space Analysis
In this section, we compare both the databases in terms of the storage space taken for
storing the survey questions. Since the extent to which the same data is normalized
in both databases are different, it would be useful to calculate the size of the same
data and indexes in both databases.

Initially, we consider the data size of both databases. The data size may be de-
fined as the size taken by the databases to represent the data. The data size of the
MySQL database can be calculated by using the SQL command in Listing 8.2. The
data size of the MongoDB database can be calculated by using the function shown in
Listing 8.1. This function returns the details of the current database, which includes
the data size as well.

db.stats ();

Listing 8.1: MongoDB Function for Calculating the Data Size

SELECT table_schema "DB Name", ROUND(SUM(data_length)/1024/1024 , 4)

"Data Size in MB" FROM information_schema.tables WHERE

table_schema = [DB Name];

Listing 8.2: SQL Command for Calculating the Data Size

8.3. Storage Space Analysis 95

MySQL MongoDB
Survey Set A 0.2969 MB 0.1218 MB
Survey Set B 0.3438 MB 0.2003 MB
Survey Set C 0.3750 MB 0.2871 MB
Survey Set D 0.4531 MB 0.4607 MB
Survey Set E 0.6250 MB 0.8079 MB

Table 8.2: Data Size of MySQL and MongoDB Databases

The data size of the MySQL and MongoDB databases for each survey set is given
in Table 8.2. While analyzing the values in Table 8.2, we can see that the MySQL
database has taken more space for storing the survey questions as compared to the
MongoDB database for survey sets A, B and C. But, MySQL performs better in
the case of survey sets D and E. This can be explained by the extent to which
the data is normalized in both databases. As the data size increases, the number
of redundant survey questions, question parts and answer parts increases. In such
cases, the MySQL database, in which data is normalized more, performs better
than the MongoDB database, as the data size is reduced by non-redundant storage
of the repeated elements of the questions. Therefore, the MySQL database could be
considered as a better option for managing a large amount of survey data in terms
of the data size.

Secondly, we compare the index sizes of both databases for each survey set. The
size of the indexes in the MySQL database could be calculated by using the SQL
command in Listing 8.3. The MongoDB index size could be calculated by using the
function shown in Listing 8.1, which returns the total index size of the database as
well.

SELECT table_schema "DB Name", ROUND(SUM(index_length)/1024/1024 , 4)

"Index Size in MB" FROM information_schema.tables WHERE

table_schema = [DB Name];

Listing 8.3: SQL Command for Calculating the Data Size

MySQL MongoDB
Survey Set A 0.2813 MB 0.1563 MB
Survey Set B 0.3125 MB 0.1563 MB
Survey Set C 0.3281 MB 0.2188 MB
Survey Set D 0.4688 MB 0.2305 MB
Survey Set E 0.7188 MB 0.2461 MB

Table 8.3: Total Index Size of MySQL and MongoDB Databases

The total index size of the databases for different survey sets are shown in Table 8.3.
From the analysis of these index sizes, we can see that the MySQL database needs

96 8. Evaluation

more space to store the indexes as compared to the MongoDB database for all the
survey sets. This is because the MySQL database has fourteen tables, which would
in turn result in a large number of indexes. However, the MongoDB database has
only five collections and therefore would only be having fewer indexes as compared
to the MySQL database. Therefore, we can conclude that the MongoDB database
performs better in terms of the total index size.

8.4 Selection Query Tests

In this section, we evaluate the performance of the MySQL and MongoDB databases
for different data retrieval queries. Since the data is shared among different tables in
the MySQL database, join operations between these tables should be done in most
of the selection queries to retrieve the required data. Similarly, in the MongoDB
database also, the data is shared among different collections. Therefore, data in
these multiple collections should be joined as well in most of the cases to get the
required data. Lookup operation in MongoDB is used for this purpose which works
similar to the left outer join operation in SQL. Thus, the main aim of these tests is
to compare the performance of the selection queries with join operations in MySQL
and lookup operations in MongoDB. For this, different use cases were designed that
retrieve data shared among different tables in MySQL or different collections in
MongoDB. Each of these use cases retrieves the same data from both databases and
requires join or lookup operations depending on the database.

Three different use cases were designed in total. The first use case retrieves all the
questions in a survey module. This use case is relevant when a person wants to
analyze all the questions present in a survey module. An example scenario is when
a person wants to create a survey module in a new survey, and a similar survey
module is already present in an existing survey. In such situations, the person can
analyze all the questions in the existing survey module to check if the same survey
module can be reused in the new survey. The second use case is to select a question
using its unique question id. This use case would be used for the fast retrieval of
a survey question. For example, if a person wants to make changes in a particular
survey question and the unique id of the question is known, then the person can
easily retrieve the exact question using the id without any further searches. The
third use case is to retrieve survey questions using question part texts. This would
be a commonly used scenario to search the survey questions. An example scenario
is when a person wants to find all the survey questions in the database that contains
some keywords or text patterns. In such cases, the corresponding questions could be
selected using this use case. The different uses cases are discussed in detail below.

8.4.1 Use Case 1: Select All Questions in a Survey Module

In this use case, all the questions in a survey module are selected from the database.
The id of the survey module is given as the input parameter in the query, and the
query returns all the questions in that particular survey module. The corresponding
survey details are returned as well. Furthermore, the footnote details should be
displayed along with the question details.

8.4. Selection Query Tests 97

MySQL and MongoDB queries (see Chapter A) were designed for this use case, and
each query was executed multiple times for each survey set. The id of the same
survey module is given as the input parameter while executing the MySQL and
MongoDB queries for each survey set so that the queries return the same result.
Each query was executed twenty times, and the average value of the execution times
was taken for the evaluation. The query execution times for each survey set is shown
in Figure 8.3.

Survey Set A Survey Set B Survey Set C Survey Set D Survey Set E

MySQL 0.005 0.0052 0.0053 0.0056 0.0059

MongoDB 0.1731 0.1735 0.1867 0.2003 0.2366

0

0.05

0.1

0.15

0.2

0.25

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
o
n

d
s)

Figure 8.3: Query Execution Time - Select All Questions in a Survey Module

By analyzing the values in Figure 8.3, we can see that the MySQL database performs
better than the MongoDB database for all the survey sets in this particular selection
use case. The low performance of the MongoDB database could be explained by the
expensive lookup operations done in the MongoDB selection query.

