
UPTEC IT 08 010

Examensarbete 30 hp
Juni 2008

Correlation and Graphical Presentation
of Event Data from a Real-Time
System

Tobias Hedlund
Xingya Zhou

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Correlation and Graphical Presentation of Event Data
from a Real-Time System

Tobias Hedlund and Xingya Zhou

Event data from different parts of a system might be found recorded in event logs.
Often the individual logs only show a small part of the system, but by correlating
different sources into a consistent context it will be possible to gain further
information and a wider view. This would facilitate in finding source of errors or
certain behaviors within the system.

This thesis will present the correlation possibilities between event data from different
layers of the Ericsson Connectivity Packet Platform (CPP). This was done first by
developing and using a test base application for the OSE operating system through
which the event data can be recorded for the same test cases. The log files containing
the event data have been studied and results will be presented regarding format,
structure and content. For reading and storing the event data, suggestions of
interpreters and data models are also provided. Finally a prototype application will be
presented, which will provide the defined interpreters, data models and a graphical
user interface to represent the event data and event data correlations. The
programming was conducted using Java and the application is implemented as an
Eclipse Plug-in. With the help of the application the user will get a better overview
and a more intuitive way of working with the event data.

Keywords: logs, log file analysis, log file structure, event data, data modelling, event
data representation, event date correlation, event data profiling, graphical user
interface, CPP

Tryckt av: Reprocentralen ITC

Sponsor: Ericsson AB
ISSN: 1401-5749, UPTEC IT 08 010
Examinator: Anders Jansson
Ämnesgranskare: Kjell Orsborn
Handledare: Daniel Flemström

i

Preface

This is a Master Thesis conducted by Tobias Hedlund at the Department of Information
Technology of Uppsala University, and by Xingya Zhou at the Information and
Communication Technology Department of the Royal Institute of Technology. The thesis
work has been carried out at a lab in Mälardalen University for Ericsson AB. Other people
involved in this project include:

Alf Larsson, Project Manager for this project at Ericsson
Axel Jantsch, Examiner and Supervisor at the Royal Institute of Technology
Anders Jansson, Examiner at Uppsala University
Kjell Orsborn, Supervisor at Uppsala University
Daniel Flemström, Technical Supervisor at the Ericsson Lab

During this project Xingya Zhou’s work effort has been focused on areas concerning OSE
and CPP, such as the programming of our test base application and collecting log files; while
Tobias Hedlund has been working with areas close to the end user, such as the graphical user
interface and visualizations. Work that was conducted collaborative includes the research
part for background theory, related work, log file analysis, data model analysis and graphical
representation analysis. During the event data analysis and graphical representation analysis
parts, we divided the work on the different log file types. Xingya Zhou was responsible for
the Execution Address Profiler and TSL log file types, and also TSL related elements in the
Trace and Error log file type, while Tobias Hedlund worked with the Kernel Trace and Trace
and Error Log files; the analysis parts concerning the CPU Load log file type was conducted
by both of us. Even though many of the parts were divided between us the work was still
conducted in a highly collaborative manner. Details about each of our contributions can be
seen in Appendix A at the end of the report.

The terminology and abbreviations used throughout this thesis report is explained in the
Terminology chapter.

ii

iii

Acknowledgements

We want to thank all the people that were involved in this project. Special thanks goes to
Alf, our project manager at Ericsson AB in Älvsjö, for sharing his valuable time, providing
us with necessary tools and pushing the staff at Ericsson to helping out with various
necessities of the project. Daniel Flemström should also have special thanks for providing us
with contacts and pointing us at the right directions.

People that was not directly involved in the project but still deserves thanks are: Mikael
Krekola that assisted Daniel Flemström in helping us with the CPP related issues at the
Ericsson lab; Ravi Kumar Akkisetty for implementing the Rose Real Time part of the Test
Base Application and for being very helpful if we ever had any questions about Rose Real
Time and the TSL log file; and finally Magnus Larsson for giving us an informative seminar
in the Rose Real Time background theory for this project.

Tobias Hedlund, Xingya Zhou

iv

v

Table of Contents

1 Introduction ... 1

1.1 Problem Overview ... 1
1.2 Purpose and Criteria .. 1

1.3 Delimitation ... 1

1.4 Method Description ... 1
1.5 Contributions ... 2

2 Background.. 3
2.1 Embedded and Real-Time Systems ... 3

2.1.1 OSE Real-Time Operating System .. 3
2.2 Event Data and Event Data Correlation ... 3

2.2.1 Event Data .. 3
2.2.2 Event Data Correlation .. 4

2.3 Connectivity Packet Platform .. 4
2.3.1 CPP Software Structure .. 5
2.3.2 CPP Hardware Structure .. 5
2.3.3 CPP Execution Platform ... 6

2.4 Tools Used To Collect Logs .. 6
2.4.1 Remote Debug Support ... 6
2.4.2 Trace & Error Package .. 7
2.4.3 Profiling .. 7

2.5 Rational Tools ... 8

2.5.1 Rational Rose Real Time ... 8
2.5.2 Rational ClearCase... 8

2.6 Eclipse and Eclipse Plug-ins .. 9
2.6.1 Eclipse Workbench ... 9
2.6.2 Standard Widget Toolkit ... 9
2.6.3 JFace .. 9

3 Related Work... 10
3.1 Existing Tools and Approaches for Correlation of Event Data ... 10

3.1.1 RuleCore CEP .. 10
3.1.2 Logsurfer .. 10
3.1.3 SEC ... 10
3.1.4 Event Log Analyzer ... 10
3.1.5 Eclipse TPTP Tracing and Profiling Tools ... 11

3.1.6 Conclusions... 11
3.2 Common Base Event ... 11

4 Event Data Analysis .. 12
4.1 The Assigned Set of Log Files... 12

4.1.1 The Trace and Error Log .. 13
4.1.2 The Kernel Trace Log ... 13
4.1.3 The CPU Load Log ... 13
4.1.4 The TSL Log .. 13
4.1.5 The Execution Address Profiler Log ... 14

4.2 Log Collection via Test Base Application ... 14
4.2.1 Test Base Application ... 14
4.2.2 Log Collection .. 16

4.3 Correlation Analysis .. 16

4.3.1 Common Event Data ... 17
4.3.2 Correlation Possibilities ... 17
4.3.3 Correlation Accuracy ... 24

4.4 Graphical Representation .. 25
4.4.1 Table Representation .. 25
4.4.2 Representing Log Information Summary .. 25

4.4.3 Time Chart Representation ... 26
4.4.4 Node Graph Representation ... 26

vi

4.4.5 Statistical Representation ... 27
4.4.6 Detailed TSL Specific Representation... 27

5 Implementation of the Correlation Tool ... 32
5.1 Interpreters ... 32

5.2 Data Model .. 32

5.2.1 Specific vs. Generic Data Model .. 33
5.2.2 The Generic Data Model .. 33
5.2.3 The Specific Data Models ... 34

5.3 Graphical User Interface .. 35
5.3.1 Approach .. 35
5.3.2 User Analysis .. 36
5.3.3 Implemented Functionality ... 36

5.4 Software Architecture .. 43
5.4.1 Views ... 43
5.4.2 Actions .. 43
5.4.3 Dialogs .. 44
5.4.4 Editors .. 44
5.4.5 Engine ... 44
5.4.6 Parsers .. 44

6 Comparison with the TPTP Tracing and Profiling Project .. 45

6.1 Using the TPTP Tracing and Profiling Project .. 45
6.2 Advantages using the TPTP Tracing and Profiling Project ... 45
6.3 Advantages using the Correlation Tool ... 45

7 Future Work .. 46
7.1 Correlation Analysis .. 46

7.2 Implementation .. 46

7.2.1 Extension of the Correlation Tool ... 46
7.3 Log File Evaluation and Suggestions .. 48

7.3.1 Log File Structures ... 48
7.3.2 Log File Formats .. 49
7.3.3 Log File Content ... 50

8 Concluding Discussion .. 52
8.1 Summary of the Results ... 52
8.2 Complications .. 52

8.3 Alternative solutions .. 53

8.3.1 Pre-processing of Event Data ... 53
8.3.2 Data Model vs. Data Base .. 53

9 References .. 54

10 Terminology ... 56
10.1 Abbreviations .. 56

10.2 Definitions ... 56

Appendix A: Individual Thesis Contributions .. 58

Appendix B: Data Models.. 59

Appendix C: The Correlation Tool ... 62

Appendix D: Log Files ... 66

vii

Index of Figures

Figure 1: CPP System Areas 5

Figure 2: Connect to a CPP node 5

Figure 3: Processor hierarchy in a CPP node 6

Figure 4: Trace with RDS and Host environment 7

Figure 5: The process that logs an event using Trace Support 7
Figure 6: Relation between log files and system 12

Figure 7: Test Base Application design, OSE to OSE communication 15
Figure 8: Test Base Application design, OSE to UML communication 16
Figure 9: Common event data between the log files 17

Figure 10: Common event data with the TSL log file 17

Figure 11: Load Module interactions 19

Figure 12: Process / Controller interactions 19

Figure 13: Actor interactions 19

Figure 14: Capsule states and transitions 20

Figure 15: TSL Event Type 4 example output 21

Figure 16: Trace and Error TRACE5 example output 21

Figure 17: TSL Log Event Type 1 example printout 22

Figure 18: T&E Log STATE CHANGE and REC SIG example printout 22
Figure 19: TSL Event Type 1 (transiton cost), example output 24
Figure 20: EAP log, transition example output 24

Figure 21: Table representation of Kernel Trace entries 25
Figure 22: Table representation of Kernel Trace processes 25
Figure 23: Time chart view representing events in relation to time 26
Figure 24: Node graph representing Kernel Trace signal propagation 27
Figure 25: Two different TSL log browser view structures 28
Figure 26: Example table view of Event Type 1 and 3 29

Figure 27: Example table view of Event Type 5, 6 and 7 29
Figure 28: Example table view of Event Type 10 and 11 29
Figure 29: Example table view of Event Type 4 29

Figure 30: TSL node graph of signal propagation tree 29
Figure 31: TSL event data represented on a time line with suggested filters 30

Figure 32: Event data correlation via time lines 31

Figure 33: Extending the application with a new log file type 33
Figure 34: The generic data model 34

Figure 35: The TSL specific data model 35

Figure 36: The Navigation View 37

Figure 37: The Table Editor showing the Kernel Trace event data entries 38

Figure 38: The Table Editor showing the Kernel Trace event data processes 38

Figure 39: The Time Chart Editor together with the Table Editor 39
Figure 40: The Time Chart Editor showing a line chart diagram 40
Figure 41: The Node Editor 41

Figure 42: Interactions between event data representations in the GUI 41
Figure 43: Various GUI functionalities 42

Figure 44: Software architecture of the Correlation Tool 43
Figure 45: Kernel Trace, Trace and Error and CPU Load data models 59

Figure 46: The Common Base Event class hierarchy 61

Figure 47: YAML log structure 76

Figure 48: Log file structure showing TSL Block 2, Event Type 1 76
Figure 49: Text log file structure showing TSL Block 2, Event Type 1 76

viii

Index of Tables

Table 1: Trace and Error trace groups .. 13
Table 2: TSL Block 1 content .. 14
Table 3: TSL Block 2 content .. 14
Table 4: Log file criteria... 48

Table 5: Log file formats, advantages and disadvantages .. 49
Table 6: Individual thesis contributions ... 58
Table 7: Decision points, specific vs. generic data model ... 60
Table 8: Data that can be extracted from the KTR, T&E, CPU Load and EAP logs 71

Table 9: Data that can be extracted from the TSL Log .. 71
Table 10: Common event data between the TSL and other log files 72

Chapter 1: Introduction

1

1 Introduction

1.1 Problem Overview

Ericsson AB frequently makes use of the Connectivity Packet Platform (CPP) System. This
is an event driven complex real time system for packet switching where event data from
different parts of the system is recorded into logs. These logs are often designed for
individual purposes and they record only the required system information which is a small
part of the overall system. To examine a wider scope of system information, log files with
event data from different parts of the system could be studied. By also correlating the event
data further information could be gained. Today correlation possibilities have not yet been
analyzed and it is not apparent what further information could be gained by doing this.
Further, the log files are studied in a static manner through command line printouts which
can be a tedious job when analyzing and comparing the event data. They are also not
consistent which implies that relationships between captured event data can be hard to find.

1.2 Purpose and Criteria

The purpose of this project is to correlate event data from different parts of the system and
represent these in a consistent context with the help of a graphical user interface.
Correlations between the event data would facilitate in finding source of errors or certain
behaviors within the system; while the graphical user interface facilitates in getting a better
overview of the system and a more intuitive way of working with the event data. The
criterion’s given by Ericsson AB are that data model and interpreters are defined for the log
files, and that the interface implementation is to be conducted as an Eclipse Plug-in.

1.3 Delimitation

We are aware of the wide spectrum of this thesis and instead of doing any deep studying in
any specific parts we have focused on the entire process to give an overview and a proposal
that Ericsson can use for a future implementation. The project will focus on the correlation
analysis and graphical representation as the main results, while the graphical user interface
will be used as proof of concept to earlier results and as a prototype application to
demonstrate the user interactions with the event data and correlations.

This project will focus on retrospective event analysis only and analysis of system
monitoring will not be considered. There is also no input of system specific processes or
behaviours to this project, why the correlation analysis is conducted on an observer level.
This means that event data attributes and relations will be analysed, but not the system
specific behaviour or rules. The correlation analysis will be conducted on event data from the
same board on the CPP node. Correlation of event data from different boards will follow the
same concept in many cases but we will not do any analysis in this area.

Due to time restrictions of the thesis an infrastructure for storing configurations and results
will not be provided.

1.4 Method Description

In the beginning of the project a crash course was provided, where we got insight in how the
CPP system is built up and how the OSE system works. When we had general knowledge of
the system the proceeding method was mainly a bottom-up approacha. We started from the
low layer of analyzing the logs and what data that can be extracted and correlated. When the

a Bottom-up parsing is a strategy for analyzing unknown data relationships that attempts to identify
the most fundamental units first, and then to infer higher-order structures from them

Chapter 1: Introduction

2

event data was analyzed and extracted the data model was created for storing this
information. Further analysis was conducted on how event data is best represented and how
the data model should be structured and implemented. To be able to put the event data into
the data model the logs first need to be interpreted and parsed. Different ways of doing this
was considered and finally implemented. After these sections analysis of how the event data
and correlations can be represented graphically was conducted followed by analysis and
implementation of the application and graphical user interface. In latter parts of this project
this implementation will be referred to as the Correlation Tool.

Concurrent with earlier mentioned steps a Test Base Application was created to better
understand the relations between the log files and to be used as analysis ground when
representing the information in the Correlation Tool.

For background and research part of the thesis some of the information was gathered from
meetings at Ericsson AB, internal documentation, or from research articles and books. We
have used sources that we consider to be reliable throughout the project and we have not
made use of internet resources other than for concept definitions and product specific
information.

1.5 Contributions

The main contributions of this thesis are the following:

• Analysis results of how the defined set of logs can be profiled and correlated
• Analysis results of how the event data can be represented graphically
• Suggestion of data model for the event data that is analyzed during this thesis
• A prototype plug-in for correlation of event data that demonstrates different ways of

representing the event data correlation.
• Suggestions of improvement for the log file formats

Chapter 2: Theoretical Background

3

2 Background

2.1 Embedded and Real-Time Systems

An embedded system is a special purpose computer that is built into a larger device [1].
Embedded systems often reside in machines that are expected to run continuously for years
without errors and in some cases recover themselves if an error occurs. Many embedded
systems also have real-time constraints that must be met, for reasons such as timing
requirements, safety, usability and fault-tolerance [2].

A real-time system should be able to manage time-dependent applications. The validity of a
real time embedded system is affected by two main issues: one is the results that it produces
and the other is the time when the results are generated.

Today’s real-time embedded systems are becoming more and more complex, and more
requirements are met such as scalability across multiple CPUs, multiple communicating in
multi-core and distributed environments. A real-time operating system, which must be able
to schedule tasks at or after certain specified time, is designed for supporting those complex
real-time applications.

A real-time operating system (RTOS) has three types of main duties: resource management,
time management, and inter process communication [1]. There are many RTOS available at
the market that currently support complex real-time applications, such as OSE RTOS,
Symbian OS, ThreadX (Express Logic's advanced RTOS) [3], LynxOS RTOS [4], etc.

In this project, OSE RTOS is used as the working environment. More information about this
operating system follows in the next section.

2.1.1 OSE Real-Time Operating System

OSE is a powerful platform produced by Enea for the design of real-time embedded systems.
It is deployed in approximately half of the worlds 3G mobile phones and base stations [5].
The main features of OSE platform are reliability, scalability and simplicity of direct
message passing system [5].

Enea has been making great efforts to support reliable system deployment and maintenance.
Currently, OSE provides several ways to ensure reliability such as multi-level facilities for
error detection, built-in monitoring of critical tasks, fault tolerant system, etc [5].

Message communications between different processes plays a significant role in real-time
embedded system designs. OSE uses a memory pool to allocate for message buffers and has
a direct message-passing model which provides fast, asynchronous inter process
communication. As a result, many program errors that may occur during inter process
communications could be avoided.

2.2 Event Data and Event Data Correlation

2.2.1 Event Data

The word event is being used more and more frequently in many different areas of computer
systems. In a very general sense, an event means an action or occurrence that could be
detected by a program. For example, events can be user actions, such as a mouse clicking in
a graphical user interface, a key pressing to the keyboard or system occurrence such as
hardware of software failures.

Chapter 2: Theoretical Background

4

Events play a significant role in system designs and implementations. Many large systems
are designed according to event-based architectures. Some complex applications such as
real-time embedded systems or distributed systems are designed to respond to events, these
systems are called event-driven systems [6]. In this kind of system, an event could be some
message, specified signal, token, value or marker that can be identified by the ongoing
processes.

Events are very useful when monitoring complex systems, such as telecommunication
networks, air traffic and stock markets [7]. Some events are instantaneous, most occur over
an interval of time [8]. In order to better understand the behavior of a system, much effort
has been made to monitor and trace these events. When a system encounters an event, it
could emit an event data (or event message) that describes the event [9]. These event data are
stored to a local or remote event log. For example, when a disk of a server becomes full, the
server could generate a timestamped “Disk full” message for appending to a local log file
or for sending over the network as an SNMPa trap. In most cases event data are
appended to event logs in real-time, so event logs are an excellent source of information for
monitoring the system [9].

Event data are also essential to better understand the activities of complex systems and to
analyze problems, particularly in the case of applications with little user interaction (such as
server or network applications). However, in most cases, the logs are esoteric or too verbose
and therefore hard to understand; they need to be subjected to log analysis and correlation in
order to make sense of them.

2.2.2 Event Data Correlation

As a baseline, correlation is defined as the drawing of a causal, complementary, parallel or
reciprocal relationship between different events based on specific criteria [10]. Generally,
correlations could be interpreted as establishing or finding relationships between different
entities. When analyzing and monitoring a complex system such as telecommunication
networks, air traffic or stock markets, designers always generate some logs to help them get
a better understanding of the system behaviours. Designers working in different areas of a
system usually design and examine their own logs. These logs are sometimes not well
organized, information might overlap and complement might exist among them. Thus the
event data from different sources need to be correlated so that useless information can be
filtered out, important information can be cross-referenced into a consistent context, and new
information could be generated.