Next, we consider the performance of each database separately. We can see that
as the size of the data set increases, the MySQL query performs better than the
MongoDB query in terms of execution times. The increase in the execution time
with the increase in the size of the data is less in MySQL as compared to that in
MongoDB. In the case of the MySQL database, the increase in the query execution
time from survey set A to survey set E is just 0.0009 seconds. Whereas, in the case of
the MongoDB database, the increase in the execution time is 0.0635 seconds. With
this result, we argue that MySQL performs better than MongoDB as the data size
increases in this particular use case. However, we believe that this is not enough
to make a conclusion as the increase in the execution times are very small in both
the databases and these values are heavily dependent on the dynamic characteristics

98 8. Evaluation

of the system in which they are executed, such as system load and available main
memory.

8.4.2 Use Case 2: Select Question by Id

This use case is designed to retrieve a question by giving its unique id. By giving
the question id as the input parameter to the selection query, the corresponding
question details, footnote details, survey and survey module details to which the
question belongs should be returned as the result.

Like in the previous use case, MySQL and MongoDB queries were designed for
the use case. The queries were executed twenty times each for each survey set,
and the average value of the execution times was taken for the evaluation. While
executing the queries for a survey set, the id of the same question is given as the
input parameter to the MySQL and MongoDB queries to get the same results. The
query execution times are shown in Figure 8.4.

Survey Set A Survey Set B Survey Set C Survey Set D Survey Set E

MySQL 0.0011 0.0012 0.0012 0.0012 0.0017

MongoDB 0.0068 0.0073 0.0073 0.0075 0.0077

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
o
n

d
s)

Figure 8.4: Query Execution Time - Select Question by Id

The MySQL database outperforms the MongoDB database in this use case as well.
However, when we consider the performance of each query separately for different
survey sets, we can see that the increase in the data size does not have much effect on
the query performance of both databases. As the data size increases, the execution
time of both the queries increases only by a small amount. The increase in the
execution time from survey set A to survey set E in the case of the MySQL database
is 0.0006 seconds, and in the case of the MongoDB database it is 0.0009 seconds.

8.4. Selection Query Tests 99

8.4.3 Use Case 3: Select Questions by Question Part Text

In this use case, the survey questions are selected from the database by using the
question part texts. The query takes a string as the input parameter, and all the
questions that contain the string as a part of their question part texts are returned as
the result. Along with the question details, the corresponding footnote and survey
details of the questions should be also retrieved as well.

MySQL and MongoDB queries were designed for this use case. The queries do not
perform the full-text search using the input string. Instead, this use case focuses
on the performance of the pattern matching functions in the databases. In MySQL,
this is done using the ’LIKE’ operator, and in MongoDB, this is done using a simple
’$match’ operator. The performance of the full-text search feature of the databases is
evaluated in detail in Section 8.5. The designed queries were executed twenty times
each for each survey set, and the average execution time is taken for the evaluation.
Figure 8.5 shows the query execution times for the MySQL and MongoDB databases.
The same string is given as the input parameter of both the queries for each survey
set to get the same results.

Survey Set A Survey Set B Survey Set C Survey Set D Survey Set E

MySQL 0.0021 0.0023 0.0024 0.0023 0.0025

MongoDB 0.0067 0.0075 0.0077 0.0091 0.01

0

0.002

0.004

0.006

0.008

0.01

0.012

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
o
n

d
s)

Figure 8.5: Query Execution Time - Select Questions by Question Part Text

By analyzing the results in Figure 8.5, we can see that the MySQL database performs
better than the MongoDB database in this use case also. On the other hand, while
analysing the performance of each database separately for different survey sets, we
can see that the MySQL query performance is not much affected by the increase
in the data size. The difference between the query execution times of survey set E
and survey set A is just 0.0004 seconds. However, the performance of the MongoDB

100 8. Evaluation

query degrades gradually as the data size increases (from 0.0067 seconds for survey
set A to 0.01 seconds for survey set E). But, the increase in the execution times are
small, and these values are heavily dependent on the dynamic characteristics of the
system.

8.4.4 Selection Query Tests: Summary

We have tested the performance of MySQL and MongoDB databases for different
selection use cases. The use cases were formulated, and queries were designed for
each of these use cases in both databases. The performances of the databases are
then compared based on the query execution times. The main outcomes of this
evaluation are listed below:

• The MySQL database performs better than the MongoDB database in all the
discussed use cases in terms of query execution times.

• While considering the individual performances of the databases separately in
each use case for different survey sets, we can say the performance of MySQL
and MongoDB are not much affected by the data size. However, the MySQL
database has a slight advantage over MongoDB in use cases 1 and 3.

8.5 Full-Text Search Analysis

In this section, we evaluate the full-text search performances of the designed MySQL
and MongoDB databases. This comparison is crucial as the survey questions could
be considered as text data, and most of the data retrieval operations from these
databases would be based on text search. For example, one of the most common
data selection operations that would be performed is the retrieval of survey questions
using some keywords. Full-text search is the best technique that could be used to
facilitate such searches that involve searching text data.

Full-text search is an advanced way of searching text data in databases by using
text indexes. To perform a full-text search in a database, text indexes should be
created for each column or field which stores the text data which is to be searched.
The full-text search operation finds all the instances of the input text keywords by
performing searches on the text indexes. This searching technique is faster than the
normal pattern matching functions like ’LIKE’ and ’$match’ operations.

Both MySQL and MongoDB offer the capabilities to perform the full-text search.
They are discussed below:

Full Text Search in MySQL

MySQL offers three types of full-text searches: Natural language full-text search,
Boolean full-text search and query expansion search. Natural language full-text
search considers the input text keywords as simple free texts. The Boolean full-
text search allows Boolean operators in the input text keywords. These Boolean
operators have special meanings, such as the ’+’ sign could be added to the word to

8.5. Full-Text Search Analysis 101

make that particular word compulsory in each returned row, and the ’-’ sign could
be added to a word to make that word not present in any of the returned rows.

Query expansion search uses a different search strategy as compared to the other
full-text search techniques. In query expansion search, the text indexes are searched
at first using the input keywords to return the rows that contain the input keywords.
Then, relevant words are extracted from this initial result, and a full-text search is
again performed with these extracted words. The result from the second search is
then added to the first result to get the final result of the search operation.

Full Text Search in MongoDB

MongoDB also supports full-text search using text indexes. Unlike MySQL, there
is only one type of full-text search in MongoDB. The ’$text’ operator is used to
perform the full-text search in the MongoDB database.

Full-Text Search: MySQL vs MongoDB

To compare the full-text search performances in our MySQL and MongoDB databases,
we take the same use case discussed in Section 8.4.3. The survey questions should be
retrieved from the database using their question part texts. There are four queries
in total: three queries for the MySQL database as there are three types of full-text
searches in MySQL and one query for the MongoDB database. Each query takes a
keyword as input parameter and performs the full-text search. The result of each
query contains the details of all the questions that are found using the corresponding
full-text search along with their footnote, survey and survey module details.

In order to successfully execute these queries, appropriate text indexes should also
be created. For this, a text index was created in the MySQL database on the
’question part text’ column of the Question Part Text table. Similarly, a text index
was created on the ’QuestionText’ field in the Question collection of the MongoDB
database as well.

The designed queries were executed twenty times each for each survey set, and the
average execution time was taken for the evaluation. Figure 8.6 shows the query
execution times of the MySQL and MongoDB full-text search queries. In Figure 8.6
NLFTS stands for natural language full-text search, BFTS stands for Boolean full-
text search and QEFTS stands for query expansion full-text search.

The results in Figure 8.6 shows that the Boolean full-text search of the MySQL
database is the best among the compared techniques. The natural language full-
text search also performed well and comes in the second position with slightly higher
execution times. For survey set A, the natural language full-text search performs
better than the Boolean full-text search as well. The MongoDB full-text search and
the query expansion full-text search techniques did not perform well as compared
to the other two techniques and come in the third and fourth positions respectively.
The high execution time values of the query expansion full-text search could be
explained by the multiple steps involved in its search procedure. Since a second
search is also done by extracting the important keywords from the results of the
first search, the query execution is expected to take longer than the other techniques

102 8. Evaluation

Survey Set A Survey Set B Survey Set C Survey Set D Survey Set E

MySQL - NLFTS 0.0015 0.0021 0.0024 0.0036 0.0054

MySQL - BFTS 0.0018 0.0019 0.0022 0.0029 0.0044

MySQL - QEFTS 0.0117 0.0196 0.0367 0.0654 0.1312

MongoDB 0.0075 0.0153 0.0223 0.0371 0.0668

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
o
n

d
s)

Figure 8.6: Query Execution Time - Full Text Search

that only has one level of search. However, in general, we can say that the MySQL
database performs better than the MongoDB database in terms of full-text search
capabilities.

Since text indexes should be created for conducting full-text searches in both databases,
it would be noteworthy to compare the sizes of these text indexes as well. For this,
the size of the text indexes in MySQL and MongoDB databases are calculated and
tabulated for each survey set. The size of the text index in the MySQL database
could be calculated using the SQL command in Listing 8.4. The command in List-
ing 8.4 returns the sum of all the indexes in a table. The size of the text index could
be calculated using this command by dropping all the other indexes in the table.
The size of the text index in MongoDB could be calculated by using the function
shown in Listing 8.5. This function returns the details of all the indexes in the given
collection which includes the index size as well. Table 8.4 shows the size of the text
indexes in both the databases.

SELECT ROUND(SUM(index_length)/1024/1024 , 4) "Index Size in MB"

FROM information_schema.tables WHERE table_schema =[DB Name] and

table_name =[Table Name];

Listing 8.4: SQL Command for Calculating the Text Index Size

db.[Collection Name].stats ();

Listing 8.5: MongoDB Function for Calculating the Text Index Size

8.6. Selectivity Analysis 103

MySQL MongoDB
Survey Set A 0.0156 MB 0.0313 MB
Survey Set B 0.0156 MB 0.0391 MB
Survey Set C 0.0156 MB 0.0469 MB
Survey Set D 0.0156 MB 0.0625 MB
Survey Set E 0.0469 MB 0.0898 MB

Table 8.4: Size of the Text Indexes in MySQL and MongoDB for Different Survey
Sets

The size of the MySQL text indexes is less than that of the MongoDB text indexes
for each survey set. Therefore, we can conclude that the MySQL database is better
than the MongoDB database in terms of the text index sizes for the full-text search
as well.

8.6 Selectivity Analysis

In this section, we perform the selectivity analysis of the MySQL and MongoDB
databases. Selectivity of a column in a database is defined as the fraction of the
rows returned by a selection operation on that column. However, in this experiment,
we do not perform the selectivity analysis on a column level. Instead, we do it on the
question level. The main aim of this analysis is to compare the time taken to load
a different number of questions from the MySQL and MongoDB databases. The
questions are selected using the full-text search technique discussed in the previous
section. Only the Boolean full-text search is selected for doing the selectivity analysis
of the MySQL database as it performed better than the other two full-text search
techniques in our evaluation in Section 8.5. Furthermore, the tests are done using
the survey set E as it contains more questions. The survey set E contains 1280
questions in total. However, some of these questions are repeated ones, and the
total number of unique questions in the survey set is 720.

For conducting the experiment, different keywords were selected that will retrieve a
different number of questions from the databases. The keywords, number of ques-
tions selected from the databases using the keywords and the corresponding selec-
tivity values are shown in Table 8.5. The average query execution times for these
different selectivity values are shown in Figure 8.7.

Keyword Number of Questions Retrieved Selectivity (%)
Monat 9 1.25

Deutschland 63 8.75
Studium 126 17.5
Haben 216 30
Sie 513 71.25

Table 8.5: Selected Keywords and Corresponding Selectivities

In Figure 8.7, we can see that the execution times of the MySQL queries are less than
the ones of the MongoDB database. Therefore, we can conclude that the MySQL

104 8. Evaluation

Selectivity=1.25 Selectivity=8.75 Selectivity=17.5 Selectivity=30 Selectivity=71.25

MySQL 0.0033 0.0086 0.0158 0.0244 0.0497

MongoDB 0.0361 0.2164 0.382 0.6456 1.3865

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
E

x
ec

u
ti

o
n

 T
im

e
(s

ec
o
n

d
s)

Figure 8.7: Query Execution Time - Selectivity Analysis

database performs better than the MongoDB database for different selectivity values.
When we consider the performances of each database separately, we can see that
the query execution times increases almost exponentially with the selectivity values
for both the databases.