2.3 Connectivity Packet Platform

Ericsson Connectivity Packet Platform (CPP) [11] is a platform that is designed for
accessing and transporting user traffics in mobile and fixed networks. It was first designed
for Asynchronous Transfer Mode (ATM) and Time Division Multiplex (TDM) transport, but
since then more and more support has been added such as multimedia services for the third
generation of mobile telephony and Internet Protocol (IP) transport. The CPP platform is
also very flexible and can be configured with different types of circuit boards according to
different design requirements. Based on this platform, it is possible to develop different high
availability applications such as ATM and IP based nodes, Radio Base Station (RBS), Media
Gateway (MGW), and Radio Network Controller (RNC) of the Universal Mobile Telephony
System (UMTS) network.

A CPP node contains two parts, an application part and a platform part [11]. The application
part handles the software and hardware that is application specific. The platform part handles

a Simple Network Management Protocol

Chapter 2: Theoretical Background

5

common functions such as internal communication, supervision, synchronization and
processor structure. This project has a focus on the platform.

2.3.1 CPP Software Structure

The CPP platform consists of five system areas as shown in the figure below. The areas are:
Development and Trouble shooting Environment (DTE), the Core, Internet Protocol and
Connectivity (IP&C), Signalling and Operation and Maintenance (O&M).

Figure 1: CPP System Areas

DTE is software development environment for both application software and CPP software.
The tools can be used for debugging and building load modules. A load module consists of
software that that can be executed a board.

2.3.2 CPP Hardware Structure

A CPP node can vary from the smallest node consisting of a single subrack to a large node
consisting of several subracks. A subrack which consists of 28 slots is the smallest building
unit. It can be physically configured and updated with different types of circuit boards such as
general purpose board, switch core board, media stream processor board and special purpose
processor board. The CPP node that was used in this project consists of one subrack and 11
boards. There are two ways to connect to it, either via terminal server or via TCP/IP. The
boards and connection possibilities are shown in Figure 2.

Figure 2: Connect to a CPP node

Terminal Server

1 4 5 6 12 10 11 13 19 26 28

TCP/IP

PC

Application

(RBS, RNC, MGW…)

g

DTE

Core

IP&C

Signaling

O&M

API

Platform

API – Application Programming Interfaces
DTE – Development and Troubleshooting Environment

IP&C – Internet Protocol and Connectivity

O&M – Operation and Maintenance

API API API API

Chapter 2: Theoretical Background

6

2.3.3 CPP Execution Platform

The CPP system execution platform consists of the hardware and system software that
applications need to execute correctly in a multi processor system. CPP offers applications
an execution platform comprised of the following:
� A number of processors and communication between them
� A distributed real-time OS, supporting robust application design
� Operation and Maintenance (O&M) support for applications
� A fault-tolerant real-time database
� A robust fault-tolerant file system
� Java Virtual Machine (for management applications)
� A space switch

Different types of boards contain different processors. The processors in the execution
platform have a hierarchical order as shown in Figure 3. The processors in the Main
Processor Cluster have the highest rank. These processors are referred to as Main Processors
(MPs) and are interconnected in a full mesh. The MPC is the center in a star topology with
Board Processors (BPs) at the end of the rays. The execution platform can be extended
beyond the BP domain by connecting one or more subordinate Special purpose Processor
(SP) or Media Stream Processor (MSP) to BPs [11].

Figure 3: Processor hierarchy in a CPP node

2.4 Tools Used To Collect Logs

2.4.1 Remote Debug Support

Remote Debug Support (RDS) is a system level debugger for the CPP node. It is used for
tracing OSE specific events such as signals between processes and the creation and killing of
OSE processes. The command interface of the debugger is the OSE shell and the users
should enable the trace actions themselves from the command line interface [12]. The tracing
results will be stored in a log file called the Kernel Trace log which is kept in the OS kernel
trace buffer. Signal target connection is using the default from Autodds. Figure 4 below
shows the procedure of signal tracing with RDS and host environment.

BP

MSP

MSP

 BP SP

MP

MP

MP

BP

BP

BP

BP

BP

BP

SPB

MSB

Chapter 2: Theoretical Background

7

Figure 4: Trace with RDS and Host environment

2.4.2 Trace & Error Package

All software development meets kinds of errors or faults during implementation. Trace &
Error package is designed to detect and handle errors of programs running on a CPP node
[13]. This tool could be used as a complement to other debug support tools. There are two
functionalities supported in the T&E package: the tracing functionality and the error
handling functionality. In this project, only the tracing functionality is used. With the help of
this functionality the system and functional behaviours can be traced and reported at
software development. As shown in Figure 5 below, events to trace are found within the
process code and traced by means of “Trace Macros”. A macro is responsible for logging of
one event. Most macros allow a message to be added to the log and the message is given as
text string.

Figure 5: The process that logs an event using Trace Support

2.4.3 Profiling

Profiling is a system function used to find out bottlenecks in software programs running on a
CPP node [14]. There are two areas of profiling functionality: Sample Based Execution
Address Profiler and Capsule based Profiler. Both of them have the same purpose as to find
out bottlenecks on a CPP node, but the scope between them is a bit different. In the
following sections, an overview of the two different profiling tools is presented.

Trace Macros Process

T&E log
In RAM

Log event

Log event

HOST RDS

Signal symbols

Basic OS

 Autodds

RDS

Basic OS

 Autodds

OSE kernel

OSE kernel

ose_ldm

Kernel
Trace
Log

ose_ldm

Kernel
Trace
Log

Chapter 2: Theoretical Background

8

2.4.3.1 Capsule Based Profiler
Capsule based profiler (CBP) is a profiling tool for Unified Modeling Language (UML)
applications running in a CPP node. It could be reached both from the command line
interface and from the application UML model. CBP currently collects ten different event
types such as total OSE signal dispatch count, transition cost and message latency. The entry
keys of these events are based on either capsule classes or actor instances. An event type is a
measurement type which is triggered by a specific UML event such as message received,
message sent or state change [14]. This tool generates the Target Service Library (TSL) log
file that is one of the log files which was used in this project.

2.4.3.2 Execution Address Profiler
The Execution Address Profiler is a sample-based tool that is used to measures the CPU
usage of different user defined memory areas or different C/C++ functions. This is done by
interrupting the CPU with a fixed periodic sample frequency and taking samples of the
current execution address [15]. This tool will extract memory regions for C/C++ functions
with the help of a configuration generator called execprofpp and perform execution address
profiling on the CPP node with the help of the execprof profiling tool.

2.5 Rational Tools

There are two different Rational tools that are important to know about for this project. One
is Rational Rose Real Time (RoseRT) and the other is Rational ClearCase. These are
developed by the Rational Software division of IBM and they will be briefly described in the
following sections.

2.5.1 Rational Rose Real Time

Rational Rose Real Time (RoseRT) is software development environment which is designed
to meet the demands of real time software. Developers could use RoseRT to create models of
the software system based on the UML constructors. It is necessary to introduce some main
concepts here which will be mentioned frequently throughout the report.

The Capsule is one of the most important concepts of RoseRT. It provides coordinate
behaviour in the system and encapsulates the flow of events. Capsules also give transparent
concurrency, easy thread assignment, state diagram generation and message passing. It could
communicate with other capsules via ports and protocols. A state transition is executed by a
capsule when a specified trigger signal arrives. Each capsule can have hundreds of states and
transitions.

Another important concept in RoseRT is the actor. These are the instances of capsule classes
when the program is running on the target. One capsule can have multiple actors executing at
the same time.

A third concept that is important to know about is the threads (also called controller). All
capsules should be incarnated on logical threads that are mapped to a physical thread of the
memory area in the target.

2.5.2 Rational ClearCase

Rational ClearCase is a software tool for revision control (configuration management etc) of
source code and other software development assets. ClearCase forms the base of version
control for many large and medium sized businesses and can handle projects with hundreds
or thousands of developers [16].

ClearCase can run on a number of platforms including Linux, Solaris and Windows. It can
handle large binary files, large numbers of files, and large repository sizes. It handles

Chapter 2: Theoretical Background

9

branching, labeling, and versioning of directories [16]. ClearCase has some unique features
such as VOB (Versioned Object Base), Configuration Record, Build Avoidance,
Unix/Windows Interoperability, and Integration with other products.

2.6 Eclipse and Eclipse Plug-ins

Eclipse [17] is an open-source development framework that provides a common user
interface and workbench model for working with tools. The platform is built in layers of
plug-ins, each one defining extensions to the extension points of lower-level plug-ins [18].
This extension model allows plug-ins to be developed with a variety of functions to the basic
tooling platform and provides a nice integration with already defined tools. By working on
an already defined platform developers can focus on the specific task instead of worrying
about integration issues such as different runtime environments.

To further understand the required implementation of an Eclipse plug-in based user interface,
a short overview of the Eclipse workbench, the Standard Widget Toolkit (SWT) and the
JFace toolkit is presented below.

2.6.1 Eclipse Workbench

From a high level perspective the workbench is a window through which all of the visual
elements of an application are organized. This is the same window that is used for the
Eclipse development environment. The visual parts fall into the two major categories views
and editors. Views allows the user to navigate, view, or provide further information about
objects that the user is working with in the workbench, while Editors allows the user to
browse a document or input-object. Editors also allow the user to edit and save objects, while
the views can save their states for the next time they are opened [18].

From a lower level perspective the workbench is a framework that is supplying additional
toolkits for building the user interface. This framework also defines extension points for
plug-ins to contribute user interface function to the platform. Many of these extension points
are implemented using the Standard Widget Toolkit (SWT) and the JFace framework [18].

2.6.2 Standard Widget Toolkit

The Standard Widget Toolkit (SWT), is a set of Java class libraries created to provide
platform native user interfaces, and this is the graphical tool kit used for Eclipse graphics.
The toolkit immediately reflects changes in the underlying Operating System GUI look and
feel while maintaining a consistent programming model on all platforms. It substitutes the
Java AWTa and the Swing toolkit when implementing widgets, layouts and events [18].

2.6.3 JFace

JFace is a user interface (UI) toolkit that provides helper classes for developing UI features
that can be tedious to implement. It is designed to provide common application UI functions
on top of the SWT library and provides an APIb to build MVCc-based user interfaces with
the help of components referred to as viewers. Basic functionalities include populating,
sorting, filtering and updating widgets. JFace helps the developer to focus on the
implementation of the specific plug-in function, rather than focusing on the underlying
widget system or solving commonly occurring UI application problems [18].

a Abstract Window Toolkit
b Application Programming Interface
c Model-View-Controller

Chapter 3: Related Work

10

3 Related Work

3.1 Existing Tools and Approaches for Correlation of Event Data

The event logs play important roles both in analysis in real time and analysis at a later stage.
There is lots of research taking place in both of these two areas with both commercial and
open source projects in development. This thesis will only focus on retrospective logs
analysis and correlation, but it is still related to the real time, which is why both kinds are
researched and mentioned in this section.

For the real time analysis the event logs are excellent for monitoring systems, since the event
messages in the logs usually are recorded in real time. For retrospective analysis of the logs
collected from a running system, it is extremely helpful to better understand and analysis the
behaviour of the system. As a result, the designers could find out the weakness of a system
and make decisions on how to improve it.

There are some tools already available for event logs correlation and monitoring in the
market. Some of them are open sources and some of them are commercial products that can
be very expensive. In the following part, a few interesting tools are introduced. These are
Rule Core Complex Event Processing (CEP) Server [19], Logsurfer [20], Simple Event
Correlator (SEC) [21], ManageEngine Event Log Analyzer [22], and TPTP Trace and
Profiling Tools [23].

3.1.1 RuleCore CEP

The ruleCore CEP Server is the solution to the problem of how to know when a critical
situation has happened so that users can start a process to manage it. This is done by
providing real-time behaviour tracking and tracing of any events that are critical to the
system. It uses the Simple Rule-based Event Correlation approach for performance
management. Rule-base Event Correlation means to specify some rules such as if-else
statements for event data monitoring and correlation. For example, in ruleCore CEP Server,
some simple rules are specified like accepting input events that include only name-value
pairs and taking events from a specified place.

3.1.2 Logsurfer

Logsurfer is one of the most useful tools for monitoring system logs in real time and
reporting on the occurrence of events. It also uses rule-based approach as the ruleCore CEP
Server does. Its rules simply provide instructions on what to do when it detects a particular
line in the incoming stream of log messages.

3.1.3 SEC

SEC is an open source platform independent tool for rule-based event correlation. It was
created to be a lightweight tool that can be used for a wide variety of event correlation tasks.
The SEC configuration is stored in text files as rules, each rule specifying an event matching
condition, an action list, and optionally a Boolean expression whose truth value decides
whether the rule can be applied at a given moment. SEC has been successfully applied in
various domains like network management, system monitoring, data security, intrusion
detection, log file monitoring and analysis, etc.

3.1.4 Event Log Analyzer

Event Log Analyzer is a web based, real time, event log and application log monitoring and
management tool. It collects, analyzes, reports, and archives Event Logs from different
places such distributed windows hosts, syslog from devices and application logs from web

Chapter 3: Related Work

11

servers and so on. It helps system administrators to troubleshoot performance problems on
hosts, select applications, and the network.

3.1.5 Eclipse TPTP Tracing and Profiling Tools

The TPTPa Tracing and Profiling Project is in contrast with the previous mentioned tools
aimed for retrospective analysis of log files. It is a sub project for the Eclipse TPTP Project,
and it addresses the tracing and profiling phase of the application lifecycle [23]. It also
provides a framework for analyzing and correlation log files, has extension points from
where log parsers can be created, and already defined views for analyzing and correlating
event data. For representing the event data it makes use of the Common Base Event standard
that is explained further in the Common Base Event section.

3.1.6 Conclusions

Most of the available tools are developed for real time monitoring such as Rule Core
Complex Event Processing (CEP) Server [19], Logsurfer [20], Simple Event Correlator
(SEC) [21] and ManageEngine EventLog Analyzer [22] which are described above. All of
them consider a rule based approach for event data correlation in real time and are for this
reason less interesting for the context of this project. In addition, ManageEngine Event Log
Analyzer is a commercial product, it costs money; and some special tools like HP openView
were designed for one particular network management platform only. Among these existing
tools, TPTP is the most interesting one. This framework was however found at the end of the
thesis project and because of this it was never used in the implementation. Instead it will be
compared with our own tools in the Comparison with the TPTP Tracing and Profiling
Project chapter and it will also be mentioned in the Future Work section.

3.2 Common Base Event

The Common Base Event allows the use of a common format for any log records from any
supported proprietary log files [18]. The proposal comes from IBM and the goal is to
standardize the format of events to assist in designing robust, manageable and deterministic
systems [24].

Entries stored in the Common Base Event are defined by properties that are collectively
referred to as the 3-tuple, consisting of the following elements:

1. Id of component that reports the situation
2. Id of component that is affected by the situation (which may be the same as

the component that is reporting the situation)
3. The situation itself

The data collected for the above 3-tuple are properties such as the reporter component,
situation, creation time, severity, property, message, extended data element, and sequence
number. For more complex logs the extended data element is used for including product-
specific attributes which allows user-supplied extensions for any attributes not defined in the
Common Base Event. The class hierarchy diagram with further structural details can be seen
in appendix section B.3

Using the Common Base Event doesn’t mean that the application generating the log files
needs to be re-written, instead parsers can be used to translate it into the new standard when
accessed. There are already defined tools in the TPTP framework (see Eclipse TPTP Tracing
and Profiling Tools, section 3.1.5) to facilitate in such a translation.

a Test and Performance Tools Platform

Chapter 4: Event Data Analysis

12

4 Event Data Analysis

This chapter will present the event data analysis part of the project. The sections included in
this chapter will present the log files that contain the event data; the Test Base Application
that was developed to generate the different log files; correlation analysis of the event data;
and finally graphical representation for event data and correlations.

4.1 The Assigned Set of Log Files

The logs that are considered during this project are the following:

• Target Service Library (TSL) log
• Execution Address Profiler (EAP) log
• Trace and Error (T&E) log
• Kernel Trace (KTR) log
• CPU Load log

These log files represent information in different parts of the CPP hardware and software
layers. The figure below shows a simplified diagram of the different system layers in relation
to the analyzed log files.

Figure 6: Relation between log files and system

The log files that are grouped as Event Logs are recording events taking place in the sub
system (OSE + CPP), while the log files grouped as Profiling Logs are tracing and recording
information from higher level applications. The CPU Load Log is a global log, showing the
overall status of the system.

The following sections will give a short overview of the different assigned log files. Example
outputs from the same log files are shown in appendix section D.1, and a table of data that
can be extracted from these log files can be found in appendix section D.2.

The log files have also been analyzed considering the structure and syntax from a parsing
and correlation perspective, but since this part is not directly related to the focus of the
project, this analysis with results will instead be mentioned in the Future Work section of
this thesis.

Profiling LogsEvent Logs

Trace and Error Log

Kernel Trace Log

Hardware PMC

Sub System (OSE+CPP)

Java Application UML Application
C / C++
Application

JVM TSL
Runtime C/C++
libraries, OSE

CPU Load Log

TSL Event Log

Execution Address
Profiler Log

Chapter 4: Event Data Analysis

13

4.1.1 The Trace and Error Log

The Trace and Error (T&E) log shows a history of recorded trace and error events on the
system. The events are recoded with the use of macros, and it is frequently used by designers
for troubleshooting. The user can decide to print information in messages that belongs to
predefined categories referred to as trace groups. Depending on the trace group the message
can contain either a simple user-defined string or a formatted string that provides further
attribute information. The group and message will be recorded together with a time stamp,
load module and source component of the event. Each of the trace groups can individually be
switched on or off. Some of the groups that are important to know about later in the report
are explained further in the table below.

Trace Group Group information
STATE CHANGE Used to print the state change information of capsules in a RoseRT

application
SEND SIG Contains information of the signals sent to a RoseRT capsule
REC SIG Contains information of the signals received by a RoseRT capsule
TRACE5 Part of the TSL profiling and also called Event Type 9. This group

contains actor specific information
TRACE7 Trace events related to OSE signals for RoseRT applications.

Table 1: Trace and Error trace groups

4.1.2 The Kernel Trace Log

The Kernel Trace (KTR) Log records process specific OSE events that occur on the node.
This includes events such as sent signals, received signals, created processes, killed
processes and error events. The extended version of this log file also contains the binary that
is sent with a signal.

4.1.3 The CPU Load Log

CPU Load log stores the CPU utilization for different measuring objects such as process
type, process name or priority. There are 4 types of CPU-load logs available according to
different measuring objects or measuring ways. The most commonly used one is the CPU
peak load log which stores the information of the top hundred CPU-load measurements. It is
measured by the system itself once the system starts running. CPU utilization could also be
measured according to user specified measuring objects. This could be done from the
command line.

4.1.4 The TSL Log

The TSL log collects ten different UML based event types currently. There are two blocks in
TSL log: Block 1 and Block 2. Block 1 contains Event Type 4, 10 and 11 for all started
controllers. Block 2 contains Event Type 1, 3, 5, 6, 7, 8, 10 and 11 for each started
controller. To be noticed, Event Type 9 is recorded in T&E log so it is introduced in The
Trace and Error Log section. The TSL Log content in Table 2 and Table 3 gives an
overview of the TSL log structure. Some example output of different event types is shown in
appendix D.1.4.