8.7 Summary

In this section, we have compared and evaluated the MySQL and MongoDB databases
in terms of different parameters. Initially, the data loading analysis was done to
compare the performance of the ETL workflows used for loading the data into the
databases in terms of their execution time and throughput. In the data loading
analysis, the ETL job for the MongoDB database performed better than the one for
the MySQL database. Secondly, the data size and the index size of both databases
were compared. In the case of data size, the MongoDB database performed better
than the MySQL database for the smaller data sets. However, when it comes to
larger data sets, the MySQL database has shown better performance. In the case of
the total index size of the databases, the MongoDB database has a clear advantage
over the MySQL database.

Furthermore, the performance of MySQL and MongoDB databases were evaluated
for different data retrieval use cases. The MySQL database performed better than
the MongoDB database in all the discussed data selection use cases in terms of query
execution times. Additionally, the evaluation of the databases was also done in terms
of the full-text search queries. The MySQL database showed better performance for

8.7. Summary 105

full-text search queries as well. Finally, the selectivity analysis was also done to
compare both databases in terms of the time taken to load a different number of
questions. The MySQL database was the winner in the selectivity analysis as well.

After the evaluation of our MySQL and MongoDB databases designed for managing
the survey questions, we have found that the MySQL database performed better than
the MongoDB database in four experiments out of the six experiments conducted.
Therefore, we can summarize that the designed MySQL database is naturally the
better option for managing the survey questions.

106 8. Evaluation

9. Conclusion and Future Work

In this thesis work, we have developed and compared two database systems for
managing the survey questions at DZHW. We have started by providing the nec-
essary background information for designing and developing the required database
systems. It involves a brief description of the different types of surveys conducted
at DZHW, followed by a discussion of the important characteristics of the database
systems mainly focusing on SQL and NoSQL databases. Additionally, the major
concepts and steps involved in the design process of SQL and NoSQL databases are
explained. Finally, a brief introduction about the ETL process and Talend Open
Studio, a commonly used open-source ETL tool, was also given as it is used for
loading the data into the designed databases.

After discussing the necessary background details, a detailed requirement analysis
was conducted. For this, the survey, ”Die Studierendenbefragung in Deutschland”,
conducted at DZHW was analyzed. The structure of the survey and survey ques-
tions were identified, along with different types of questions, answer parts and some
special cases present in the survey. Using these details, the various requirements and
constraints for the database design were identified. Additionally, a high-level con-
ceptual data model was designed based on the identified requirements. This model
is used to create the required physical database schemas.

After the requirement analysis, we selected an SQL and NoSQL database for imple-
menting the designed database schemas. MySQL was selected from different SQL
databases and MongoDB was selected from different NoSQL databases for imple-
menting the databases for managing the survey questions.

The SQL and NoSQL database schemas are then designed by expanding the con-
ceptual data model. For the SQL schema, all the relations and their attributes are
explained in detail. Similarly, for the NoSQL (MongoDB) database, all the collec-
tions and the description of the documents present in each of these collections were
also explained in detail.

After designing the databases, the ETL workflows for loading the survey questions
into the databases were introduced. The ETL jobs were developed using Talend

108 9. Conclusion and Future Work

Open Studio for Big Data. Separate ETL jobs were developed for MySQL and
MongoDB databases as the structure of the data is different in both databases. The
different data processing steps involved in both the ETL jobs were also explained in
detail.

After the implementation of the databases in MySQL and MongoDB, we compared
and evaluated both the databases in terms of different parameters such as data
loading times, storage space, query execution times, full-text search and selectivity
analysis. The MySQL database outperformed the MongoDB database in terms of the
data size, query execution times, full-text search and selectivity analysis. Therefore,
we can conclude that the MySQL database is the better option for managing the
survey questions as it offers better performance than MongoDB, especially in terms
of query execution times and full-text search as they are the most frequently used
features in the database. On the other hand, the MongoDB database showed an
upper hand in the data loading analysis and the index sizes. However, the data
loading operations only happen less frequently in the database and, the data retrieval
speed should be given more importance over the storage space requirements of the
database. Therefore, we conclude that the SQL database schema would be the better
option for the management of survey questions.

As future work, we can implement the designed SQL and NoSQL database models
in other databases as well. Since, in this thesis work, the main focus was given for
the designing of the database schemas, we were not able to implement the designed
models in other potential databases. So it would be worthwhile to investigate the
performance of the database models in other SQL and document-oriented databases
as well.

Furthermore, all the surveys at DZHW were not investigated for this thesis work.
Only the survey, ”Die Studierendenbefragung in Deutschland”, was investigated for
designing the database schemas. So in the future, all the remaining surveys and their
questions should also be analyzed to verify whether our designed database models
could incorporate them as well.

A. Appendix

db.SurveyCollection.aggregate(

[

{ "$unwind" :

{ path: ’$SurveyModules ’, preserveNullAndEmptyArrays: true }

},

{ "$unwind" : {

path: ’$SurveyModules.SurveyModuleQuestions ’,

preserveNullAndEmptyArrays: true

}

},

{

$match : {

’SurveyModules.SurveyModuleId ’ :

ObjectId ("61 e485e02c858a2ffdfafc96 ")

}

},

{

"$lookup ": {

"from": ’QuestionCollection ’,

"localField ":

’SurveyModules.SurveyModuleQuestions.QuestionId ’,

"foreignField ": ’_id ’,

"as": ’QuestionParts ’

}

},

{ "$unwind" : {

path: ’QuestionParts ’,

preserveNullAndEmptyArrays: true

}

},

{ "$unwind" :

{

path:’QuestionParts.QuestionParts ’,

preserveNullAndEmptyArrays: true

}

},

{

110 A. Appendix

$set: {

’SurveyModuleName ’: {

"$ifNull ": [" $SurveyModules.SurveyModuleName", ""]

},

’SurveyModuleId ’: {

"$ifNull ": [" $SurveyModules.SurveyModuleId", ""]

},

’QuestionId ’:

{" $ifNull ":

[

"$SurveyModules.SurveyModuleQuestions.