Chapter 4: Event Data Analysis

14

Event Type Details
Event Type 10 Internal queue peak size for different priorities

External queue peak size for different priorities
Defer queue peak size

Event Type 11 Total number of received OSE signals
Total number of received UML process external messages
Total number of received UML process internal messages

Event Type 4 Signal propagation tree
Table 2: TSL Block 1 content

Event Type Details
Event Type 1 Transition Cost

Event Type 3 UML Message Latency

Event Type 5 UML Message Receive Counter

Event Type 6 UML Send Counter
UML Invoke Counter

Event Type 7 State Change Counter

Event Type 8 RTMutex contention count

Event Type 10 Internal queue peak size for different priorities
External queue peak size for different priorities
Defer queue peak size

Event Type 11 Message Receive Counter
Table 3: TSL Block 2 content

4.1.5 The Execution Address Profiler Log

The Execution Address Profiler (EAP) log collects the CPU utilization per predefined
memory area or per C/C++ function. There are two types of execution address profiling logs.
One is generated by execution address profiling configuration tool which uses an .elf that is
generated when building a product as input and generates a .reg file as output. The other is
generated from the tool execprof (see Tools Used To Collect Logs section) which uses the
.reg file as an input when the measured object is running on the target. Example log file
output can be seen in appendix section D.1.5.

4.2 Log Collection via Test Base Application

Before analyzing the event data correlation possibilities the log files first need to be
generated to contain information of the same scenario. This was done by developing and
using two test base applications that will be described throughout this section.

4.2.1 Test Base Application

The applications were designed based on studies of OSE, Rational RoseRT and a simple
pingpong application which has two simple processes that communicates with each other.
Documents that were studied include internal documentations of Ericsson such as Design
Rules for Trace and Error Users [13], Execution Address Profiler User Guide [15], Users
Guide for RoseRT Target Service Libraries [25].

The two test base applications that we used were developed using OSE to OSE
communication design and OSE to UML communication design respectively. The OSE
parts of these test base applications were developed with the help of OSE programming,
while the UML part is programmed with RoseRT.

Chapter 4: Event Data Analysis

15

In both test base applications, T&E handlings were built into the program in order to do a
logging of the type of error or interesting events related to signals like where and when it
was detected. This was done by adding T&E macros such as SEND SIG and REC SIG to
each process. When the application is running on the target the processes will keep track of
which trace group that is currently active.

4.2.1.1 OSE to OSE Communication Design

There are two load modules (LM) used in this design: one is called master and the other is
called slave. They communicate with each other via sending and receiving OSE signals. The
diagram showing the communication can be seen in Figure 7. In the LM master, there is one
OSE priority process which is called master_request. In the LM slave, there are three OSE
priority processes called slave_wait, read_valid and read_ready.

Figure 7: Test Base Application design, OSE to OSE communication

These processes communicate with each other via OSE signals. The picture above shows the
structure of the OSE to OSE Communication applications and the signal dependencies
between the OSE processes. This simple application simulates the communication handshake
between a real master and a real slave. Before master reads the data from slave, it should
first send a request to the slave and then wait for the acknowledge signal from slave. Other
signal communication takes place inside the slave LM. Only the handshake for read request
was simulated. Master sends READ_REQUEST to slave once per second. The order of the
signals should follow the order of the signal number representations from (1) to (6) in the
picture in Figure 7.

4.2.1.2 OSE to UML Communication Design
The OSE to UML communication design also consists of two LM: one is master and the
other is slave. They communicate with each other via sending and receiving OSE signals. In
the LM master, there is one OSE priority process called master_request. In the LM slave,
there are five threads called thread1, thread2, thread3, thread5, time and main_thread.
These LM are presented in Figure 8, but only thread1, 2, and 3 are shown here since these
threads have the similar function as slave_wait, read_valid, read_ready in the OSE slave
(described in the previous section). Each of the treads shown in Figure 8 contains one
capsule class.

Slave LM (6)

(2) (5)

(4)(3)

Master LM

master_request

slave_wait

read_valid

read_ready

(1)

(1) READ_REQUEST
(2) VALIDATA_DATA
(3) LOCK_DATA
(4) LOCK_DATA_ACK

(5) VALIDATA_DATA_ACK
(6) READ_REQUEST_ACK

Chapter 4: Event Data Analysis

16

Figure 8: Test Base Application design, OSE to UML communication

In this test base application, the handshake between master and slave has the same protocol
as the OSE to OSE communication application, but here only signal (1) and (6) are OSE
signals. The signals inside the slave LM are UML signals that are delivered by the actors
representing the capsules in each of the thread.

4.2.2 Log Collection

After completion of the test base application, another important task is to collect the log files.
We need the logs generated for the same test case that is taking place in the same time
interval in order to provide sufficient information for correlation analysis of the event data.
The logs were collected by running the same application several times and then collecting
the log files for each of these times.

From the OSE to OSE applications, Kernel Trace Log, Trace and Error Log, Error Log,
Execution Address profiling log and CPU load log could be collected in the same time
interval. From the OSE to UML application, all required logs could be collected including
TSL log.

All logs should be cleared every time after log collection. In this way, it could assure that all
logs collected are from the same time interval. The buffers used to store logs are limited,
when the buffer is full, the new coming logs will replace the oldest logs entries which follow
the algorithm FIFO (first in first out). As a result, the Test Base Application should be
controlled to execute in a suitable time interval to make sure the buffers are not full or just
full and no log entries are replaced. This could be done by running the application several
times and find out the best suitable running time when the complete logs could be collected.
In this way, the logs collected will have the same starting and stopping time.

4.3 Correlation Analysis

Individually, the log files will only provide limited information of events taking place in the
system, but by correlating them a wider view and further information can be obtained.
Especially interesting is correlation between the event and profiling logs (see Figure 6).
These two groups provides information about the system layer and the application layer
respectively, and by correlating them it will be possible to help bridge the gap between
system problem determination and debugging of applications. In other words, it would be
possible to gain further information when looking for problems in different products.

In The Assigned Set of Log Files section the log files where introduced, and the data
elements that can be extracted from these are presented in appendix section D.2. To be able
to correlate the event data of the different log file types, data elements describing the same
events and either directly or in-directly corresponds to each other should be found. These are

Master LM

Slave LM

Thread1 Thread2 Thread3

slavewaitC readValidC readReadyC

(1)

(2)
(3)

(4)(5)

(6)

(1) READ_REQUEST
(2) VALIDATA_DATA
(3) LOCK_DATA
(4) LOCK_DATA_ACK

(5) VALIDATA_DATA_ACK
(6) READ_REQUEST_ACK

master_request

Chapter 4: Event Data Analysis

17

the elements through which the event data can be correlated and they will be show below in
the Common Event Data section. After this section each of the different correlation
possibilities will be presented in more detail. The last sub section will cover the correlation
accuracy of these correlation possibilities.

4.3.1 Common Event Data

Based on the table shown in appendix section D.2, the common event data amongst the log
files can be found. Since the TSL log file type has many common data elements with all of
the other log files we will describe these in a separate table.

The common elements of all the log files except the TSL log are described in Figure 9
shown below. In this figure all the event data directly corresponds to each other through
name or value.

Figure 9: Common event data between the log files

Figure 10 describes the common event data between the TSL and the other log files. In this
case the different event data doesn’t always directly correspond to each other. More details
about the TSL common event data can be seen in the table presented in appendix section
D.3. It is from this table that the diagram below was extracted.

Figure 10: Common event data with the TSL log file

4.3.2 Correlation Possibilities

4.3.2.1 Correlation over Time
All the events that have a timestamp can be correlated over time. This could be useful since
there is a big chance that the events taking place at the same time is dependent on each other
or at least relates to each other in some way. Through the CPU Load log these events can
also be compared to the CPU load at the time that the events take place.

Process name
Process name,

Load module name

CPU Load Log

Execution
Address

Profiler Log

Timestamp,
Process name,

Send event / SEND SIG,
Receive event / REC SIG

Trace and
Error Log

Kernel
Trace Log

Timestamp,
Process name

Timestamp,
Process name

Process name
* The TSL Log is not
considered in this diagram

TSL Log *

CPU Load
Log

Kernel
Trace Log

TSL Log

Execution
Address

Profiler Log

Trace and
Error Log

Timestamp,
Process name

Timestamp,
Process name,
Capsule name,
State name,

UML signal number,
Actor name,

Sender address,
Receiver address,
Signal propagationTimestamp,

Process name

Timestamp,
Capsules,
Actors,

Transitions

Chapter 4: Event Data Analysis

18

The TSL log differs from the other log files since the event data is cumulative for each
timestamp. Before being correlated with the other log it should be handled either by being
compared with the accumulated information from another event type, or by subtracting the
information from previous TSL time stamp event before comparison.

Before the event data can be correlated over time the timestamp first needs to be normalized
to the same representation and same reference time. Converting time representation should
be handled in the interpreting step and then stored in the data model in a unified format.
To be able to use the same reference of time some extra thoughts are required since this is
handled in different ways for different log files. The time reference for KTR log is
represented by a 32 bit integer to represent micro seconds. The integer will restart from zero
when there are no more bits to represent the timea or on warm or cold restart of the system.
The time reference for the other log files are represented by date and time and will
continuously progress from time when the counter was last reset. In the case of the T&E log
the time counter will be reset only on cold restarts.

Through the Syslog, which is not handled further in this project, it would theoretically be
possible to automate a synchronization calculation. This log file keeps track of all different
kinds of system restarts and has a timestamp that is not itself affected by these. However,
when considering that different nodes will have different restarts, which would make things
even more complicated, a better and much simpler solution is to simply let the user manually
synchronize the time through a time delta in the user interface.

4.3.2.2 Correlation over Process
By collecting information about a certain process from different log files and at different
times it will be possible to get a better view of how different processes interact with each
other and with the system. Some of the information that can be collected for the processes
include the T&E messages, received and sent signals and dependencies to other processes.
The process dependencies are especially interesting since the including processes might be a
possible explanation for a symptom in the system.

Different layers have different representation of processes. In the hardware layer a process is
represented with a memory address, in the OSE layer the process is represented with the
defined process name, and finally in the application layer the representation is type specific.
For the TSL event data terms such as capsule names and actor names are used. It could be
useful with the possibility to search one of these representations (e.g. memory address) and
also get information about the others representations (e.g. process name) for the same
process. In the set of logs that was analyzed, the physical memory address of a process can
be found in the EAP log. If the memory address is mapped to the process name, the
processes in KTR, T&E and TSL log would be searchable also on memory address.

How the processes are interacting with each other through signal propagation is also
interesting and will be discussed in the next section.

4.3.2.3 Correlation over Component Interaction

OSE Signal Propagation
By combining information from different log files it is possible to track how OSE signal
propagation relates through different parts of the system layers. These propagations and the
event data that can contribute with further information are described below together with
diagrams showing the interactions. The information in these diagrams is created from our
Test Base Application.

a A 32 bit integer representing microseconds corresponds to approximately 71 minutes.

Chapter 4: Event Data Analysis

19

Since the KTR event data shows signal propagation between processes and information on
what load module they belong to, it will be possible to see component interactions on a load
module level similar to the diagram shown in Figure 11.

Figure 11: Load Module interactions

Through KTR event data it is also possible to see the interactions between the processes
themselves (see Figure 12). Further, if the load module is created in RoseRT it will be
possible to get the same interactions from the TSL log together with the delivery latency for
the signal propagation. Further information about the processes can be gained from the T&E
log by the group and message attributes.

Figure 12: Process / Controller interactions

If the interacting processes / controllers are part of a Rose RT product it will be possible to
find out how the signal propagates within this component (see Figure 13). Here the OSE
signal is propagated through UML messages between RoseRT actors.

Information on the actor interactions is found in the TSL log together with the capsule they
belong to. This information only provides the actor memory address, but with the help of the
T&E log through the TRACE7 trace group it is possible to get the actual names of these
actors. Through the EAP event data with the present name conventions this information can
be further complemented with the capsule hit ratio.

Figure 13: Actor interactions

Capsule States and Transitions
If the model explained in the above section is extended further, the capsule states and
transitions can be traced (see Figure 14). All these different states can be traced and recorded
in the T&E log file through the STATE CHANGE trace group. Some of these transitions can

master

main

slave

Kernel TraceKernel TraceKernel TraceKernel Trace
Signals
Signal id
Source load module name
Destination load module name
Event type
Signal count

slaveReady

slaveValidslaveWait

Thread5

time

Kernel TraceKernel TraceKernel TraceKernel Trace
Signal event
Signal id
Source process name
Destination process name
Signal count

TSLTSLTSLTSL
Controller names
Delivery latency

Trace and ErrorTrace and ErrorTrace and ErrorTrace and Error
Process name
Group and message

slavewaitC.
slavewaitCR1[0]

slave2C.
slave2CR1[0]

readValidC.
readValidCR1[0]

TSLTSLTSLTSL
Capsule class name
Sending actor address
Receiving actor address
Signal propagation id
Delivery latency
Signal number
Signal count

Trace and ErrorTrace and ErrorTrace and ErrorTrace and Error
Trace group TRACE7
(through TSL Event Type 9):
- Actor name
- Actor address
- Controller name
- OSE process id

Execution Address ProfilerExecution Address ProfilerExecution Address ProfilerExecution Address Profiler
Capsule hit ratio

Chapter 4: Event Data Analysis

20

also be found in the TSL log and in this case information about the transition cost and
message latency can be provided. By default only the 128 most cost expensive transitions
will be shown in the TSL log, but this number might be re-defined by the user [25].

Each of the transitions corresponds to a symbol listed in the EAP log file. However, due to
the EAP naming convention it is impossible to know what transition corresponds to what
function. If transitions and functions could be mapped it would be possible to get
information about the hit ratio for transition corresponding functions and also the physical
address for these functions / transitions.

Figure 14: Capsule states and transitions

4.3.2.4 Correlation between different runs
If data is collected from different runs, these could be compared to each other. The
anomalies could either be manually compared through a graphical view or they could be
collected and shown to the user through a difference report.

4.3.2.5 TSL Specific Correlation
As has been introduced in previous part, TSL Log collects ten different events to help the
designer to get a better understanding about the RoseRT application. For example, when
tracing and logging the event data with the most expensive transition cost (Event Type 1)
and message delivery latency (Event Type 3), it tells the designer what the worst case
behavior of the model is and where to improve the RoseRT application.

Besides RoseRT Profiler, designers also use Trace & Error Macros to trace system and
functional behaviour on a capsule level at RoseRT program development. This tool could be
seen as a complement to RoseRT Profiler. Sometimes, information provided by a single
debug tool is limited and not sufficient enough when observing complex problems. For
example, TSL log provides the accumulated information such as the amount of state changes
or how many OSE signals that has been received, while it does not provide any detailed
information like when the states change took place or when each OSE signal was received.
This information can instead be found in the T&E log, and by correlating these event data
the designer might obtain further information that might aid when debugging the application.

There are some other debug tools such EAP Profiler and RDS that were not designed for
RoseRT applications but could also be adapted by them. RoseRT designers do not use those
tools for debugging or troubleshooting as they develop their programs. However, both the
EAP log and K&T log contain common event data that could be abstracted from TSL log.
Further useful information may be generated by correlating those common event data from
independent sources.

In this section, the correlation possibility between TSL log and other logs (T&E log, EAP
log, CPU load log and KTR log) will be analyzed based on the common event data that
previously was shown in Figure 10.

Correlation between TSL Log and T&E, KTR Log
In Trace & Error log or KTR log, there is no event data related to signal priority, message
queue or RTMutex, so the correlation analysis of Event Type 8 and 10 was skipped here.

registerOseSig

waitForValidate
DataAck

TSLTSLTSLTSL
Capsule class name
Start state
Destination state
UML signal number
Transition cost
Msg latency

Execution Address ProfilerExecution Address ProfilerExecution Address ProfilerExecution Address Profiler
Function hit ratio
Function physical address

Trace and ErrorTrace and ErrorTrace and ErrorTrace and Error
Trace group STATE CHANGE
- Actor trace object
- New state
Transition count

Chapter 4: Event Data Analysis

21

Event Type 4 and Event Type 9
From Figure 10, it shows that both the TSL Log and T&E log contains the event data sender
address and receiver address. Those addresses are the physical memory addresses of
different actors. They are collected by Event Type 4 in TSL Log and Event Type 9 in T&E
log. In the following part, the correlation via physical memory addresses is analyzed
according to the simple example outputs of Event Type 4 in Figure 15 and Event Type 9 in
Figure 16.

 Signal Propagation Tree
 Signal propagation ID: 1 Signal: 5 se nt by: 0
 received by: slavewaitC. 1207479648 delivery latency: 1891

Figure 15: TSL Event Type 4 example output

 [1970-01-02 00:03:24.932] slavewaitCR1 ../../initi alizeAll.cc:182 TRACE5:
 [RTProfiler EVENT_TYPE_9 - Actor Informatio n]
 Actor: slavewaitCR1 [0]
 Actor adress: 1207479648
 Physical thread (controller name): Thread 1
 OSE Process: 66591

Figure 16: Trace and Error TRACE5 example output

From the above figures, it shows that both of them contain the physical memory address
1207479684. With this address, all actors in the signal propagation tree could be mapped to
their corresponding controllers and OSE process id. The signal propagation is described in
actor level, and only T&E log provides information related to actors, thus only T&E log has
possibility to correlate with signal propagation tree. While after mapping the address the
signal propagation tree could be expressed in OSE process (physical thread) level and it will
provide possibility to correlate event data in K&T log via processes. In addition, the capsules
could also be mapped to their actors. From the above figures, it also shows that the capsule
class slavewaitC has the actor slavewaitCR1. This result will be further used in the latter
Correlation Analysis part of this report.

Event Type 1 and Event Type 3
In TSL Log, transition (Event Type 1) is described by a capsule name, two states, and the
UML signal number that triggers the transition. Look at the example log sheets in Figure 17
and Figure 18 below.

In Figure 17, it shows that during the time interval from when the RoseRT Profile was
started to the logging time 00:05:34, one most expensive transition took place at capsule
slavewaitC in Thread1. From a designer point of view, some questions that might arise when
obtaining this information include: when did this expensive transition take place? Why is it
so expensive? Is it possible to make the expense smaller? No answers could be provided by
TSL log because it only stores accumulative information. While some of the questions could
be answered with the help of related event data recorded in T&E Log.

In the T&E package, the trace groups STATE CHANGE and REC SIG can be used to
describe a transition when they are combined together. By doing this, detailed information
about transition could be obtained. However, the trace groups STATE CHANGE and REC
SIG are based on actor level, while the transitions recorded in TSL log are described based
on capsule level. This means that to be able to correlate them the capsule name has to be
mapped with the actor name as discussed in the previous section. This could be done by
mapping the physical memory address from Event Type 4 and Event Type 9.

From Figure 17, it shows that the most expensive transition took place when capsule
slavewaitC changed state from waitForValidateDataAck to sendReadReqAck after receiving
UML signal 4. Figure 18 shows that the UML signal which triggers the transition was
received at time 00:05:30.916 and that the transition was triggered at time 00:05:31.144. It
implies that there might be some bottlenecks between time 00:05:30.916 and time

Chapter 4: Event Data Analysis

22

00:05:31.144 since the most expensive transition cost took place within this period. Further
log analysis should be focused on this period.