QuestionId", ""

]

},

’QuestionNumber ’: {

"$ifNull ":

[

"$SurveyModules.SurveyModuleQuestions.

QuestionNumber", ""

]

},

’QuestionPart ’: {

"$ifNull ": [" QuestionParts.QuestionParts", {}]

}

}

},

{$unset: "SurveyModules" },

{$unset: "QuestionParts "},

{$unset: "_id"},

{

"$lookup ": {

"from": ’AnswerPartCollection ’,

"localField ": ’QuestionPart.AnswerPartId ’,

"foreignField ": ’_id ’,

"pipeline ":

[

{" $unwind ": "$AnswerPartChoices" },

{

"$lookup ": {

"from": ’AdditionalAnswerPartCollection ’,

"localField ":

’AnswerPartChoices.AdditionalAnswerPartId ’,

"foreignField ": ’_id ’,

"as": ’AdditionalAnswerPart ’

}

},

{ "$unwind" :

{

path: ’$AdditionalAnswerPart ’,

preserveNullAndEmptyArrays: true

}

},

{

$set: {

’AnswerPartChoices.AdditionalAnswerPart ’:

{

"$ifNull ": [" $AdditionalAnswerPart", {}]

111

}

}

},

{$unset: "AdditionalAnswerPart "},

{$unset: "AnswerPartChoices.AdditionalAnswerPartId "},

{$unset: "AnswerPartChoices.AdditionalAnswerPart._id"},

{

$group : {

_id : {

_id: "$_id",

AnswerType: "$AnswerType"

},

AnswerPartChoices:

{

$push: "$AnswerPartChoices"

}

}

},

{

$set: {

’id ’: {" $ifNull ": ["$_id._id", ""]},

’AnswerType ’:

{

"$ifNull ": ["$_id.AnswerType", ""]

}

}

},

{$unset: "_id"}

],

"as": ’AnswerPart ’

}

},

{

"$unwind" :

{

path: ’$AnswerPart ’,

preserveNullAndEmptyArrays: true

}

},

{

$set: {

’QuestionPart.AnswerType ’: {

"$ifNull ": [" $AnswerType", {}]

}

}

},

{ $unset: "AnswerPart "},

{ $unset: "QuestionPart.AnswerPartId "},

{ $unset: "QuestionPart.AnswerPart.id"},

{

"$lookup ": {

"from": ’AdditionalAnswerPartCollection ’,

"localField ": ’QuestionPart.AdditionalAnswerPartId ’,

"foreignField ": ’_id ’,

"as": ’AdditionalAnswerPart ’

}

},

112 A. Appendix

{

"$unwind" : {

path: ’$AdditionalAnswerPart ’,

preserveNullAndEmptyArrays: true

}

},

{

$set: {

’QuestionPart.AdditionalAnswerPart ’: {

"$ifNull ": [" $AdditionalAnswerPart", {}]

}

}

},

{ $unset: "AdditionalAnswerPart" },

{ $unset: "QuestionPart.AdditionalAnswerPartId" },

{

$lookup: {

from: "FootnoteCollection",

let: {

surveyModuleId: "$SurveyModuleId",

questionId: "$QuestionId",

partSequence: "QuestionPart.PartSequence"

},

pipeline: [

{

$match: {

$expr: {

$and: [

{

$eq: [

"$SurveyModuleId",

"$$surveyModuleId"

]

},

{

$eq: [

"$QuestionId",

"$$questionId"

]

},

{

$eq: [

"$PartSequenceNumber",

"$$partSequence"

]

}

]

}

}

}

],

as: "Footnote"

}

},

{ "$unwind" : {

path: ’$Footnote ’,

113

preserveNullAndEmptyArrays: true

}

},

{

$set: {

’QuestionPart.Footnote ’: {

"$ifNull ": [" $Footnote.FootnoteText", ""]

}

}

},

{ $unset: "Footnote" },

{ $unset: "SurveyModuleId" },

{ $unset: "QuestionId" },

{

$group : {

_id : {

SurveyName: "$SurveyName",

SurveyModuleName: "$SurveyModuleName",

QuestionNumber: "$QuestionNumber"

},

QuestionParts: { $push: "QuestionPart" }

}

},

{

$set: {

’SurveyName ’: {" $ifNull ": ["$_id.SurveyName", ""]},

’SurveyModuleName ’: {

"$ifNull ": ["$_id.SurveyModuleName", ""]

},

’QuestionNumber ’: {

"$ifNull ": ["$_id.QuestionNumber", ""]

}

}

},

{$unset: "_id"},

{

$set: {

’QuestionDetails ’: {

’QuestionNumber ’: "$QuestionNumber",

’QuestionStructure ’: "$QuestionStructure"

}

}

},

{$sort: {" QuestionDetails.QuestionNumber ":1}},

{

$group : {

_id : {

SurveyName: "$SurveyName",

SurveyModuleName: "$SurveyModuleName"

},

Questions: { $push: "$QuestionDetails" }

}

},

{

$set: {

’SurveyName ’: {" $ifNull ": ["$_id.SurveyName", ""]},

’SurveyModuleName ’: {

114 A. Appendix

"$ifNull ": ["$_id.SurveyModuleName", ""]

}

}

},

{$unset: "_id"}

]);