 [RoseRT Profiler Data] Fri Jan 2 00:05:34 1970
…
***Profiler (Controller = Thread1) ***
 Profile Collect Time Seconds: 129 nanoseconds : 746279000
 Key: slavewaitC: waitForValidateDataAck_sendReadReqAck_4

Value: min: 4507010 max: 5131949 med: 496929 4

Figure 17: TSL Log Event Type 1 example printout

…
[1970-01-02 00:05:30.916]
slavewaitCR1../src/target/Cello/RTActor/enterState. cc:59 STATE CHANGE:
waitForValidateDataAck
[1970-01-02 00:05:30.916]
slavewaitCR1../src/target/Cello/RTActor/logMsg.cc:7 6 REC SIG: Signal:
VALIDATE_DATA_ACK, Port: slaveWait [0], Sender: rea dValidCR1 [0]
…
[1970-01-02 00:05:31.144]
slavewaitCR1../src/target/Cello/RTActor/enterState. cc:59 STATE CHANGE:
sendReadReqAck

Figure 18: T&E Log STATE CHANGE and REC SIG example printout

From the above example, it shows that by correlating transition from TSL log and T&E log,
the designer could obtain the integrated knowledge about what the worst case is and when it
took place and the improvement could be done according to further analysis.

The message delivery latency (Event Type 3) is represented in the same way as transition
cost in TSL log, while in the T&E log, message delivery latency needs to combine
information collected from trace group SEND SIG, REC SIG and STATE CHANGE. When
this is done it could be correlated in a similar way as the transition cost.

Event Type 5, 6 and 7
Typical question could be answered with profiling Event Type 5 (uml message send count),
Event Type 6 (uml message receive count) and Event Type 7 (state changes count) is “what
is the most frequent executed actors within a RRT application”. It could help the designer to
get a good understanding about the behaviors of a RRT application. If the designers want to
obtain more detailed information like what kind of message was sent/ received by the most
frequent executed actors, they have to examine the T&E log.

The Trace and Error macros provided different types of trace group for RoseRT applications
on capsule level or actor level. In RoseRT application, event data related to uml message
received and sent for each actor could be traced and logged by the trace group REC SIG and
SEND SIG respectively, and the event data related to state changes for each actor could be
traced and logged by the trace group STATE CHANGE.

More detailed information like received signal number, signal time and the sender of the
signal for the most frequent executed actors could be abstracted from the T&E log with the
help of those trace groups. By combing these detailed event data together with the
accumulative information got from Event Type 5, 6 and 7, the designer can get a better
understanding of the application behavior.

Event Type 11
Event Type 11 collects the number of received messages (the internal messages, external
messages and OSE messages) within a controller. There are one counter for each type of
messages. By counting and logging the received messages, the designers can obtain the
knowledge about communication frequency for each controller. However, if the designers
want to do a deeper analysis to the communication behaviour of a RoseRT application,

Chapter 4: Event Data Analysis

23

event data collected by this event can be a bit deficient. There is no information about the
senders, signal contents or message sending time existing in the TSL log file. While these
detailed event data could be abstracted from T&E log. Thus, the designers will have to
correlate Event Type 11 from TSL log with related event data from T&E log in order to get
a deeper understanding of the communication behaviours. The ways to perform the
correlation will be a bit different in terms of the message types under correlating.

The trace group TRACE7 is used to record the reception of OSE signals for each thread.
With the help of two attributes TRACE7 and thread name, all entries related to OSE signal
reception could be found out from T&E log. By doing this, the following information could
be abstracted: received OSE signal number, sender process id, and the message receiving
time. Among the assigned log files, only T&E log contains OSE process id, it should be
mapped to the corresponding OSE process name in order to enable further correlation. This
could be done with the help of RDS. All processes executing on the target could be
displayed together with corresponding process type, id and priority by typing the command
“rds display process” to OSE Shell. The process id abstracted from T&E log could be
correlated with the one got from RDS; as a result, the designer could get the following
integrated information: received thread name, received OSE signal count, and received OSE
signal number, sender process id, sender process name and the message receiving time. As
introduced in previous section, Kernel Trace log also contains sender name, OSE signal
number and receiver name. Those common event data could be further correlated to find out
all related entries in Kernel Trace log from which the signal sending time and the load
module name of the sender could be abstracted. When this is done the designer could get an
integrated knowledge about the communication behaviour of a RoseRT application with
another application.

To be noticed, dynamic processes could have several different process ids for every time
when it was created, a new process id will be assigned. While static process always uses the
same id until the application is restarted. The event data got from the command “rds play
process” just contains current process id of a dynamic process. Thus, it is recommended to
log process name instead of process id in T&E log so that the mapping procedure from
process id to process name could be avoided.

Trace & Error macros provide the trace group type REC SIG to log received UML signals
(both of UML internal and UML external signals) in an actor level. From Event Type 11 in
TSL log, the designer could get the information about how many UML internal or external
signals were received for each controller. The logged controller name of Event Type 11
could be correlated with event data got from the trace group TRACE5, by doing this all
actors name within this controller could be abstracted. After knowing all actors name within
a controller, all logged entries related to UML signals could be found with the help of the
trace macro REC SIG. By analyzing those entries together with related event data in Event
Type 11, the designer could understand the UML communication behaviours of a RoseRT
application at a higher level.

Correlation between the TSL log and EAP log
From Figure 10, it shows that both TSL Log and EAP log contains event data about
timestamps, capsules, actors and transitions. The time stamp could be correlated directly,
while it could not help too much for the system understanding without further event data
correlation because both of the two logs store accumulative information and too many entries
will be got if only timestamp is correlated.

If the transition described in TSL log and EAP log could be correlated, it will provide the
designer with more important information. In TSL log, some most expensive transitions or
message delivery latency are collected, in EAP log the executing frequency for each
transition is collected. If they could be correlated into a consistent context, the designers

Chapter 4: Event Data Analysis

24

could get a much more integrated view about the system behaviours. By doing this, the
designers could obtain the knowledge about what the worst case of a RoseRT application is
in terms of transition cost or message delivery latency and what the executing frequency is of
the worst case. Base on this result, designer might do some improvements to the application.
The first hot point in improve will be the transition with high frequency.

It is useful to correlate transitions from TSL log and EAP log, while it is impossible with
current collected event data in two log files. In TSL log, transition was described with
capsule name, two states, and one UML signal number that trigger the transition between
two states, which is shown in Figure 19. While in Execution Address Profiling log, transition
is expressed as a symbol name including capsule name, actor number, transition number, and
UML signal content, which is shown in Figure 20.

Key: slavewaitC: waitForValidateDataAck_sendReadReqAck_4 Value: min:
4147847 max: 13643694 med: 9475573

Figure 19: TSL Event Type 1 (transiton cost), example output

Slave1: _ZN16slavewaitC_Actor30transition3_gotValid ateDataAckBaseE 1 0.00%
Slave1: _ZN16slavewaitC_Actor25chain3_gotValidateDa taAckEv 1 0.00%

Figure 20: EAP log, transition example output

In Figure 19, it shows one of the expensive transitions stored in TSL log. The transition took
place between state waitForValidateDataAck and sendReadRedAck when slavewaitC
received the UML signal which was represent by number 4. In Figure 20, it shows that the
transition represented by the symbol name _ZN16slavewaitC_Actor30transition3_got

ValidateDataAckBaseE was hit once during measuring period. It is so difficult to know if
they are describing the same transition in Figure 19 and Figure 20. Thus we suggest adding
some extra information about the states and received UML signal number just as what have
been done in TSL log to the symbol name in EAP log when it describes transitions. By doing
this, the two aspects of the transitions from TSL log and EAP log could be combined
together and provide a better view of the system behaviour for the designers.

4.3.2.6 Further Correlations
Countable attributes can be compared and shown in relation to each other. Signal count
between components can for example be compared to the component hit rate or to the CPU
load for a certain process or priority. If signal count is put in relation to signal latency this
might give further information for tracking system performance.

Another form of correlation is filtering of attributes to show only the interesting set of
information. This will be mentioned more specific in the Graphical Representation and
Graphical User Interface sections.

4.3.3 Correlation Accuracy

A general limitation when correlating timestamps is that the events many times are not
granular enough to sufficiently trace a chain of events between log files. T&E log has the
maximum timestamp accuracy of milliseconds while the KTR and TSL log has
microseconds as maximum accuracy.

If attributes are compared over a string variable, there is a chance that the attribute has the
same value even though they represent different elements. In the assigned set of logs, the
process, method and symbol names can avoid these circumstances to some extent by also
compare through the load module or method package that the component belongs to. Similar
precautions can also be made for the string attributes in the TSL log.

Chapter 4: Event Data Analysis

25

4.4 Graphical Representation

Humans are very good at recognizing patterns and anomalies in a visual context [26]. By
representing the event data graphically an overview can be presented from where the user
more easily can navigate and analyze the data. Based on this together with results from
previous sections, analysis about visualization will be given. The results from these sections
will later be used as a base for the Graphical User Interface (GUI) implementation of the
Correlation Tool and the GUI implementation will in turn validate the theoretical results
concluded in this section.

Since the there is no GUI implementation for the TSL log file in this project, extended
graphical analysis about this log type is done in the Detailed TSL Specific Representation
sub section.

4.4.1 Table Representation

All the event data analyzed in this project can in some way be represented in a table. From
here the entries can be sorted by sequence number, timestamp, component name or any other
attribute according to the user preferences for the moment. It is also a great way for
navigating, filtering and searching properties of large amounts of associated event data. An
example of a table showing the entries of a KTR log file is shown in Figure 21.

Figure 21: Table representation of Kernel Trace entries

Another use of the table view is to show collected information for frequently occurring
attributes such as component name or event type. The collected information could contain
statistics such as number of occurrences for components or event types, the component
dependencies, etc. Figure 22 shows a table representation of process information collected
from the KTR log file.

Figure 22: Table representation of Kernel Trace processes

4.4.2 Representing Log Information Summary

It would be good for the user if he in some way could get an overview of the different log
files without actually have to open and look through the data. Information that would be
useful to know is how many entries the log file contains, what time span the events take
place, what different event types it contains etc. This kind of information could be shown
either in a log properties view, a static view or as a dialog. Further information could be a
short description of the log file type, and if multiple files are selected, information on how
they can be correlated.

…
(21) Time: 1279612.079 ms
Receive <1001> From: m15.ppc:master_request To: s15.ppc:slave_wait

(22) Time: 1279612.091 ms
Send <1002> From: s15.ppc:slave_wait To: s15.ppc:read_valid

…

SequenceSequenceSequenceSequence
numbernumbernumbernumber

Time (ms)Time (ms)Time (ms)Time (ms) EventEventEventEvent Signal IDSignal IDSignal IDSignal ID SourceSourceSourceSource DestinationDestinationDestinationDestination

…

21 1279612.079 Receive 1001 m15.ppc:master_request s15.ppc:slave_wait

22 1279612.091 Send 1002 s15.ppc:slave_wait s15.ppc:read_valid

…

ProcessProcessProcessProcess OccurrencesOccurrencesOccurrencesOccurrences Receive Receive Receive Receive

eventseventseventsevents

Send Send Send Send

eventseventseventsevents

Number ofNumber ofNumber ofNumber of

ddddependenciesependenciesependenciesependencies

DependenciesDependenciesDependenciesDependencies

…

s15.ppc:slave_wait 10 5 5 2 master_request, read_valid

s15.ppc:read_valid 10 5 5 2 slave_wait, read_ready

…

Chapter 4: Event Data Analysis

26

4.4.3 Time Chart Representation

An intuitive way in representing event data in relation to time is with the help of a time line
chart. By doing this, the events can easily be correlated over time by being represented in
relation to the time line and to each other. An overview can be presented that would be
impossible to see through raw text or a table representation. With various colors or shapes it
would also be a fast way to spot entries that stands out from the usual patterns. The data can
be navigated through a zoom function where more detailed information can be given at a
certain time interval. The figure below shows an example time chart with events in relation
to time.

Figure 23: Time chart view representing events in relation to time

If the event entries specifies countable data such as the case for CPU Load Log, this data can
be represented with a diagram showing how the value changes over time. The diagram can
be shown together with the event representations explained above to put these in the same
context. The user would in this way be able to see the events that were recorded at the time
of anomalies in the countable event data. For CPU load event data it could also be valuable
to compare diagrams from different runs to each other.

Further functionality could be tool tips for the events, clickable icons to show further
information, a legend for the time charts and a filter where the user can specify what data to
show.

4.4.4 Node Graph Representation

Events that contain source and destination components can be represented graphically by
nodes and connections similar to the graphs in the Correlation over section (section 4.3.2.3).
The figure below shows a simple example of KTR event data being represented by nodes
and connections.

…
(21) Time: 1279612.079 ms
Receive <1001> From: m15.ppc:master_request To: s15.ppc:slave_wait

(22) Time: 1279612.091 ms
Send <1002> From: s15.ppc:slave_wait To: s15.ppc:read_valid

…

1279612.079 ms 1279612.127 ms

Receive <1001> From: m15.ppc:master_request To: s15.ppc:slave_wait

Kernel Trace
Event Data

Other Event
Data

Chapter 4: Event Data Analysis

27

Figure 24: Node graph representing Kernel Trace signal propagation

At a lower level of event propagation the information would be too comprehensive to show
all at once, why a filter function is crucial to use in these cases. Again, as mentioned in the
Correlation over Correlation over Component Interaction section, the information given by
our assigned set of logs can give information of interactions from a load module level,
through process/controller and capsule level, down to the transition level of Rose RT
capsules. Since all this information is given it would be possible to traverse the levels of
representations through children or parent components. If for example a load module node is
clicked, the interactions between processes within this component can be shown. Further, if
the process is created by RoseRT, this component can be clicked to show information of the
capsule interactions taking place in that particular process; and finally an actor can be
clicked to show information of the state transitions taking place in the controller from where
the actor was instantiated from.

This way of interacting with the event data can be used if the user wants to see the OSE
signal propagation graphically to get an overview of the system. It would also be useful if the
graphics can be connected to the actual values represented by the event data. The
connections could be connected to information such as signal number, amount of signals
sent, and delivery latency; while the nodes can be connected to information such as process
name, capsule hit ratio, or any other information provided by the log files.

4.4.5 Statistical Representation

Event data representing statistical information can be shown through various charts such as
bar charts, line charts, pie charts and others. This representation might be nice to look at, but
for the set of log files created with the Test Base Application, we found these representations
less useful. It could however be a good idea to use at times when the data is too
comprehensive to view in a table or for finding anomalies when comparing data recorded
from different runs.

4.4.6 Detailed TSL Specific Representation

According to the event data and correlation analysis of TSL log in the previous section, some
suggestions about how to represent the result graphically are given in this section. Because
of time limitation, the GUI of TSL log is not implemented. But our suggested graphical
presentation could provide some valuable results for next project work.

…
(21) Time: 1279612.079 ms
Receive <1001> From: m15.ppc:master_request To: s15.ppc:slave_wait

(22) Time: 1279612.091 ms
Send <1002> From: s15.ppc:slave_wait To: s15.ppc:read_valid

(23) Time: 1279612.109 ms
Receive <1002> From: s15.ppc:slave_wait To: s15.ppc:read_valid

(24) Time: 1279612.113 ms
Send <1003> From: s15.ppc:read_valid To: s15.ppc:read_ready

(25) Time: 1279612.127 ms
Receive <1003> From: s15.ppc:read_valid To: s15.ppc:read_ready

(26) Time: 1279612.132 ms
…

m15.ppc
master_request

m15.ppc
slave_wait

m15.ppc
read_valid

Signal <1001>

Signal <1002>

m15.ppc
read_ready

Signal <1003>

Chapter 4: Event Data Analysis

28

4.4.6.1 TSL Log Browser View
Before going into the details of TSL log, it is better to have an overview such as how many
controllers there are and what they are about respectively, which types of events are
collected for each controller or all controllers.

Two alternative ways about the TSL log browser view are suggested in the following. The
first way is to show an overview according the original structure of the TSL log files. There
are 4 different objects: log, block, controller and event in TSL log. So a log file structure
with 4 depths could be used. This structure is shown to the left in Figure 25.

Another way to show an overview is a simplified structure according to different event types
stored in the log files. Three depths are used in this type of log file view: log, event, and
controller. Blocks are neglected here and all controllers collect the same event will be
gathered together and listed under the event type. This structure is shown to the right in
Figure 25.

Figure 25: Two different TSL log browser view structures

Both of the two suggested log browser view structures have their strong points. For the block
and controller oriented structure which is shown to the left in Figure 25, it is easy for the
user to identify how many different controllers there are and what they are about respectively
in the log file, and what event types are collected by every controller. In this way, it is not
easy for the user to identify how many controllers collected one specified events if the
controller number is a bit large.

For the event type oriented structure it is easy to identify how many controllers that contain a
specified event. However, in this way it is not so convenient for the user to identify the event
types that are collected for each controller. The best way is probably to present this in both
ways and let the user make the decision on how to show the content.

4.4.6.2 TSL Table view
As mentioned in Table Representation, section 4.4.1, all event data can in some way be
represented in a table view, including event data in TSL log. It is however not a very good
idea to represent all event data abstracted from TSL log in only one table because of its
complexity. A better solution would be to represent event types with different structures in
different tables. According to the content of the different TSL event types, four tables are
suggested to be used for storing the event data. Event data in Event Type 1 and 3 can be
presented together in one table as shown in Figure 26; event data from Event Type 5, 6 and 7
can be presented in another table as shown in Figure 27; event data from Event Type 10 and
11 can be put in a table as shown in Figure 28; and finally the event data from Event Type 4
should be presented in separate table.

Event Type

oriented structure

� Log 1
◦ Event Type 1

◦ Controller 1
◦ Controller 2
◦ …
◦ Controller N

◦ Event Type 3

◦ Event Type 4

◦ …

◦ Event Type 11

� Log 2

� Log 3

� …

Block and Controller
oriented structure

� Log 1
◦ Block 1

◦ Event Type 10
◦ Event Type 11
◦ Event Type 4

◦ Block 2
◦ Controller1

◦ Event Type 1
◦ Event Type 3
◦ …

◦ Controller 2
◦ …

� Log 2
� Log 3
� …

Chapter 4: Event Data Analysis

29

Controller Capsule name 1’st
state

2’nd
state

UML
sig num

Transition cost Latency
min max med min max med

main Slave wait stop 1 165 165 165 112 112 112
Figure 26: Example table view of Event Type 1 and 3

Controller Collect time (sec) Actor name Actor index Rec msg Sent msg State change
main 106.422747000 slave 0 1345 0 1103

Figure 27: Example table view of Event Type 5, 6 and 7

Controller Inter queue per priority Intra queue per priority Defer OSE
signal

UML
intra

UML
inter 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

slave 2 3 3 1 2 0 0 0 1 0 0 1 3 1 1 1 2 20 34 23
Figure 28: Example table view of Event Type 10 and 11

Sig prop id UML sig num Send by Received by Cost
Capsule name Actor memory addr

1 5 0 slaveWaitC 1250078048 872
1 3 1250078048 readValidC 1250079136 1603
1 3 1250079136 readReadyC 1250078672 890
1 4 1250078672 readValidC 1250079136 582
1 8 1250078048 slaveTslTopC 1250077376 4161

Figure 29: Example table view of Event Type 4

4.4.6.3 Node graph
In Figure 30, the node graph of a simple signal propagation tree is shown. As has been
analyzed in the previous part, TSL signal propagation tree could be represented in two layers:
actor layer and controller layer. Both of the two layers are shown in Figure 30. The actor
based signal propagation tree, which is abstracted from original log file, is isolated from
OSE. The process based signal propagation tree on the other hand could be traced and logged
both through the KTR and the TSL log.

With the help of this node graph, it is much easier to identify the signal dependencies among
different capsules and different controllers. A sample output of signal propagation tree
represented as a node graph can be seen in Figure 30.

Figure 30: TSL node graph of signal propagation tree

Also the event data from TSL Transition Profile Events (Event Type 1 and 3) can also be
represented by a node graph, in a similar way as above and as shown in Correlation
Possibilities, section 4.3.2.3.

4.4.6.4 Extended Time Chart View
TSL log collects accumulative information for the RoseRT model so there might be
hundreds of entries in the time line for each logging time. It could not help the users too

0

1250078048

slavewaitC
1250078672

readReadyC

1250077376
slaveTslTopC

1250079136
readValidC

’5’

’3’
’3’

’4’’4’

’8’

0

Thread1
Thread3

Main_
thread

Thread2

’5’

’3’

’3’

’4’

’4’

’8’

Correlate
Event type 4
from TSL
with TRACE5
from T&E log

Sig prop
order:
533484

Chapter 4: Event Data Analysis

30

much if all the entries are shown at the same time. Some techniques are needed to filter out
event data that the users might not be interested. We suggest two ways to perform this
function shown in Figure 31. One type of the two suggested TSL log browser views (show
in Figure 27) is also included in this figure.

As shown in Figure 31, one way to filter in some entries from time line is to design a filter
dialogue with some main attributes listed behind checkboxes. Take a simple example, when
the checkbox of the attribute “tran cost” was selected, only the event data related to
transition cost (Event Type 1) will be shown in TSL time line. There might be still many
entries at the same point of the time line if several controllers collect Event Type 1. The user
might just want to show transition cost for a specified controller or even more specific like
for a capsule. In that case, a specific filter is suggested. Sometimes the users might not
remember the name of different controllers that exists in the log files, in this case, the log
browser views suggested in section could be helpful. By looking at the log browser view
shown to the left in Figure 31, it is easy for the users to get an overview about the TSL log
files. It might also be possible to add a filter function to the TSL log browser view. By doing
this, the uses can open a time chart view with only interesting entries directly from the log
browser view.

Figure 31: TSL event data represented on a time line with suggested filters

Figure 32 shows a simple example about how to correlated event data from TSL log and
T&E log by time line. With the help of the filter shown in Figure 31, three transition entries
in Thread 1 could were found out, it is also suggested to show the transition in a node graph
as shown in Figure 32. Detailed event data of transitions could be shown in T&E time line
via selecting the attributes REC SIG and STATE CHANGE in the filter dialogue and
specifying a more specific name like slavewaitCR1 (look at example in Figure 31) for T&E
time line. Figure 32 gives an overview about how the result will be like when correlated a
transition. By doing this, it is easy to find out the time interval when the worst case took
place in the time line and further analysis could be done by zooming in that time interval to
check what something else happened during that period.

----TSL Log 1TSL Log 1TSL Log 1TSL Log 1
----BLOCK1BLOCK1BLOCK1BLOCK1
----ET4
-ET10
-ET11

----BLOCK2BLOCK2BLOCK2BLOCK2
----Main
-ET1
- ET3

-Thread1
-ET1
-ET3
-ET5
-ET6
-ET7
-ET8
-ET10
-ET11

+Thread2
+Thread3

REC SIG

TRACE5 TRACE7

STATE CHANGE

PARAM INFO

T&E LogT&E LogT&E LogT&E Log

Filter:Filter:Filter:Filter: OKOKOKOKslavewaitCR1

TSL

T&E

tran cost msg latency

msg rec msg sed

State changesig prop

peak sig

TSL LogTSL LogTSL LogTSL Log

Filter:Filter:Filter:Filter: OKOKOKOKThread1

ERROR

Profiler (Controller = Thread1)

Event type 1 (transition cost)
Key: slavewaitC:

registerOseSig_waitForValidateDataAck_5
Value: min: 1159 max: 1159 med: 1159

SEN SIG

Total dispatch

[1970-01-02 00:05:29.696] slavewaitCR1 ../src/target/Cello/RTActor/logMsg.cc:76
REC SIG:signo:1001, Port:slaveWait[0], Sender:readValidCR1[0]
[1970-01-02 00:05:29.696]
slavewaitCR1 ../src/target/Cello/RTActor/enterState.cc:59
STATE CHANGE: waitForValidateDataAck

Chapter 4: Event Data Analysis

31

Figure 32: Event data correlation via time lines

The time chart view might be useful for representing the event data and it will be more
powerful when complementing with log browser view, node graph and table view.

00:05:30 00:05:30 00:05:30 00:05:30

[RoseRT Profiler Data] Fri Jan 2 00:05:301970
Profiler (Controller = Thread1)
…………………………………………
Event type 1 (transition cost)
Key: slavewaitC: C_A_1 Value: min: 560 max: 791 med: 631
Key: slavewaitC: A_B_5 Value: min: 671 max: 1159 med: 723
Key: slavewaitC: B_C_4 Value: min: 4507010 max: 5131949 med: 4969294

A 5 4 CB 1 A

T&E log

TSL log

A

B

C

5

4

1

[1970-01-02 00:05:29.69600:05:29.69600:05:29.69600:05:29.696] slavewaitCR1 ../../logMsg.cc:76 REC SIG:REC SIG:REC SIG:REC SIG: signo: 4signo: 4signo: 4signo: 4 Port: slaveWait[0]
Sender: readValidCR1[0]

[1970-01-02 00:05:29.91600:05:29.91600:05:29.91600:05:29.916] slavewaitCR1 ../../enterState.cc:76 STATE CHANGE: CSTATE CHANGE: CSTATE CHANGE: CSTATE CHANGE: C

00:05:29.396 00:05:29.396 00:05:29.396 00:05:29.396 00:05:29.61600:05:29.61600:05:29.61600:05:29.616

00:05:2900:05:2900:05:2900:05:29

Fri Jan 2 00:05:3000:05:3000:05:3000:05:301970

Transition Cost (Thread1)
Key: slavewaitC: B_C_4
Key: …………………………

Chapter 5: Implementation of the Correlation Tool

32

5 Implementation of the Correlation Tool

The Correlation Tool is implemented as an Eclipse Plug-in. It consists of parsers, data
models, Graphical User Interface (GUI) and underlying calculations. By implementing this
tool we will be able to confirm our previous results as well as allowing further analysis. With
the GUI implementation we will also give suggestions on how the user can interact with the
event data and the correlations. The aim is to facilitate in debugging and resolving problems
within the system.

The Interpreters and Data Model sections will handle decisions on structuring and
organizing the event data with the help of interpreters and data models. Following these
sections the GUI will be presented together with the Correlation Tool functionality in the
Graphical User Interface section. The last section of this chapter is the Software
Architecture section where the Correlation Tool architecture is presented with further
information on how the different components are connected.

5.1 Interpreters

To traverse and do calculations on the event data, it should first be interpreted and stored in a
data model. Correlation and calculations could be done before storing the information in the
data model, but at this stage the advantages was not apparent and it was decided to only do
the normalization processing at this stage. Correlation pre-processing will however be
discussed in the Concluding Discussion chapter in the end of this report based on our
experience working with the event data.

From the elements presented in the Event Data Analysis chapter there are a few that needs to
be normalized before being stored in the data model. First and foremost is the timestamp
where all the sources are normalized in a uniformed format to enable correlation over time
(see the Correlation over Time section). Further normalized data are the signal id numbers
that are either stored in decimal or hexadecimal format in the different log file types.

The log files that was handled are all in raw text format and most of them are strictly
structured which helps when they are to be parsed and stored in a data model. Since
performance isn’t an issue in this project work it was decided to use the java.util.regex
librarya for parsing the log files. The parsers have been implemented independent from the
user interface, so that future parsers can be added in any way without affecting the rest of the
system. All event data that is handled in the Correlation Tool will depend on the data model,
and how the information gets there is of less weight.

The TSL log file differs from the other log files by being very complex and without any
strict format. Regular text parsing is for this reason not a good option, and instead a
suggestion of an XML structure was proposed to Ericsson. This structure can be seen in
appendix section D.4. The structure was however never implemented (see Complications
section in the Concluding Discussion chapter) and for the moment only an example parser
for the structure was created. This parser handles TSL Event Type 1 and 3 and is
implemented using the JDOM libraryb.

5.2 Data Model

For storing the event data, a generic data model has been considered in comparison with the
use of specific data models defined for each different type of event data. For better

a The Java regular expression API
b JDOM is a Java-based solution for accessing, manipulating, and outputting XML data from Java
code (www.jdom.org)

Chapter 5: Implementation of the Correlation Tool

33

compliance with the Correlation Tool the implementation was done as a Java Object
Oriented structure. Discussion and conclusions about the data model approaches can be
found in the Specific vs. Generic Data Model section below. Following this section the
defined data models will be presented.

5.2.1 Specific vs. Generic Data Model

Both the specific and generic data model approaches was conducted for the data model
implementation. The specific data model was our first approach, but due to bad experience
using this strategy and information found on the Common Base Event we choose to change
to a generic data model approach. A generic data model approach will contribute in a bigger
abstraction and will facilitate when developing common views for different kind of log
formats. This approach will also assist developers in adapting new log and trace data without
rewriting the existing code. The decision points that were used for this conclusion can be
found in appendix section B.2. Due to our implementation strategy of data model de-
coherence it was a minor problem to also support a generic data model.

The diagram below shows a simple overview of the Correlation Tool implementation and
what is needed by the user to extend the tool with a new log file type. The left side shows the
extension requirements in a specific data model approach and the right side shows the
requirements in a generic data model approach.

Figure 33: Extending the application with a new log file type

5.2.2 The Generic Data Model

The figure below shows the generic data model design. There was no time at this stage of the
project to get familiar with the Common Base Eventa but the design of the presented data
model is still inspired by the same approach. The data model is currently defined to work for
KTR, T&E, and EAP event data and the CPU Load data might also be used through the
Extended Data Element. Due to the complexity of the TSL log, we chose not to use a generic
approach for this log file type.

a See the Common Base Event section

GUI

Parser

Data
Model

GUI Table
Editor

Time Chart
Editor

Node
Editor

Data Model
Extension

Data Model
Extension

Data Model
Extension

Parser

Generic
DM

Table
Editor

Time Chart
Editor

Node
Editor

Generic DM
Extension

Generic DM
Extension

Generic DM
Extension

Specific
Content
Extension

Specific
Content
Extension

Specific
Content
Extension

Log File Log File

Specific Data Model Approach Generic Data Model Approach

Chapter 5: Implementation of the Correlation Tool

34

Figure 34: The generic data model

In the presented data model the different attributes are optional and the Correlation Tool has
to adapt the output depending on what information that is presented. In the
GenericEventData class the header info, log file time and log type can be specified. It also
contains a list of generic entries where information from each entry in the log file is
specified. The GenericEntry class stores information of sequence number, time stamp,
source component, affected component, and the event. The source and affected component
are of the type GenericComponent and here information about functions, methods or
processes can be specified. The event attribute is of type GenericEvent and here information
about event type, event value and event message is stored. In the ExtendedDataElement class
further event data can be added if the generic structure is not sufficient. The TimeStamp class
store dates in the DataEntry class and the time units from hours and below is converted to
microsecondsa. The full date and time can be collected through the toString() function.

5.2.3 The Specific Data Models

Since the specific data models that were constructed for the KTR, T&E, EAP, and CPU
Load Event Data now are replaced by the generic data model, these will not be explained or
shown in this section. They are however still supported in the implementation and our results
concerning these can be seen in appendix section B.1. The TSL log is however still presented
with a specific data model, which is shown in the diagram below.

a To normalize the time for future correlation

Chapter 5: Implementation of the Correlation Tool

35

Figure 35: The TSL specific data model

The RoseRTProfilerData class is the main class. It contains the two different TSL blocks and
a time stamp. Both of the block representations contain different controllers, and the
controllers are in turn storing information of the different event types. The TimeStamp class
that is used by both the main class and the BlockOne class, stores the time in a DateEntry
class and in microseconds for hour units and below. The TimeStamp class used by this model
is the same as the one used in the generic data model.

With the TSL data model we took the freedom to suggest some new names for the different
TSL log file attributes. The intra and inter queue is now called internal and external queue to
avoid confusion. Event Type 1 and 3 are both referred to as Transition Profile Events and
Event type 5, 6 and 7 are referred to as Actor Profile Events. Event type 10 and 11 are called
Message Queue Peak Size Event and Message Receive Count Event respectively.

5.3 Graphical User Interface

In this section screenshots will be shown of the different components in the finished
prototype GUI together with explanation and the thoughts behind them. All the event data
representations can also interact with each other depending on what elements that are
selected by the user. This will be explained further in the Interaction between
Representations section. Features not implemented but that might be useful are presented in
the Future Work section.

Information on how the finished interface can be used to find the reason for an error or
certain behavior can be found in appendix section C.2.

5.3.1 Approach

The GUI implementation is based on the previous graphical analysis, and with the help of
our Test Base Application we have constructed a few scenarios where we want our GUI to
be useful.

Since the analysis part is the main focus of this project, the GUI needs to provide fast results,
why the application was implemented as a prototype. In this project there were also no

Chapter 5: Implementation of the Correlation Tool

36

specified requirements of the visual results which led us to conduct the programming
iterative and evolutionary.

The project manager for this thesis has acted customer for the interface functionality and
with his help we choose what functionalities that should get more or less priority throughout
the iterations. Information from the meetings was also used for assumptions on which the
end user might be, to aid when designing the interface.

View components were used for browsing the log files, and editor components were used for
the event data views since they need to take log files as input objecta.

Using the features described in the Graphical Representation section as criteria, we decided
to use the Zest libraryb for the Node Editor, and implement the Time Chart Editor using the
SWT graphics libraryc. The reason why we didn’t chose a more advanced library for the time
chart was because of the lack of support for chart interactions in other examined libraries.
Further information about the graphical libraries that was studied can be seen in appendix
section C.1.

5.3.2 User Analysis

For the users the comprehensive goal of using the Correlation Tool is to profile and correlate
log files using a graphical user interface. Scenarios where the tool might be useful follow
below:

• General examination and comparison of the log files
• Finding the reason of an error or a certain behaviour by the different event data

relationships
• Collecting information about a certain event or process from different log files
• Getting an overview of how the product interacts with the rest of the system through

visual presentation of the propagation tree and different dependencies

The user will also like to interact with the data in a way that is not possible with simple
command prompt printouts. These interactions include sorting, filtering, graphical
representation, comparison and correlation between log files. He might not have knowledge
about the different log structures and the log content, which is why the system should be
intuitive and not include acronyms or pre-knowledge assumptions.

The user might also want to adapt the interface to work with further log files, why the
programming should be conducted in a way that facilitates in future extensions.

5.3.3 Implemented Functionality

5.3.3.1 Navigating the Log Files
The figure below shows the Directory and Logs View. Through the Directory View the user
can browse to the path where the log files are stored, and by clicking the directory of choice
the contents of the directory will be shown in the Logs View. From the logs view the log
files can be navigated. The TSL log file can be extended to show the different event type
contents. By doing this, correlation between specific event types and other event data will be
enabled. Since the TSL log is not yet supported the extending information is for the moment
just dummy data. By selecting one or several log files different actions will be enabled or

a see Eclipse and Eclipse Plug-ins section for information on these components
b Zest is a GEF based visualization toolkit for Eclipse. The primary goal is to provide easy graph
based programming (www.eclipse.org/gef/zest/zest.php).
c SWT is an open source widget toolkit for Java designed to provide efficient, portable access to the
user-interface facilities of the operating systems on which it is implemented (www.eclipse.org/swt).

Chapter 5: Implementation of the Correlation Tool

37

disabled depending on which files and correlations that are supported by the different
actions. The actions can be executed either by clicking the icons on the toolbar or through a
context menu if the right mouse button is clicked.

Currently both specific and generic data models are supported for storing the log file event
data. The user can select which one of these he wants to represent the event data through the
context menu and the Switch Data Model Representation action. The actions will do the
appropriate operations depending on which representation that is currently active
(implemented functionality might vary slightly).

Figure 36: The Navigation View

5.3.3.2 The Table Editor
In the Table Editor shown in Figure 37 and Figure 38 the log file entries are represented in
rows and columns. In the bottom of the editor there are two tabs where the user can choose
to either list all entries in the log file or list all unique component names with collected
information of the components. For the moment all event data in the generic data model is
supported by the entries table view, while KTR and T&E specific data models also support
the component list table view. Figure 25 shows the event data of the KTR log file where
each row represents one log file entry. Figure 38 contains information about the event types
for which each of the component process is responsible, how many other processes the
process interacts with, and the names of these processes.

Different tables can be opened for different log files so that the user can compare the
different event data. Through the column that represents the normalized time stamp the event
data can be synchronized to each other over time. The normalized time stamp corresponds to
the time used in the Time Chart Editora.

The different attribute columns can be sorted depending on what the user would like to find
and compare amongst the event data. If an entry is clicked, example highlighting is used for
the process names to facilitate in navigating the log files. The process names in the selected
entry will be highlighted in the same table and also in other opened tables of the same or of
different event data types.

a The Time Chart Editor will be presented in the The Time Chart Editor section

Chapter 5: Implementation of the Correlation Tool

38

Figure 37: The Table Editor showing the Kernel Trace event data entries

Figure 38: The Table Editor showing the Kernel Trace event data processes

5.3.3.3 The Time Chart Editor
In the Time Chart Editor (shown in Figure 39) the event data entries will automatically be
normalized on the first event that takes place in the log file. If more than one log file is
selected to be shown at the same time, it will also automatically calculate and use the biggest
time span of these for the time scale. If the user needs to synchronize the different event data,
he can select the log files of choice, bring up the context menu and select “Change Time
Delta”. This will bring up a dialog from where the user can specify a positive or negative
time delta. When the user clicks refresh from the Time Chart Refresh button, the charts will
be re-drawn with respect to the new properties.

The Time Chart Editor currently supports any event data with a timestamp that is put into
our generic data model. In this case it will show each of the event data entries as icons on a
time line in the fashion shown in Figure 39. The different event types will be put as
checkboxes to the right of the time line, from where the user can filter what information that
is to be shown. The entries that contain an error will be shown in red color, and the other
entries will be shown in cyan color. When the mouse pointer is moved within one of the
diagrams a trace line will be shown at the position of the mouse pointer and also in the other
opened diagrams. The trace line will show at what time the user currently is pointing and for
all events that take place during that time, in any of the diagrams, the entry icon will show a
highlighting color. If the mouse pointer is left hovering over one or multiple entries, all
entries taking place at that time will be shown in a tool tip table (see Figure 39). The user can

Chapter 5: Implementation of the Correlation Tool

39

also click on the different entry icons which will put them in an activated state (shown with
golden color). If the user clicks the “open entries in external table editor” button, the
activated entries will be opened in a table editor where they can be examined further.

For the CPU Load log specific features are added that allows the data to be shown using a
line diagram. Since there is no parser for this log file yet, dummy data is added when the
user wants to use any CPU Load log for the Time Chart Editor. Currently, only background
and interact quotas will be shown, but this can easily be extended to include any kind of
countable data and support for any kind of log file. An example of the line diagram together
with the entries diagram is shown in Figure 40.

For both of these representations, the data that is shown in the diagram can be traversed by
using the zoom function. Time is in this case specified in microseconds in the start and end
text boxes followed by clicking the refresh button, which will re-draw the entries for the new
specified time.

As mentioned in the Graphical Representation section, this event data representation might
be useful when traversing and comparing events in reference to time. By finding the event
that describes an occurrence in the system, other events taking place at the same time can be
examined to see if one of these events might be the cause of the problem.