Listing A.1: MongoDB Code for Selecting All Questions in a Survey Module

select

S.survey_name , SM.survey_module_name , SMQ.question_number ,

QST.part_sequence_number , QST.level , QPTT.question_part_text ,

QPIT.question_part_instruction , FT.footnote_text ,

QST.variable_name , ATIT.answer_type ,

ATIST.choice_sequence_number , ATIST.choice_value ,

CTT.choice_text , CGT.choice_group_text ,

ATIST.additional_variable_name as

AnswerPartAdditionalVariableName ,

AATIT.additional_answer_type as

AnswerPartAdditionalAnswerType ,

AATIST.choice_sequence_number as

AnswerPartAdditionalPartChoiceSequence ,

AATIST.choice_value as

AnswerPartAdditionalAnswerPartChoiceValue ,

CTT2.choice_text as

AnswerPartAdditionalAnswerPartChoiceText ,

QST.additional_variable_name , AATIT2.additional_answer_type ,

AATIST2.choice_sequence_number as AdditionalChoiceSequenceNo ,

AATIST2.choice_value as AdditionalChoiceValue ,

CTT3.choice_text as AdditionalChoiceText

from

(

select

*

from

survey_questions_db.survey_module_table sm

where

survey_module_id =101

)

as SM natural join

survey_questions_db.survey_table S natural join

survey_questions_db.survey_module_questions_table SMQ

natural join

survey_questions_db.question_part_table QST natural join

survey_questions_db.question_part_text_table QPTT left join

survey_questions_db.question_part_instruction_table QPIT on

(

QST.question_part_instruction_id =

QPIT.question_part_instruction_id

) left join

survey_questions_db.footnote_table FT on

(

SM.survey_module_id = FT.survey_module_id

and SMQ.question_id=FT.question_id

and QST.part_sequence_number=FT.part_sequence_number

) left join

survey_questions_db.answer_part_table ATIT on

115

(

QST.answer_part_id=ATIT.answer_part_id

) left join

survey_questions_db.answer_part_choice_table ATIST on

(

ATIT.answer_part_id =

ATIST.answer_part_id

) left join

survey_questions_db.choice_text_table CTT on

(ATIST.choice_text_id = CTT.choice_text_id) left join

survey_questions_db.choice_group_table CGT on

(ATIST.choice_group_id = CGT.choice_group_id) left join

survey_questions_db.additional_answer_part_table AATIT on

(

ATIST.additional_answer_part_id =

AATIT.additional_answer_part_id

) left join

survey_questions_db.additional_answer_part_choice_table AATIST on

(

ATIST.additional_answer_part_id =

AATIST.additional_answer_part_id

) left join

survey_questions_db.choice_text_table CTT2 on

(AATIST.choice_text_id = CTT2.choice_text_id) left join

survey_questions_db.additional_answer_part_table AATIT2 on

(

QST.additional_answer_part_id =

AATIT2.additional_answer_part_id

) left join

survey_questions_db.additional_answer_part_choice_table AATIST2 on

(

QST.additional_answer_part_id =

AATIST2.additional_answer_part_id

) left join

survey_questions_db.choice_text_table CTT3 on

(AATIST2.choice_text_id = CTT3.choice_text_id)

;

Listing A.2: SQL Code for Selecting All Questions in a Survey Module

116 A. Appendix

Bibliography

[AG03] Eugene Agichtein and Luis Gravano. Querying text databases for
efficient information extraction. In Proceedings of the International
Conference on Data Engineering, pages 113–124. IEEE, 2003. (cited

on Page 18)

[AM10] Jasmin Azemović and Denis Mušić. Comparative analysis of efficient
methods for storing unstructured data into database with accent on
performance. In Proceedings of the International Conference on Ed-
ucation Technology and Computer, volume 1, pages V1–403–V1–407.
IEEE, 2010. (cited on Page 17)

[BBC13] Shannon Bradshaw, Eoin Brazil, and Kristina Chodorow. MongoDB:
the definitive guide: powerful and scalable data storage. O’Reilly Me-
dia, Inc., 2013. (cited on Page 43)

[BCAT14] Francesca Bugiotti, Luca Cabibbo, Paolo Atzeni, and Riccardo Tor-
lone. Database design for NoSQL systems. In Proceedings of the Inter-
national Conference on Conceptual Modeling, pages 223–231. Springer
International Publishing, 2014. (cited on Page 12)

[BGJ03] Bernadette Byrne, Mary Garvey, and Mike Jackson. Using object role
modelling to teach database design. LTSN Workshop on Teaching,
Learning and Assessment of Databases, Coventry, 2003. Available on-
line https://www.academia.edu/10766378/USING OBJECT ROLE
MODELLING TO TEACH DATABASE DESIGN. (cited on

Page 12)

[Bow12] Jonathan Bowen. Getting started with Talend Open Studio for data
integration. Packt Publishing Ltd, 2012. (cited on Page 14)

[BRA12] Alexandru Boicea, Florin Radulescu, and Laura Ioana Agapin. Mon-
goDB vs Oracle – Database comparison. In Proceedings of the Inter-
national Conference on Emerging Intelligent Data and Web Technolo-
gies, pages 330–335. IEEE Computer Society, 2012. (cited on Page 40)

[CB19] André Calçada and Jorge Bernardino. Evaluation of Couchbase,
CouchDB and MongoDB using OSSpal. In Proceedings of the Inter-
national Joint Conference on Knowledge Discovery, Knowledge En-
gineering and Knowledge Management, pages 427–433. SciTePress,
2019. (cited on Page 42 and 44)

118 Bibliography

[CK19] Roman Ceresnak and Michal Kvet. Comparison of query performance
in relational a non-relation databases. Transportation Research Pro-
cedia, 40:170–177, 2019. (cited on Page 7)

[Cod70] Edgar F. Codd. A relational model of data for large shared data
banks. Communications of the ACM, 13(6):377–387, 1970. (cited on

Page 8)

[dlVGSB+18] Alfonso de la Vega, Diego Garćıa-Saiz, Carlos Blanco, Marta Zor-
rilla, and Pablo Sánchez. Mortadelo: A model-driven framework for
NoSQL database design. In Proceedings of the International Confer-
ence on Model and Data Engineering, pages 41–57. Springer Interna-
tional Publishing, 2018. (cited on Page 13)

[EJN01] Robert A. Maksimchuk Eric J. Naiburg. UML for Database Design.
Addison-Wesley Professional, 2001. (cited on Page 12)

[GGPO15] Cornelia Győrödi, Robert Gyorodi, George Pecherle, and Andrada
Olah. A comparative study: MongoDB vs. MySQL. In Proceedings
of the International Conference on Engineering of Modern Electric
Systems, pages 1–6. IEEE, 2015. (cited on Page 93)

[GL12] Seth Gilbert and Nancy Lynch. Perspectives on the cap theorem.
Computer, 45(2):30–36, 2012. (cited on Page 10)