Figure 39: The Time Chart Editor together with the Table Editor

Chapter 5: Implementation of the Correlation Tool

40

Figure 40: The Time Chart Editor showing a line chart diagram

5.3.3.4 The Node Editor
The Node Editor can show all event data in the generic data model that has a source and
affected component (in the assigned set of log files this includes only the KTR and TSL log).
All components will be drawn as node and each of the events taking place between them will
be drawn as a connecting arrow as shown in Figure 41. The connecting arrows point either in
one direction or in both depending on the event data, and the amount of interactions is shown
in text next to the arrow. Different layouts can be selected from the Layout Algorithm drop
down menu. Amongst these the Spring layout will try to put groups of connecting nodes
separated from other groups; the Vertical / Horizontal algorithms will put the nodes in either
a vertical or horizontal line; and the Grid layout will put the nodes with equal distance in a
grid fashion.

When one or multiple components are selected these will be highlighted with the first level
highlighting (yellow) and the connecting components will have a second level highlighting
(orange). Also the interactions between the components can be selected. If the Open Table
Editor button is pressed a dynamic table will be opened that filters the content depending on
the node editor selection. It will show the entries that contain the selected node editor source
components, together with selected component pairs if an interaction is selected.

Chapter 5: Implementation of the Correlation Tool

41

Figure 41: The Node Editor

5.3.3.5 Interaction between Representations
If multiple editors are opened at the same time, these will give different highlighting
depending on the user selection in other editors.

When an entry is selected in any of the Table Editors the components in that entry will be
highlighted in the same table and in any other table containing components with the same
name. In the Time Chart Editor, the corresponding entry will be highlighted if they display
event data from the same log file.

If one or multiple nodes and connections are selected in the Node Editor, the entries in the
Table Editors that contain source components with the same name or corresponding
interactions will be highlighted. The same entries will also automatically be activated in the
Time Chart Editor.

Figure 42: Interactions between event data representations in the GUI

5.3.3.6 Other Functionalities
Other functionalities are shown in the figure below and explained further in the following
sub sections.

Chapter 5: Implementation of the Correlation Tool

42

Figure 43: Various GUI functionalities

The Information Dialog
The Information Dialog shows a short description and a summary for the user selected log
files. It also gives a short description of how the different log files can be correlated and
through what tools the correlation can be conducted. Typical information that might be
displayed can be seen in the Information Dialog in Figure 43.

The Filter Dialog
From the Logs View, the user can filter log file event data from a filter dialog. From here the
user can specify a name pattern that will be filtered upon in the selected log files. When the
user has defined the filter, the entries containing the specified criteria will be opened in
separate table editors for each of the log files. The Filter Dialog also shows other useful filter
criteria, but these are not yet implemented.

The Time Delta Dialog
As mentioned in earlier chapters a dialog for changing log file time delta can be opened from
the context menu. From here a positive or negative time delta can be set for the selected log
files. The changes will be shown in Time Chart Editor and Table Editor when these are
opened or refreshed. The next time the Change Time Delta dialog is opened it will display
the currently stored time delta to be changed.

The Text Editor
Any file in the Logs View can also be opened in a Text Editor, where the raw format of the
log files or any other document can be displayed. For TSL log files with XML representation
the content will be printed by the JDOM library in a structured XML format.

Through the context menu option called Profile in Text Editor the TSL log files with XML
representation of event type 1 or 3 can be profiled in text format.

The TSL Bar Chart Editor
As an early demonstration of our example TSL parser for the XML structure, a bar chart can
be shown to profile the different values of TSL event type 1 and 3. The implementation is
made in JFreeCharta and the code includes a function that converts the generated chart to an
image before being shown in the editor.

a JFreeChart is an open-source Java chart library for creating complex charts.

Chapter 5: Implementation of the Correlation Tool

43

5.4 Software Architecture

Below is a simplified diagram of the Correlation Tool that includes the GUI, the engine and
external classes. In the following sections an overview of the data flow between the different
groups of classes will be described.

Figure 44: Software architecture of the Correlation Tool

Information on how the Correlation Tool can be extended with support for a new log file
type can be found in appendix section C.3.

5.4.1 Views

The Navigation View shows directories and files in the system and the extending Directory
View applies a filter to only show the directories.

The Logs View shows the different log files contained in the selected Directory View
directory. From here different actions can be executed depending on what log files that are
selected.

5.4.2 Actions

The existing different actions are the following:

• Change Time Delta Action
• Filter Action
• Log Information Action
• Node Action
• Switch Data Model Representation Action
• Table Action
• Time Chart Action
• TSL Bar Chart Action

When the action is executed it will send references of the input files to the specific dialog or
editor class. Some of dialogs will return information that is then treated by the action. Since

GUI

Engine

Editors

Views

Data
Model

Table Editor

Logs View

Parsers

Log Files

Parser
Engine

Data Model
Extension

Directory View

Navigation View

Time Chart
Editor

Node Editor

Data Model
Extensions

Data Model
Extension

Correlation
Engine

Widgets

Actions

Dialogs Information
Dialog

Filter Dialog

Change Time
Delta Dialog

Chapter 5: Implementation of the Correlation Tool

44

the actions are abstracted from the logs view, new ones can easily be created and added by
the user.

5.4.3 Dialogs

The different dialogs will make use of the Parser and Correlation Engine to either display or
handle the event data from the input files. For the Filter Dialog the filter information added
in the dialog will be returned to the calling action that in turn will open the corresponding
Table Views to show the filtered entries. The Change Delta Dialog will return the user input
and make appropriate changes to the file properties.

5.4.4 Editors

The Editors are created with most of the functionality independent from what data model
that is used. They will however need to be extended with this information before they can
show any information. These extending classes will do calls to the Parser and Correlation
Engine to handle the data, and then display this information in the editor. The editors can be
registered as listener and/or providers for selection changes from other editors and will
change highlighting accordingly.

The Time Chart Editor consists of the Box Chart and Line Chart widgets, and in this case it
is these widgets that are to be extended with data model support. Further widgets could in the
future be added to show other types of time charts.

For all the Editors, the base class extensions can easily be added or removed to support other
data models or other information.

5.4.5 Engine

The Correlation Engine handles tasks that often are used on the event data, these can be tasks
such as finding entries containing certain information or comparing information from
different event data.

When calling the Parser Engine the user specifies if he wants the data to be parsed to the
generic or specific data model, and the engine class will depending on the input file type
make a call the right parser class to handle the log file. The data model will be returned and
then passed along to the class that was asking for the information.

5.4.6 Parsers

The parsers are independent from the rest of the system architecture. Parsers can be
constructed in any way as long as it takes a file as input parameter, interprets the information
and puts it in a data model that can be handled by the system.

Chapter 6: Comparison with the TPTP Tracing and Profiling Project

45

6 Comparison with the TPTP Tracing and Profiling Project

6.1 Using the TPTP Tracing and Profiling Project

The TPTP Tracing and Profiling Project seems like a robust base from where a correlation
tool can be built. It provides help classes and a generic log adapter for parsing log files to the
Common Base Event model, even though this is not an all that intuitive process. When the
parser is built the new log file can be used in the TPTP user interface by importing the log
file to the workspace. At this moment the log file can be viewed in a table view showing the
default table columns or correlated with other log files over time. The table view also
includes basic functions such as filter over severity, find entries by attribute value, and
sorting. If an entry is clicked further information can be shown in a property view where all
the Common Base Event data is shown for that entry.

The project correlation view shows that the log entries are related to each other by drawing
lines between icons that represents the entries. The entries are listed with even spaces
without being related directly to the time. If the user wants to enable further correlations he
has to extend the TPTP correlation engine to describe how the log file event data can be
associated. From the user interface the same correlation view is used, but lines are now
drawn depending on the new criteria. The user can also do rule based analysis on the log
files by extending the TPTP analysis engine and specify a symptoms catalogue.

6.2 Advantages using the TPTP Tracing and Profiling Project

The advantage with TPTP includes a very nice integration with the Eclipse framework and
the abstraction of parsers, correlations and analysis from the main code. The symptoms
catalogue function is a useful tool and was never implemented in our own project. Otherwise
most functions that the TPTP Tracing and Profiling Project tool are also implemented the
Correlation Tool.

Another advantage of TPTP is the Generic Log Adapter which can provides two alternative
ways for the programmers when they are developing parsers for their log files: one is the
rule-based adapter and the other is the static adapter. With rule-based adapter, programmers
do not have to do any programming work to design a parser; they just need to create an
adapter configuration file and then set some rules about the structure and format of the log
files need to be parsed. The rule-based adapter can usually be used for application log files
that have a fixed and simple log record format. A static adapter uses a java class to parse a
log file. In this way, programmers need to do some java programming to read the original
log files and then store them in Common Base Event. This type of adapter can be used for
some complex log files that are difficult to summarize by rules.

6.3 Advantages using the Correlation Tool

The Correlation Tool has many general and log specific functionality that is not included in
the TPTP Tracing and Profiling Project basic functionality. These include support for
opening several table views with selection listening and highlighting to facilitate comparison
and manual correlation; a process summary table extension for Kernel Trace and Trace and
Error Event Data; a time chart view in relation to the actual time with event type filtering;
and the node view to track process dependencies.

Chapter 7: Future Work

46

7 Future Work

In this section suggestions will be provided on future work that can be done on this project.
Areas that will be handled are future correlation analysis, implementation, and log file
structure. For the log file structure discussion and evaluation of the log files will be provided
together with suggestions on how these can be improved to better support correlation with
other log files.

7.1 Correlation Analysis

CPP system information is recorded in many different log files from where the assigned set
of log files for this project is just a few. By doing further analysis on other log files it will be
possible to provide further information to complement the analysis handled in this thesis as
well as providing information between the new log files. In a future implementation, support
for further log files would also give more detailed information and a more complete picture
of the system which would facilitate when tracing errors or system behavior.

Correlation of log files between different boards should also be analyzed to see if useful
information can be extracted and how this information can be presented. This could be done
by designing two simple applications that communicates with each other while running on
different boards. The Test Base Application can be improved to support this function by
adding code for managing the board information and identity.

Correlation beyond the observer level would benefit in automated functions to give warnings
if something is out of the ordinary. One example is the use of rule sets that can define what a
process should and shouldn’t do, or how the events should occur in time and in relation to
each other.

7.2 Implementation

Since the Correlation Tool provided by this project was built for getting fast results, the base
code is not robust enough to be used for a finished product. The purpose for the tool should
instead be to add extensions for further analysis of event data, correlations, graphical
representation and user interaction. If a new product is to be developed in the future, we
recommend using the TPTP trace and profile framework. This framework seems to have a
robust implementation of basic functionalities that could be a good base for extending with
the functionalities suggested in this project together with other Ericsson log file specific
functionalities.

7.2.1 Extension of the Correlation Tool

7.2.1.1 Parsers and Data Model
The generic data model provided with this project work should be sufficient for simple log
files and could in other cases easily be extended with further attributes; but for a generic data
model that hopefully can be used for any kind of log file we recommend changing the
present data model to the Common Base Event. This requires some studies in how Common
Base Event works, but after that it should be simple code substitution where information is
retrieved in the data model extension classes.

In order to extend the Correlation Tool with a new log file type, a new parser has to be
developed. If the log file is easy to summarize with rules, an adapter can be used to aid in
this process. By using the adapter the developer can define the parser by specifying rules
instead of doing actual programming and as a result they do not have to understand the
structure of the data model.

Chapter 7: Future Work

47

As mentioned earlier, the T&E log file currently stores structured messages in some of the
defined trace groups. If the parsers are extended to handle this information before storing to
the data model, further information and correlations can be provided by the Correlation Tool.

7.2.1.2 Dynamically Adding Log Files
Yet another advantage that we found when using a generic data model is that it would be
much easier to implement functionality for dynamically adding support of new log file types.
If this feature is implemented the user would be able to dynamically tell the system about a
new parser and for what log file type it should be assigned, instead of having to make
changes directly in the code.

7.2.1.3 Support for the TSL log file
As mentioned in the Correlation Analysis section, it would be very interesting to correlate
the TSL log with the KTR and T&E logs, since this would bridge the gap between product
debugging and system problem determination. This project presents several different ways in
how this can be done, but as of now there is no parser or implementation to verify the results
in a practical context. It is of course possible to create a text parser for the original TSL log
file, but the structure of the log file is complex and is not designed for being parsed. If a
XML representation of the log file is provided the parser could be better structured and more
reliable. Since the TSL log file has a more complex structure which might be hard to
represent with a generic data model we suggest that the specific data model is used also for
future work.

The TSL Event Type 8 (RTMutex contention count) was never analyzed in this project, for
further implementation, it is necessary to do some investigations and analysis about the
RTMutex contention.

7.2.1.4 The Editors
The editors could benefit from being further integrated with the Eclipse framework. This
includes integrations such as Eclipse rulers that can show where errors and warnings take
place in comprehensive information and properties dialog to show further information about
the log files. Each of the editors should also include more advanced features for searching
and filtering. It would be a great advantage for the user if he could filter on any attribute to
reduce information to contain only what is interesting. How each specific editor can be
further developed follows in the sections below.

Information about graphical libraries that can be used for future work can be found in
appendix section C.1.

The Table Editor
Some event data information might be too comprehensive to show in a table. An example of
this is the message attribute in the T&E log that sometimes can be too long for a good
overview in the table editor. A solution could be to only show basic information in the table
editor and make use of a dialog or another view to show the more detailed information. The
more detailed information should in this case be connected to the table in some way, for
example by selecting or double clicking an entry. It would also be good if the user could
export the information in the table editor as a spread sheet. This would allow the user to
convert the data into any type of diagram or report.

The Table Editor could also benefit from having a fully implemented highlighting
functionality. For the moment example highlighting is supported for component names, but
this could be extended to any of the attributes in the generic data model. The user should also
have the option to select what columns that are shown, since big log file structures otherwise
wouldn’t give any good overview of the data.

Chapter 7: Future Work

48

The Time Chart Editor
For better user interaction the Time Chart Editor could benefit from interactive zoom and
time delta functionality. Here the user could click, drag or scroll when zooming or setting the
time delta functionality. If the user still wants to include a zoom function using values, the
possibility to specify time in other units than micro seconds should be included.

For the moment the Time Chart Editor is built using raw SWT graphics. If it was to use SWT
components instead this would enable basic SWT functionalities such as component based
tooltips, selection providers, drag and drop, etc.

Selection providers should also be implemented so that selection of the entries can be
reflected in the information shown in other editors.

The Node Editor
The current implementation uses the default plot algorithms given by the Zest library. If
there are many components to plot, the plots can sometimes be too messy for giving a good
overview. To solve this, additional algorithms can be implemented to arrange the nodes in a
better way. There are also other libraries that are specialized in similar areas that might be
better suited.

If the TSL event data is to be supported, the Node Editor could be extended for traversing
between the KTR component representations of OSE signal propagation down to the lower
levels of the TSL transition representations (as suggested in the Graphical Representation
section). In this case the parent component can be used as a filter to show a limited amount
of child components. If the developer decides to do the implementation in another or
additional way it is still essential that a filter is used since the information in lower levels
otherwise would be too comprehensive. This includes the current implementation of KTR
processes that in some cases will plot too many processes for giving a good overview.

7.3 Log File Evaluation and Suggestions

If an implementation is to be made in the future it would be beneficial if present log files are
adapted-, and new log files are designed with this in consideration. The following sections
will handle evaluation of the log files that was used in this project and suggestions for a good
log file structure. References in these sections are used for the different formats, while the
criteria and conclusions are based our experiences throughout this project.

7.3.1 Log File Structures

A few criteria for a good log file strategy are collected in the table below

Criterion Situation
Readability If the log file is to be read directly without any application to first

handle the data, the structure should be easy to read for the user.
Since the log file also might be interesting for a user not familiar
with these particular attributes it is also good if abbreviations and
acronyms are avoided. Everything in the log file shouldn’t always
be explained since this could inflict with the readability, but in
these situations explanations should instead be provided in an
external document (to avoid the necessity of experts).

Easy to implement The structure of the log file should not be a tedious task for the
programmer to achieve.

Easy to parse If the log file is to be interpreted by a parser, the log file structure
should be adapted to facilitate in this task.

Table 4: Log file criteria

Chapter 7: Future Work

49

For the set of log files that was used in this project an observation that applies for all log files
is that readability is the property that is put first. The event data representations use some
acronyms, but this is still acceptable since an external document with log structure
explanations often can be found. Since all of the logs that were given for the project are
represented by pure text output the implementation part is easy to achieve and is no issue in
these cases. For the easy to parse criterion, the result varies depending on the log file. Using
text output requires the use of string operations and regular expressions, but can in some
cases be facilitated by making use of external log parsing applications. For most of the logs
the output is strongly structured in a way that doesn’t make this task too hard. The exception
is the TSL log that has a large content and that wasn’t designed for text parsing.

7.3.2 Log File Formats

Four different formats were studied to find out which one would be best suited for the
different types of log files. These file formats are Text format, XML format, YAML format
and Common Base Event. Example printouts using these formats are shown in appendix
section D.5. Below is a table showing advantages and disadvantages for each of the formats.

Format Advantages Disadvantages
Text Format It is fast to implement and gives

readable log file output.
It is not the best format for
parsing, but if the log file is not to
complex and is strongly
formatted, a parser could be
created using regular expressions

XML Formata This format is good when being
interpreted by applications or
parsers, since libraries for XML
operations commonly are
provided for most programming
languages.

It is inadequate for being read in
raw output.

YAML b Good for being interpreted with
applications or parsers and at the
same time it gives readable raw
log file output.

Lacks in support for real time
reading. If the user that is printing
the log file is not familiar with the
structural rules he has to first
learn about these. This is not a
common standard for log files,
why other situations might occur
where YAML is not supported.

Common Base
Event

It is easy to migrate between
applications if Common Base
Event is used.

Implementation classes are
provided for Java, to facilitate in
the log file output, but the format
can also be used in any other
programming languages.

The Common Base Event is
represented by XML format, but
is even less readable than a user
defined XML structure.

Table 5: Log file formats, advantages and disadvantages

We believe that the best way for now is to use XML for log files that are not meant to be
read manually, and use a strongly formatted text format where the log file needs to be read

a The Extensible Markup Language (XML) is a general-purpose extensible markup language
b YAML is a human-readable data serialization format that takes concepts languages such as XML, C,
Python and Perl

Chapter 7: Future Work

50

from raw output. From these formats the log files can either be parsed to a user defined data
model or to a Common Base Event structure when being used by the application.

7.3.3 Log File Content

7.3.3.1 Same format of data
If the log file attributes have the same format for similar data unnecessary calculations can
be avoided. This is always convenient, but would be more valuable at real-time monitoring
since calculation time is more important in this case.

7.3.3.2 Acronyms, abbreviations and special definitions
Even if the log files have a good structure and are readable for the immediate user, it might
still not be intuitive for other users. This might occur when lots of acronyms, abbreviations
or special definitions are used which implicates the need of experts and communication
overhead when working with the log files. These should therefore only be used if it helps the
readability of the log file; and when they are used, it would be good with a reference to an
external document explaining the definitions.

7.3.3.3 Log file specific comments

Kernel Trace Log
The KTR log is a bit ambiguous with the “from:” and “to:" fields in the log events. When the
event action is a send action the process specified in the “from:” clause it the source process
(the process that is responsible for the action) while if the event action is a receive action the
source process will be the process in the “to:” clause.

Trace and Error Log
The total memory that could be used for Trace and Error log is not very large, if the memory
size was extended it would be possible to store and examine more entries. The accuracy of
the time cannot distinguish the time when a signal was sent out and when it was received. It
is better if the accuracy could achieve microseconds.