[Gla05] Priscilla A Glasow. Fundamentals of survey research methodology.
Technical report, The MITRE Corporation, 2005. (cited on Page 1

and 2)

[Gü94] Ralf Hartmut Güting. An introduction to spatial database systems.
The VLDB Journal, 03:357–399, 1994. (cited on Page 42)

[Her13] Michael J. Hernandez. Database Design for Mere Mortals: A Hands-
on Guide to Relational Database Design, Third Edition. Addison-
Wesley Professional, 2013. (cited on Page 8, 9, and 12)

[HHLD11] Jing Han, Ee Haihong, Guan Le, and Jian Du. Survey on NoSQL
database. In Proceedings of the International Conference on Pervasive
Computing and Applications, pages 363–366. IEEE, 2011. (cited on

Page 10)

[IAB+17] Khawar Islam, Kamran Ahsan, Syed Bari, Muhammad Saeed, and
Syed Asim. Huge and real-time database systems: A comparative
study and review for SQL Server 2016, Oracle 12c MySQL 5.7 for
personal computer. Journal of Basic and Applied Sciences, 13:481–
490, 2017. (cited on Page 39)

[KES16] Hema Krishnan, M.Sudheep Elayidom, and T. Santhanakrishnan.
MongoDB – A comparison with NoSQL databases. International
Journal of Scientific and Engineering Research, 07:1035–1037, 2016.
(cited on Page 43)

Bibliography 119

[KK01] Kevin Kline and Daniel Kline. SQL in a Nutshell. O’Reilly Asso-
ciates, Inc., 2001. (cited on Page 7 and 40)

[kK15] Rohit kumar Kaliyar. Graph databases: A survey. In Proceedings
of the International Conference on Computing, Communication Au-
tomation, pages 785–790. IEEE, 2015. (cited on Page 11)

[KSS14] Veit Köppen, Gunter Saake, and Kai-Uwe Sattler. Data Warehouse
Technologien. MITP-Verlags GmbH Co. KG, 2014. (cited on Page 13)

[Let15] Jerzy Letkowski. Doing database design with MySQL. Journal of
Technology Research, 06, 2015. (cited on Page 11 and 39)

[LL10] Wei Li and Bo Lang. A tetrahedral data model for unstructured
data management. Science China Information Sciences, 53:1497–
1510, 2010. (cited on Page 18)

[MBNG15] Michael Madison, Mark Barnhill, Cassie Napier, and Joy Godin.
NoSQL database technologies. Journal of International Technology
and Information Management, 24:1–14, 2015. (cited on Page 10)

[MK19] Andreas Meier and Michael Kaufmann. SQL & NoSQL databases.
Springer, 2019. (cited on Page 1)

[MS06] Imran R. Mansuri and Sunita Sarawagi. Integrating unstructured
data into relational databases. In Proceedings of the International
Conference on Data Engineering, pages 29–29. IEEE, 2006. (cited on

Page 18)

[MS15] Nilesh Mali and SachinBojewar. A survey of ETL tools. International
Journal of Computer Techniques, 02:20–27, 2015. (cited on Page 14)

[MSAL16] Michael J. Mior, Kenneth Salem, Ashraf Aboulnaga, and Rui Liu.
NoSE: Schema design for NoSQL applications. In Proceedings of the
International Conference on Data Engineering, pages 181–192. IEEE,
2016. (cited on Page 13)

[OBALB15] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and
Samir Belfkih. Comparison and classification of NoSQL databases
for Big Data. In Proceedings of the International Conference on Big
Data, Cloud and Applications, 2015. (cited on Page 10 and 11)

[PPJ17] R. Poljak, Patrizia Poščić, and Danijela Jakšić. Comparative analysis
of the selected relational database management systems. In Proceed-
ings of the International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics, pages 1496–1500.
IEEE, 2017. (cited on Page 40)

120 Bibliography

[PWJD03] Roy P. Pargas, James C. Witte, K. Jaganathan, and J.S. Davis.
Database design for dynamic online surveys. In Proceedings of the In-
ternational Conference on Information Technology: Coding and Com-
puting, pages 665–671. IEEE, 2003. (cited on Page 17)

[See09] Marc Seeger. Key-value stores: A practical overview. Technical
report, Computer Science and Media, Stuttgart Media University,
Stuttgart, 2009. (cited on Page 10)

[SEP95] Il-Yeol Song, Mary Evans, and E. Park. A comparative analysis of
Entity-Relationship diagrams. Journal of Computer and Software En-
gineering, 03:427–459, 1995. (cited on Page 12)

[Sha15] Sugam Sharma. An extended classification and comparison of NoSQL
big data models. Computing Research Repository, abs/1509.08035,
2015. Availabe online http://arxiv.org/abs/1509.08035. (cited on

Page 11)

[SJDM15] Amlanjyoti Saikia, S. Joy, Dhondup Dolma, and R. Mary. Com-
parative performance analysis of MySQL and SQL Server relational
database management systems in windows environment. International
Journal of Advanced Research in Computer and Communication En-
gineering, 04:160–164, 2015. (cited on Page 39)

[SMP14] Biswajeet Sethi, Samaresh Mishra, and Prasant Kumar Patnaik. A
study of NoSQL database. International Journal of Engineering Re-
search Technology, 03:1131–1135, 2014. (cited on Page 10)

[SMP15] Milorad Stević, Branko Milosavljević, and Branko Perisic. Enhanc-
ing the management of unstructured data in E-learning systems us-
ing MongoDB. Program electronic library and information systems,
49:91–114, 2015. (cited on Page 19)

[Sri17] K. T. Sridhar. Modern column stores for big data processing. In
Proceedings of the International Conference on Big Data Analytics,
pages 113–125. Springer International Publishing, 2017. (cited on

Page 11)

[Vas09] Panos Vassiliadis. A survey of extract–transform–load technology.
International Journal of Data Warehousing and Mining, 05(3):1–27,
2009. (cited on Page 13)

[VM21] Igor Vershinin and A. R. Mustafina. Performance analysis of Post-
greSQL, MySQL, Microsoft SQL Server systems based on TPC-H
tests. In Proceedings of the International Russian Automation Con-
ference, pages 683–687. IEEE, 2021. (cited on Page 39)