In Trace and Error log, the OSE signal number could be represented both in decimal or
hexadecimal, while in KTR log, it uses decimal to represent a signal. If both of the log files
represents the signals in the same format it would be easier to compare these when read from
the original output.

Execution Address Profile Log
For the moment the EAP log contains further information of the TSL transitions, but without
the possibility to correlate these two event data. This could be possible either if a naming
convention is introduced containing the capsule source and destination states in the TSL log
file together with actor name, or if further data is introduced in these or through other log
files.

CPU Load Log
As mentioned in The Assigned Set of Log Files section, there are four types of measurements
that can be shown with the CPU Load log. Here only the CPU peak load log contains
timestamps, while the others contain the integration interval of how long it takes to measure
the CPU utilization. For further correlation between the CPU Load log and other log files it
would be valuable if timestamps were added for the start and stop time of these
measurements.

The accuracy of CPU peak load is 0.01%, while for other CPU Load logs measured for user
specified objects such as process name, process priority or process type the accuracy is 1%.
Since many of the specified objects might have less than 2% or 1% but more than 0% CPU
load, it would be interesting and useful to have a better accuracy also here.

Chapter 7: Future Work

51

TSL Log
In Block 1, Event Type 11 the present log file gives the label OSE intra where it should be
UML intra. The intra and inter queues and signals can also easily be misread and we feel it
would be better to refer to these as internal and external.

This log file is also very comprehensive which makes it hard to compare event types
between different controllers and blocks. For this reason it would be much easier to traverse
the information with the help of an external application. To do this it is however required
that the log file is represented in an XML log file to facilitate in parsing.

Chapter 8: Concluding Discussion

52

8 Concluding Discussion

8.1 Summary of the Results

Correlation research for retrospective log analysis at the Ericsson CPP system hasn’t been
done before. This project is a first approach to find out what correlations that is possible and
if a tool for interacting with the event data and analyzing correlations is of interest. In this
project we have shown that correlations are possible, and we have analyzed the different
possibilities for which of these that might give interesting and valuable information.

The correlation possibility analysis was based on log files collected from the Test Base
Application. By designing this application we could collect the required log files and get a
better understanding of them and their relations. During correlation analysis we found some
weaknesses of the log files including time accuracy and the log structure. We have
mentioned these together with some suggestions for improvements in the Future Work
section.

Further research contributions include parsing of the log files, data model approaches for the
event data, and graphical representation of event data and event data correlations. For the
TSL log file we have provided a suggested XML structure and a more extensive graphical
presentation analysis.

The implemented correlation tool provides data models and parsers for the different log files
and a graphical user interface through where the user can profile and correlate the event data.
Various concepts of presenting the event data and correlations have been verified through the
interface and further suggestions have been provided for different functionalities that might
be of interest. The Correlation Tool is also a finished prototype that due to de-coherence
easily can be extended with further parsers, data models, editors and views.

In a late part of the thesis we found out about TPTP Trace and Profiling Framework that we
consider to be very relevant to this project. This application was evaluated and compared
with our own achieved results, and based on these we came up with suggestions in the
Future Work section. In the same section we will also give suggestions on how the project
can be developed further which includes a sub section where we evaluated and gave
suggestions on the log file structures.

8.2 Complications

In this project we really wanted to do an implementation to verify the TSL correlations since
these were some of our more important results. We came with the conclusion that the log file
presentation wasn’t suitable to be parsed in the present format why we designed and
suggested an XML representation instead. When we presented these results at a technical
presentation at Ericsson it was said that the representation would be implemented for us to
use, why we chose to wait with this part of the project. When we realized that the
representation wasn’t going to be implemented in time it was too late for us to come up with
any optional implementation. We do however consider the analysis results to be our main
results event though they were not verified in a practical context. We also decided to
compensate with further graphical analysis and provided diagrams on how an interface
implementation might look like.

When we found out about the TPTP trace and profiling project and Common Base Event at a
late stage in the project, we first did not know what to do with this information. It did
however turn out to be a good complement to the report since it allowed us to evaluate our
own results better in a comparison and also to give better suggestions in the Future Work
section.

Chapter 8: Concluding Discussion

53

8.3 Alternative solutions

8.3.1 Pre-processing of Event Data

If the event data is pre-processed before the information is stored in a data model the data
content can be reduced and a first detection of interesting data can be done at an early stage.

A filtering function at this stage might be useful if the data is comprehensive or if there is
need to save bandwidth, to limit how much data that is stored or handled at one time. Often
this is used when the purpose of the log analysis is clear, such as if intrusion attempts in a
network system need to be spotted. In these situations entries that are not relevant might be
filtered without affecting the analysis [27]. In our own case the purpose of our log analysis in
not clear, the data that is to be used is not very comprehensive, and there is also no need to
save bandwidth, why this function as far as we know is redundant.

A detection function might be good to find anomalies in the log file and mark this in the data
model so that it is later easier to spot or compare later in an application. This function is
more useful when there is a rule set so that one knows that something might be strange, and
is probably more useful in a real time system when anomalies should be detected at an early
stage. It might however be a good idea in the case of this project to set a severity value for
each of the entries, so that they later can be sorted and compared over severity [24]. This can
be set either if a pattern in the log entry is known, or by the log entry type. The severity
value is used by the Common Base Event that was discussed earlier.

Other common pre-processing functions include grouping of events of the same type taking
place at the same time [28]. This could also be done in our case, but since the data that we
have been working with is not very comprehensive there wouldn’t be much to gain by doing
this.

8.3.2 Data Model vs. Data Base

We chose to store the event data in a class oriented data model since the time limit didn’t
allow us to get familiar with or analyze a data base approach. Advantages of using a data
base could be already defined functions for comparing, filtering and retrieving information.
It would also support larger data sets in comparison with the present data model and it
includes predefined functionality for saving the content information.

Chapter 9: References

54

9 References

[1] Embedded System Design: A Unified Hardware/Software Introduction
Frank Vahid, Tony Givargis; Wiley I.S.ed edition; October 2001

[2] Designing Embedded Hardware, Second Edition
John Catsoulis; O’Reilly Media Inc; May 2005

[3] ThreadX product homepage
http://www.rtos.com/page/product.php?id=1
Last viewed 28th of February 2008

[4] LynxOS RTOS product homepage
http://www.lynuxworks.com/rtos/rtos.php
Last viewed 10th of Mars 2008

[5] OSE: Real-Time Operating System and Embedded Development
Enea, Product brochure, http://www.enea.com

[6] High Speed and Robust Event Correlation
Yechiam Yemini, David Ohsie; IEEE Communications Magazine 34(5), pp. 82-
90; May 1996

[7] Event Pattern Detection for Embedded Systems
Jan Carlson; Mälsardalen University Press Dissertations, No. 44; 2007

[8] Actions and Events in Interval Temporal Logic
James F. Allen, George Ferguson; The University of Rochester, New York,
Technical Report 521; July 1994

[9] Tools and Techniques for Event Log Analysis
Risto Vaarandi; Tallin University of Technology, Doctoral Dissertation; June
2005

[10] Security Warrior
Cyrus Peikari, Anton Chuvakin; O’Reilly Media Inc; February 2004

[11] CPP Survey
Ericsson Internal Documentation

[12] Remote Debug Support
Ericsson Internal Documentation

[13] Design Rules for Trace and Error Users
Ericsson Internal Documentation

[14] Profiling
Ericsson Internal Documentation

[15] Execution Address Profiler User Guide
Ericsson Internal Documentation

[16] ClearCase
Ericsson Internal Documentation

[17] The Eclipse home page
http://www.eclipse.org
Last viewed 28th of Mars 2008

[18] The Eclipse help system
http://help.eclipse.org

Chapter 9: References

55

Last viewed 28th of Mars 2008

[19] ruleCore Complex Event Processing Server, product homepage
www.rulecore.com
Last viewed 21th of April 2008

[20] LogSurfer product homepage
http://www.crypt.gen.nz/logsurfer/
Last viewed 23th of April 2008

[21] SEC – Simple Event Correlator, product homepage
http://www.estpak.ee/~risto/sec/
Last viewed 23th of April 2008

[22] EvenLog Analyzer product homepage
http://manageengine.adventnet.com/products/eventlog/index.html
Last viewed 19th of April 2008

[23] TPTP – Test and Performance Tools Platform, project homepage
http://www.eclipse.org/tptp/index.php
Last viewed 5th of May 2008

[24] Canonical Situation Data Format: The Common Base Event V.1.0.1
David Ogle, Heather Kreger, Abdi Salahshour, Jason Cornpropst, Eric Babadie,
Mandy Chessell, Bill Horn, John Gerken, James Schoech, Mike Wamboldt;
Version specifications, published 2004

[25] Users Guide for RoseRT Target Service Libraries
Ericsson Internal Documentation

[26] Designing Interactive Systems
David Benyon, Phil Turner, Susan Turner; Addison Wesley; March 2005

[27] The Intelligent IDS: Next Generation Network Intrusion management Revealed
Andree Yee; NFR Security Inc; July 2003

[28] Aggregation and Correlation of Intrusion-Detection Alerts
Hervé Debar, Andreas Wespi; Lecture Notes In Computer Science, Vol. 2212, pp.
85-103; August 2001

Chapter 10: Terminology

56

10 Terminology

10.1 Abbreviations

Abbreviation Description
API Application Programming interface
AWT Abstract Window Toolkit
BP Board Processor
CBE Common Base Event
CPP Connectivity Packet Platform
DTE Development and Troubleshooting Environment
EAP Execution Address Profiler (log file type)
GUI Graphical User Interface
KTR Kernel Trace (log file type)
LM Load Module
MP Main Processor
MPC Main Processor Cluster
MSP Media Stream Processor
MVC Model-View-Controller
OSE Operating System Enea
RDS Remote Debug Support
RoseRT Rational Rose Real Time
RTOS Real Time Operating System
SP Special purpose Processor
T&E Trace and Error (log file type)
TSL Target Service Library (log file type)
SWT Standard Widget Toolkit
UI User Interface
UML Unified Modeling Language
XML Extensible Markup Language

10.2 Definitions

Term Definition
Abstract Window Toolkit
(AWT)

AWT is Java's original platform-independent windowing,
graphics, and user-interface widget toolkit.

Actor A RoseRT actor is an instance of RoseRT capsules. Multiple
actors can execute at the same time.

Capsule A RoseRT capsule contains states and transitions and
provides coordinate behavior for the system. These can be
instantiated as actors. (see Rational Rose Real Time, section
2.5.1)

Common Base Event Common Base Event is an IBM purposed standard for
events in various applications (see Common Base Event,
section 3.2)

Evolutionary Development Development where the specifications are defined
throughout the development itself. It usually follows the
following four steps: idea, specification, implementation,
evaluation and give a new specification

JDOM library JDOM is a Java-based solution for accessing, manipulating,
and outputting XML data from Java code. More information
about the JDOM library can be found at http://www.jdom.org.

Chapter 10: Terminology

57

Load Module The load module corresponds to a program that is built for
the OSE operating system. When loaded to the system the
program will be executed as one or multiple processes.

MVC architecture MVS is short for Model-View-Controller and the MVC
architecture is divided into these three parts. The Model
represents the data and information of the application and
the rules used to manipulate the data; the View corresponds
to elements of the user interface such as text, checkbox
items, and so forth; and the Controller manages details
involving the communication to the model of user actions
such as keystrokes and mouse movements.

Remote Debug Support
(RDS)

Remote Debug Support is a system level debugger for the
CPP node (see Remote Debug Support 2.4.1).

Swing Swing is a widget toolkit for Java. It provides a native look
and feel that emulates the look and feel of several platforms
and it also supports changing the look and feel during
runtime.

SWT The Standard Widget Toolkit (SWT), is a set of Java class
libraries created to provide platform native user interfaces
(see Standard Widget Toolkit, section 2.6.2)

XML The Extensible Markup Language (XML) is a general-
purpose extensible markup language. More extensive
information can be found at http://www.w3.org/XML/.

Appendix A: Individual Thesis Contributions

58

Appendix A: Individual Thesis Contributions

Details about each of the individual contributions of this thesis can be seen in the table
below. Note that the project contributions not always correspond to the contributions in the
report.

Chapter Tobias Contributions Xingya’s Contributions
1 Introduction Report: 1.1, 1.2, 1.3, 1.4, 1.5 Report: 1.1

2

Background Helped in gathering information for all of the
theoretical background

Report: 2.6

Helped in gathering information for all of the
theoretical background

Report: 2.1, 2.2, 2.3, 2.4, 2.3

3 Related Work Gathered information about Common Base Event
and TPTP, and helped in all of the other parts

Report: 3.1.5, 3.1.6; 3.2

Helped in all the parts except for Common Base
Event and TPTP

Report: 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.6

4

Event Data Analysis - Analyzed all the different log files for data that
can be extracted and correlation possibilities

- Analyzed graphical representation for all the
log files except the TSL log

Report: 4.1, 4.1.1, 4.1.2; 4.3, 4.3.1, 4.3.2.1,
4.3.2.2, 4.3.2.3, 4.3.2.4, 4.3.2.6, 4.3.3; 4.4, 4.4.1,
4.4.2, 4.4.3, 4.4.4, 4.4.5

- Analyzed all the different log files for data
that can be extracted and correlation
possibilities

- Created the Test Base Application and
collected the log files with appropriate tools

- Analyzed graphical representation for all the
log files including the TSL log

Report: 4.1.3, 4.1.4, 4.1.5; 4.2; 4.3.1, 4.3.2.5;
4.4.6

5 Implementation of the
Correlation Tool

- Interpreters for Kernel Trace and Trace and
Error log

- XML log representation for the TSL log
- Designed the generic data model
- Helped to designed the data model for the TSL

log
- Analysis results regarding different graphical

libraries to use with the GUI
- Implemented the Correlation Tool application

including the graphical user interface

Report: 5.1, 5.2, 5.3, 5.4

- Interpreter for the Execution Address Profiler
log

- Helped to design the data model for the TSL
log

-
6 Comparison with the

TPTP Tracing and
Profiling Project

Compared the TPTP Tracing and Profiling
Project with the Correlation Tool provided by
this project

Report: 6.1, 6.2, 6.3

Tried out the Generic Log Adapter included in
the TPTP Tracing and Profiling Project

Report: 6.2

7 Future Work - Wrote about suggested future work in the area
of the project, including correlation analysis,
implementation and log file structures

- Evaluated the log file structures

Report: 7.1, 7.2, 7.2.1.1, 7.2.1.2, 7.2.1.4 , 7.3,
7.3.1, 7.3.2, 7.3.3.1, 7.3.3.2, 7.3.3.3

- Wrote about future work for the Test Base
Application, support for the TSL log file and
about extending with a generic log adapter.

- Evaluated the T&E, CPU Load and TSL
specific log file structures

Report: 7.1, 7.2.1.1, 7.2.1.3, 7.3.3.3

8 Concluding Discussion Wrote summary of the results, complications in
the project and alternative solutions

Report: 8.1, 8.2, 8.3

Wrote parts in the Summary of the Results
section

Report: 8.1

9 References Collected and read references from all areas in
the project

Report: 9

Collected and read references from all areas in
the project

Report: 9

10 Terminology Report: 10.1, 10.2 Report: 10.1
Appendix A: Individual
Thesis Contributions

Report: Appendix A -

Appendix B: Data Models Report: B.1, B.2, B.3 Report: B.3
Appendix C: The
Correlation Tool

Report: C.1, C.2Error! Refer ence source not
found., C.3

-

Appendix D: Log Files Report: D.2, D.4, D.5 Report: D.1, D.2, D.3

Table 6: Individual thesis contributions

Appendix B: Data Models

59

Appendix B: Data Models

B.1 Specific Data Models for Kernel Trace, Trace and Error and CPU Load
Event Data

Figure 45: Kernel Trace, Trace and Error and CPU Load data models

The data model in Figure 45 represents the KTR, T&E and the CPU Load Event Data. All of
them include a main event data class with arrays of the entries. The KTR data model
represents the source and destination process with an ActorProcess class and the signal data
is stored in the SignalData class. The T&E data model has two different representations for
the component classes depending on if the component is a method or process. The CPU
Load data model has a defined class to store the priority load element. The TimeStamp class
that all of the separate models have in common stores the time in the DateEntry class and in
microseconds for hour units and below. The full date and time can be collected through the
toString() function.

Trace and Error Event DataKernel Trace Event Data

CPU Load Event Data

Appendix B: Data Models

60

B.2 Decision points, Specific vs. Generic Data Model

Decision points Specific Data Models Generic Data Model
Information
retrieval

With this strategy it is possible to
specify the exact attributes by name
and where to find them in the data
model. The developer doesn’t have
to know specifics about the log file
to use the data model.

When using this approach the
attribute names will have to be at
a generic level.

Implementation
difficulties

The implementation design can
follow a logical pattern given by
the log file structure and would be a
straight forward process.

When implementing the data model
in an application it has to have
support for all the different specific
data models.

The abstraction is not very good,
and the developer has to change
already written code to add support
for new log data.

It could sometimes be hard to
create a generic design if the log
files have big variation in
structure.

When developing an application
the operations that can be
conducted on all the different
kinds of log files only have to be
written once.

This approach will contribute in
abstracting the code and facilitate
adapting new log and trace data.

Extension
possibilities

When adding support for further
log files the user is required to
program a parser, create a new data
model, and extend the existing
classes to support the new data
model.

A new parser is all that is needed
when extending with support for a
new log file type with basic
features.

The application still needs to be
extended to use the more specific
information in the log files, but
this can be done in a higher
abstraction layer than when using
specified data models.

Table 7: Decision points, specific vs. generic data model

Appendix B: Data Models

61

B.3 Common Base Event Class Hierarchy

Figure 46: The Common Base Event class hierarchy

Appendix D: TPTP Tracing and Profiling Project

62

Appendix C: The Correlation Tool

C.1 Java Graphic Libraries

The Criteria and Result sections below will explain the process used to chose the graphics
library to be used with this project. The Further Information section will give further
information about graphical libraries for future work.

C.1.1 Criteria

When we started to look for graphics libraries we knew that we wanted to be able to draw a
time axis and clickable objects. We also wanted to be able to draw diagrams that could show
CPU load and relate this to countable entries from the other logs, i.e. signal count,
transaction costs, process hit-rate etc. The libraries should be SWT compliant since the
eclipse platform is built using this library for views and graphics.

C.1.2 Result

The last criterion came to be somewhat of an obstacle. Even though many of the libraries we
looked at was said to be SWT compliant, it usually meant that the diagrams could be
translated into an image before being shown in the eclipse view, which makes the operation
of clicking the chart harder to achieve.

Some of the libraries that seems most promising and that we have tried out are:

• GEF (Graphical Editing Framework) (http://www.eclipse.org/gef)
• Zest (http://www.eclipse.org/gef/zest)
• JGraph (www.jgraph.com)
• JFreeChart (www.jfree.org/jfreechart)
• Actuate BIRT (www.birt-exchange.com)
• SWT library (http://www.eclipse.org/swt)

GEF and Zest are fully SWT compliant, but miss the function to draw axis’s and diagrams.
JGraph, JFreeChart and Actuate BIRT all seem easy to use and have nice diagram functions,
but have to be translated into an image before they can be shown in an eclipse plug-in. Since
no one of the above libraries (and also other libraries) seemed to be sufficient we thought
about using images for showing the diagrams, and use SWT graphics to manually draw the
clickable graphs. It might also be possible to create nice axis’s with one of the above
libraries as an image, and then draw clickable SWT graphics on top of the image.