[WAA02] Michael Widenius, David Axmark, and Kaj Arno. MySQL Reference
Manual. O’Reilly Media, Inc., 2002. (cited on Page 39)

Bibliography 121

[WP15] Rahmadi Wijaya and Bambang Pudjoatmodjo. An overview and im-
plementation of extraction-transformation-loading (ETL) process in
data warehouse (Case study: Department of agriculture). In Pro-
ceedings of the International Conference on Information and Com-
munication Technology, pages 70–74. IEEE, 2015. (cited on Page 13)

[YAOI13] Wael Yafooz, Siti Zaleha Zainal Abidin, Nasiroh Omar, and Zanariah
Idrus. Managing unstructured data in relational databases. In Pro-
ceedings of the IEEE Conference on Systems, Process Control, pages
198–203. IEEE, 2013. (cited on Page 18)

[ZBM20] Cristofer Zdepski, Tarcizio Alexandre Bini, and Simone Nasser Matos.
New perspectives for NoSQL database design: A systematic re-
view. American Academic Scientific Research Journal for Engineer-
ing, Technology, and Sciences, 68(1):50–62, 2020. (cited on Page 12)

122 Bibliography

Statement of Authorship

Thesis: Designing a Database Schema for Survey Questions

Name: Kurian Surname: John

Date of birth: 23.12.1994 Matriculation no.: 221425

I herewith assure that I wrote the present thesis independently, that the thesis
has not been partially or fully submitted as graded academic work and that I have
used no other means than the ones indicated. I have indicated all parts of the work
in which sources are used according to their wording or to their meaning.

I am aware of the fact that violations of copyright can lead to injunctive relief and
claims for damages of the author as well as a penalty by the law enforcement agency.

Place, Date Signature, Name

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	2 Background
	2.1 DZHW Surveys
	2.2 Databases
	2.2.1 SQL Databases
	2.2.1.1 Characteristics of Relational Databases
	2.2.1.2 Relational Database Model

	2.2.2 NoSQL Databases
	2.2.2.1 Characteristics of NoSQL Databases
	2.2.2.2 Classification of NoSQL Databases

	2.3 Database Design
	2.3.1 SQL Database Design
	2.3.1.1 Requirement Analysis
	2.3.1.2 Conceptual Data Modeling
	2.3.1.3 Data Normalization

	2.3.2 NoSQL Database Design

	2.4 ETL
	2.4.1 ETL Process
	2.4.1.1 Data Extraction
	2.4.1.2 Data Transformation
	2.4.1.3 Data Loading

	2.4.2 ETL Tools
	2.4.3 Talend Open Studio
	2.4.3.1 Talend Open Studio Environment
	2.4.3.2 Talend Open Studio Components

	2.5 Summary

	3 Related Work
	3.1 Unstructured Data in Relational Databases
	3.1.1 Database Schema
	3.1.2 Alternative Data Model
	3.1.3 SQL Queries

	3.2 Hybrid Approach
	3.3 Summary

	4 Requirement Analysis and Conceptual Data Model
	4.1 Analysis of the Survey
	4.2 Analysis of the Survey Questions
	4.2.1 Structure of Survey Questions
	4.2.2 Classification of Questions
	4.2.2.1 Level 0 Questions
	4.2.2.2 Level 1 Questions
	4.2.2.3 Level 1 Grouped Questions
	4.2.2.4 Level 0 Multiple Questions

	4.2.3 Classification of Answers
	4.2.3.1 Single Choice Answer Type
	4.2.3.2 Multiple Choice Answer Type
	4.2.3.3 Drop-Down Answer Type
	4.2.3.4 Free Text Answer Type
	4.2.3.5 Range/Likert-Scale Answer Type

	4.2.4 Special Cases
	4.2.4.1 Instructions
	4.2.4.2 Footnotes/Conditions
	4.2.4.3 Additional Free Texts or Drop Downs
	4.2.4.4 Grouped Answer Type Choices

	4.2.5 Variable Names

	4.3 Requirements for Database Design
	4.4 Conceptual Data Model
	4.5 Summary

	5 Selection of Databases
	5.1 Selection of SQL Database
	5.1.1 Analysis and Comparison
	5.1.1.1 Microsoft SQL Server
	5.1.1.2 MySQL
	5.1.1.3 Oracle
	5.1.1.4 PostgreSQL

	5.1.2 Selection

	5.2 NoSQL Database Selection
	5.2.1 Analysis and Comparison
	5.2.1.1 Couchbase
	5.2.1.2 CouchDB
	5.2.1.3 MongoDB

	5.2.2 Selection

	5.3 Summary

	6 Database Design
	6.1 SQL Database Design
	6.1.1 Survey
	6.1.2 Survey Module
	6.1.3 Question
	6.1.4 Survey Module Question
	6.1.5 Question Part Text
	6.1.6 Question Part Instruction
	6.1.7 Question Part
	6.1.8 Choice Text
	6.1.9 Choice Group
	6.1.10 Answer Part
	6.1.11 Answer Part Choice
	6.1.12 Additional Answer Part
	6.1.13 Additional Answer Part Choice
	6.1.14 Footnote

	6.2 NoSQL Database Design
	6.2.1 Survey Collection
	6.2.2 Question Collection
	6.2.3 Answer Part Collection
	6.2.4 Additional Answer Part Collection
	6.2.5 Footnote Collection

	6.3 Summary

	7 Loading Survey Questions into Database
	7.1 Entity Extraction
	7.2 Data Processing
	7.2.1 Data Processing for SQL Database
	7.2.2 Data Processing for MongoDB Database

	7.3 Summary

	8 Evaluation
	8.1 Evaluation Setup
	8.1.1 Hardware Specifications
	8.1.2 Software Specifications
	8.1.3 Data Set

	8.2 Data Loading Analysis
	8.3 Storage Space Analysis
	8.4 Selection Query Tests
	8.4.1 Use Case 1: Select All Questions in a Survey Module
	8.4.2 Use Case 2: Select Question by Id
	8.4.3 Use Case 3: Select Questions by Question Part Text
	8.4.4 Selection Query Tests: Summary

	8.5 Full-Text Search Analysis
	8.6 Selectivity Analysis
	8.7 Summary

	9 Conclusion and Future Work
	A Appendix
	Bibliography