For graphically represent relations between states and processes (e.g. transitions between
states and signals between processes) Zest could be a good option. Here you can add nodes
and connections between them and make both the nodes and connection clickable. The same
operations can also be done in GEF and JGraph, but Zest seems easier to work with.

C.1.3 Further Information

We also found other graphical libraries later in the project that seems promising, but that we
never analyzed further. These include:

• aiSee (http://www.aisee.com)
• EMF (http://www.eclipse.org/modeling/emf/)

Appendix D: TPTP Tracing and Profiling Project

63

The Birt-Exchange community site (www.birt-exchange.com) was created late in our project,
why we didn’t further explore this place. It was created due to the demand for supported
products and services based on Eclipse BIRT and it could be used to further examine BIRT
support for spreadsheets and diagrams in Java.

The Zest library has released a new version with new features since the one we used in this
project.

Appendix D: TPTP Tracing and Profiling Project

64

C.2 Using the Correlation Tool

The user should collect the log files that might be relevant for tracing the behavior (amongst
those that is currently supported). For the application to recognize the different log files these
has to be named with the file endings ktr, tae, eap, tsl and cpu for the Kernel Trace, Trace
and Error, Execution Address Profiler, TSL and CPU Load log respectively. When the logs
are collected Eclipse should be opened including the Correlation Tool plug-in. The
Correlation Tool perspective can then be opened in the “Window/Open Perspective/Other”
menu option and the user can navigate to where the log files are stored through the
Navigation View. From here the user can examine the event data in two different ways.
Either by comparing events taking place at the same time as the system behavior, or by
finding process dependencies.

For comparing events taking place at the same time the user can select the log files
containing time stamps and select “Open with time chart editor” from the context menu. If
there is need of time synchronization the user can change the time delta for the log files by
selecting respective log file and choose “Change Time Delta” from the context menu, enter
the time difference, close the dialog, and finally update the Time Chart. By finding the event
that describes the occurrence of the system behavior, the event data taking place at the same
time can be examined to see if one of these events can be the cause of the problem. The user
can observe the entry information by hover the mouse pointer over the relevant entry icon, or
by selecting the relevant entries and press the “Open with table editor” button which will
show more extensive information in a table editor.

For finding process dependencies the user can select one or multiple Kernel Trace log files
and choose “Open with table editor”. By clicking the process tab in bottom left corner or the
table editor, all unique processes are listed together with the processes they interact with.
The same information can also be seen graphically by instead selecting “Open with node
editor” from the context menu. If the user knows at what process a certain system behavior
takes place, he now knows what other processes that interacts with this processes which
might be possible reasons for this behavior. Further information about these processes can be
found by selecting the log files containing information about the processes and selecting
“Profile using filter”. Here the user can enter the name of the processes and press the okay
button, which will open table editors from all the selected log files containing information
about the process.

For further functionalities that can be used with the Correlation Tool see the Implemented
Functionality section (section 5.3.3).

Appendix D: TPTP Tracing and Profiling Project

65

C.3 Adding support for a new log file type

Adding support for a new log file type can be done in the following two steps:

1. A parser has to be created and registered in the Parser Engine. The Parser has to take
a file as input, interpret the log file and put the information in the data model.

2. The new log file type should then be set as enabled for the Logs View actions of
interest in the Logs View class.

If the functionality given by the Correlation Tool is not sufficient, the Logs View action can
make a call to a class extending one of the present editors. Correlation or profiling
calculations can be added to the Correlation Engine while the editor is responsible for
showing this information.

Appendix E: Log Files

66

Appendix D: Log Files

D.1 Example Log File Outputs

D.1.1 Trace and Error log, example output
…
[1970-01-13 01:07:35.248] Thread1 ../../errorHandle r.cc:712 TRACE7:

regController: ctr = 55D30FF8, ctrListHead = 55D2AA 40, pid = F047B
[1970-01-13 01:07:35.248] Thread2 ../../errorHandle r.cc:712 TRACE7:

regController: ctr = 55D30EA8, ctrListHead = 55D2AC 10, pid = E0475
[1970-01-13 01:07:35.248] Thread3 ../../errorHandle r.cc:712 TRACE7:

regController: ctr = 55D318F8, ctrListHead = 55D2AC 60, pid = 8047C
…
[1970-01-13 01:08:25.316] application ../../slaveTs lTopC.cpp:289 INFO:

incarnating all the actors of application

[1970-01-13 01:08:25.316] slaveTslDummyCR1 ../../in itializeAll.cc:182 TRACE5:
 [RTProfiler EVENT_TYPE_9 - Actor Information]
 Actor: slaveTslDummyCR1[0]

Actor adress: 1439870592
 Physical thread (controller name): Thread 5
 OSE Process: 525437

[1970-01-13 01:08:25.316] slaveTslDummyCR1 ../enter State.cc:59 STATE CHANGE:

waitForDummySig

[1970-01-13 01:08:25.316] slavewaitCR1 ../../initia lizeAll.cc:182 TRACE5:
[RTProfiler EVENT_TYPE_9 - Actor Information]

 Actor: slavewaitCR1[0]
 Actor adress: 1439870304
 Physical thread (controller name): Thread 1
 OSE Process: 984187
…
[1970-01-13 01:09:03.468] slavewaitCR1 ../../logMsg .cc:76 REC SIG:

Signal:READ_REQUEST, Port:slaveWait[0], Sender:read ValidCR1[0]
[1970-01-13 01:09:03.468] slavewaitCR1 ../../RTActo r/logMsg.cc:130 PARAM:

Signal:READ_REQUEST, Data:osesig: 1001
[1970-01-13 01:09:03.468] slavewaitCR1 ../../RTActo r/enterState.cc:59 STATE CHANGE:

waitForValidateDataAck
[1970-01-13 01:09:03.468] readValidCR1 ../../logMsg .cc:76 REC SIG:

Signal:VALIDATE_DATA, Port:readValid_to_slaveWait[0], Sender:slavewaitCR1[0]
[1970-01-13 01:09:03.468] readValidCR1 ../../logMsg .cc:130 PARAM:

Signal:VALIDATE_DATA, Data:void:
[1970-01-13 01:09:03.468] readValidCR1 ../../enterS tate.cc:59 STATE CHANGE:

waitForLockDataAck
…
[1970-01-13 01:09:07.412] application ../src/target /Cello/RTActor/badMessage.cc:196 ERROR:

application(0)@stop received unexpected message: To p%reqLoad data: void
…

Appendix E: Log Files

67

D.1.2 Kernel Trace log, example output
…
(7) Time: 3178142.655 ms
 Create process slave1:Thread1
…
(11) Time: 3178142.834 ms
 Create process slave1:Thread2
…

 (15) Time: 3178143.041 ms
 Create process slave1:Thread3
…
(111) Time: 3246360.358 ms
 Create process m0226.ppc:master_request
…
(120) Time: 3266362.117 ms
 Send <1001> From: m0226.ppc:master_request To: s lave1:Thread1
(121) Time: 3266362.252 ms
 Receive <1001> From: m0226.ppc:master_request To : slave1:Thread1
(122) Time: 3266362.440 ms
 Send <22020096> From: slave1:Thread1 To: slave1: Thread2
(123) Time: 3266362.509 ms
 Receive <22020096> From: slave1:Thread1 To: slav e1:Thread2
(124) Time: 3266362.555 ms
 Send <22020096> From: slave1:Thread2 To: slave1: Thread3
(125) Time: 3266362.604 ms
 Receive <22020096> From: slave1:Thread2 To: slav e1:Thread3
(126) Time: 3266362.641 ms
 Send <22020096> From: slave1:Thread3 To: slave1: Thread2
(127) Time: 3266362.666 ms
 Receive <22020096> From: slave1:Thread3 To: slav e1:Thread2
(128) Time: 3266362.690 ms
…
(240) Time: 3271080.383 ms
 Kill process m0226.ppc:master_request
(241) Time: 3273034.918 ms
 Kill process slave1:Thread1
…

Appendix E: Log Files

68

D.1.3 CPU Load log, example outputs

The CPU Load log will contain different information depending on the parameters used to
obtain it. Some example outputs of the CPU Load log are shown below.

$ capi peak
Top hundred peak load measurement
--- ------
Log entry = 1: Thu Jan 1 23:59:03 1970
irq 0.10
prio 00-07 0.31 0.11 0.68 0.07 0.03 0.05 0.00 0.00
prio 08-15 0.00 0.00 69.79 0.00 0.00 0.00 0.10 0. 00
prio 16-23 0.05 0.00 0.00 0.00 0.04 0.00 0.01 0.00
prio 24-31 1.96 0.76 0.00 0.00 0.00 0.00 0.00 0.02
bg 15.91

$ capi type pri 23
CPU load report

Integration interval: 100000 microseconds
Process name pid type % % % % % % % % % %
Thread3 2046c pri23 0 0 0 0 0 0 0 0 0 0
main_thread 30469 pri23 0 0 0 0 0 0 0 0 0 0

$ capi name master_request Thread1
CPU load report

Integration interval: 152000 microseconds
Process name pid type % % % % % % % % % %
master_request a0481 pri16 0 0 0 0 0 0 0 0 0 0
Thread1 e047a pri23 0 0 0 0 0 1 0 0 0 0

$ capi prio
CPU load report

Integration interval: 100000 microseconds
Processes % % % % % % % % % %
Int 1 1 1 1 0 0 0 0 1 1
bg 96 97 97 98 99 99 100 100 96 96
pri0 0 0 0 0 0 0 0 0 0 0
…
pri31 0 0 0 0 0 0 0 0 0 0
Total 99 100 100 100 99 100 100 100 99 100

Appendix E: Log Files

69

D.1.4 TSL log, example output
[RoseRT Profiler Data] Sun Feb 8 06:02:45 1970

 [Block 1] *****PROFILER Data for all contro llers*****
Profile Total Collect Time Seconds: 32 nano Seconds: 657549000

 Peak Signal Intra (InternalQs) Size per Priority
 Priority Level :0 Peak :0
 …
 Priority Level :6 Peak :0
 Peak Signal Inter (IncomingQs) Size per Priority
 Priority Level :0 Peak :0
 …
 Priority Level :6 Peak :0
 Peak Signal Defer (DeferQs) Size: 0

 Total OSE signal dispatch count 1
 Total UML inter signal dispatch count 7
 Total OSE intra signal dispatch count 1

 Global RTLayerConnector mutex contention count 0

 Signal Propagation Tree
 Signal propagation ID: 1 Signal: 5 sent by: 0 rece ived by: slavewaitC.1439346016
delivery latency: 1006
…

 [Block 2] *****PROFILER Data for each contr oller*****
Profiler (Controller = main)
 Profile Collect Time Seconds: 32 nanoSeconds : 657657000

 Event type 1 (transition cost)
 Key: slaveTslTopC: sendDummySig_stop_8 Value: min: 69 max: 69 med: 69

Event type 3 (msg latency)
 Key: slaveTslTopC: initial_sendDummySig_6 Value: min: 1912 max: 1912 med: 1912

Event type 5 (msg receive)
 Key: application[0] Value: 2

Event type 7 (state change)
 Key: application[0] Value: 2

Event type 10 (Peak Signal Inter (IncomingQs) Size per Priority)
 Priority Level :4 Peak :1

Event type 11 (total dispatch count)
 OSE signals: 0
 UML signals inter process: 2
 UML signals intra process: 0

Profiler (Controller = Thread2)
…

Appendix E: Log Files

70

D.1.5 Execution Address Profiler log, example outputs

Output type one

Output from:
./6 -f /home/uabafln/exjobb/Correlation of data /TslSlave.ppc.elf
Generated:
Tue Mar 18 12:12:25 2008

0xffffffff 1 slave1
0x00000000 100 _Z20new_readReadyC_ActorP1 2RTControllerP10RTActorRef
0x00000064 92 _ZN16readReadyC_ActorC2EP 12RTControllerP10RTActorRef
0x000000c0 92 _ZN16readReadyC_ActorC1EP 12RTControllerP10RTActorRef
0x0000011c 96 _ZN16readReadyC_ActorD2Ev
0x0000017c 96 _ZN16readReadyC_ActorD1Ev
0x000001dc 104 _ZN16readReadyC_ActorD0Ev
0x00000408 92 _ZN16readReadyC_Actor9chai n3_t1Ev
0x00000464 324 _ZN16readReadyC_Actor11rts BehaviorEii
0x00000c50 36 _ZNK16readValidC_Actor12g etActorDataEv
…
0x000045c0 7700 _vsOutFmt
0x000063d4 224 snprintfOutFoo
0x000064b4 88 vsnprintf
0x00006828 152 vfprintf
0x000068c0 116 fprintf
…

Output type two
Command Line: execprof -p 25 -f /c/usr/slave1.reg
slave1 :_Z20new_readReadyC_ActorP12RTContro llerP10RTActorRef 0 0.00%
slave1 :_ZN16readReadyC_ActorC2EP12RTContro llerP10RTActorRef 0 0.00%
slave1 :_ZN16readReadyC_ActorC1EP12RTContro llerP10RTActorRef 0 0.00%
slave1 :_ZN16readReadyC_ActorD2Ev 0 0.00%
slave1 :_ZN16readValidC_Actor22chain2_gotVa lidateDataEv 1 0.00%
slave1 :_ZN16slavewaitC_Actor25chain3_gotVa lidateDataAckEv 1 0.00%
…
slave1 :_vsOutFmt 90 0.02%
slave1 :snprintfOutFoo 0 0.00%
slave1 :vsnprintf 0 0.00%
slave1 :efs_outfmt_put 69 0.02%
slave1 :efs_stdout 0 0.00%
…

Appendix E: Log Files

71

D.2 Data that can be extracted

The data that can be extracted from the different log files are shown in the tables below.
Since the TSL log is slightly more complex this one is put in a separate table.

KTR log TAE log CPU Load log EAP log

- Sequence number
- Timestamp
- OSE event type
- Signal id
- Sender process
- Sender owner

(load module)
- Receiver process
- Receiver owner

(load module)
- Process dependencies
- Delay time between

sent messages

- Timestamp
- Component name
- File or object name
- File line number
- Trace group
- Message

From trace group
STATE CHANGE:
- New state

From trace group
SEND SIG and REC
SIG:
- Signal name
- Signal number
- Port
- Sender process
- Receiver process

From trace group
TRACE5:
- Actor name
- Actor address
- Physical thread
- OSE process id

number

- Log entry no
- Timestamp
- Interact quota
- Highest priorities

quota
- Total quota at a

certain time

- Load module name
- Log generation time
- Address
- Symbol name

(including load
module, process and
function)

- Hit rate per symbol
component

Table 8: Data that can be extracted from the KTR, T&E, CPU Load and EAP logs

TSL section Section info Data can be extracted

Header Header of the TSL log file Time stamp, controller name , Profile Total Collect
Time

Event type 1

Transition cost Event name, capsule name, capsule state, UML signal
number, transition cost (max, med, min)

Event type 3

Message latency Event name, capsule name, capsule state, UML signal
number, message latency (max, med, min)

Event type 4

Signal propagation
Tree

Event name , Signal propagation ID, UML signal
number, sender address, receiver capsule name,
receiver address,
delivery latency: 1006

Event type 5

Total uml msg receive Event name, actor name, actor index, UML message
received count

Event type 6

Total uml msg sent Event name, actor name, actor index, UML message
sent count

Event type 7

Total state change Event name, actor name, actor index, state changed
count

Event type 10

Peak Signal Size per Priority Event name, event queue type, priority level, peak size

Event type 11 Total dispatch count Event name, signal type, signal dispatch count
Table 9: Data that can be extracted from the TSL Log

Appendix E: Log Files

72

D.3 Common Event Data between the TSL and Other Log Files

The common event data between the TSL log and other logs is shown in Table 10 below. In
this table, yes means that the common event data can be abstracted from the related log files
directly; indirectly means that the common event data could not be abstracted without any
extra information or dealing methods. For example, capsule name could be found both in
TSL log and Execution address profiling log, but in execution address profiling log, it is
represented together with some redundant information which needs to be filtered away.

TSL T&E KTR EAP CPU Load
Time stamp yes yes yes yes
Controller name yes yes yes
Total Collect Time
ET 1, 3 capsule name yes indirectly

capsule state yes yes
UML signal No. indirectly indirectly indirectly
transition cost/
message latency

ET 5, 6, 7 Event name
actor name yes indirectly
actor index yes indirectly
UML message rec count/
UML message sent count/
state changed count

delivery latency
receiver address yes
sender address yes
receiver capsule name indirectly
Signal propagation ID yes
UML signal number indirectly indirectly

ET 10 Event name
event queue type
priority level
peak size

ET 11 Event name
signal type indirectly
signal dispatch count

Table 10: Common event data between the TSL and other log files

Appendix E: Log Files

73

D.4 Suggested XML format for the TSL log

The XML structure below describes one of our test cases. Where multiple entries can be
added to the structure three dots (…) will be shown.

<roseRtProfilerData>
 <generationDate value="Thu Jan 15 11:35:24 1970"/>
 <block1>
 <totalCollectTime seconds="53" nanoSeconds="552316000"/>
 <eventType10>
 <internalQueue>
 <peakSizeEvent pri="0" peak="0"/>
 <peakSizeEvent pri="1" peak="0"/>
 <peakSizeEvent pri="2" peak="0"/>
 <peakSizeEvent pri="3" peak="0"/>
 <peakSizeEvent pri="4" peak="1"/>
 <peakSizeEvent pri="5" peak="0"/>
 <peakSizeEvent pri="6" peak="0"/>
 </internalQueue>
 <externalQueue>
 <peakSizeEvent pri="0" peak="0"/>
 <peakSizeEvent pri="1" peak="1"/>
 <peakSizeEvent pri="2" peak="0"/>
 <peakSizeEvent pri="3" peak="0"/>
 <peakSizeEvent pri="4" peak="1"/>
 <peakSizeEvent pri="5" peak="0"/>
 <peakSizeEvent pri="6" peak="0"/>
 </externalQueue>
 <deferQueue>
 <peakSizeEvent pri="0" peak="0"/>
 </deferQueue>
 </eventType10>
 <eventType11>
 <oseSignalCount value="1"/>
 <umlExternalSignalCount value="7"/>
 <umlInternalSignalCount value="1"/>
 </eventType11>
 <eventType4>
 <signalPropagationEntry id="1">
 <oseSignalNo value="5"/>
 <sendingActor actorAddress="0"/>
 <receiveingActor capsuleName="slavewaitC" actorAddress="1439346016"/>
 <umlMessageDeliveryLatency value="1731"/>
 </signalPropagationEntry>
 <signalPropagationEntry id="1">
 <oseSignalNo value="3"/>
 <sendingActor actorAddress="1439346016"/>
 <receiveingActor capsuleName="readValidC" actorAddress="1439347104"/>
 <umlMessageDeliveryLatency value="2568"/>
 </signalPropagationEntry>
 <signalPropagationEntry id="1">
 <oseSignalNo value="3"/>
 <sendingActor actorAddress="1439347104"/>
 <receiveingActor capsuleName="readReadyC" actorAddress="1439346640"/>
 <umlMessageDeliveryLatency value="1780"/>
 </signalPropagationEntry>
 <signalPropagationEntry id="1">
 <oseSignalNo value="4"/>
 <sendingActor actorAddress="1439346640"/>
 <receiveingActor capsuleName="readValidC" actorAddress="1098920712"/>
 <umlMessageDeliveryLatency value="1030"/>
 </signalPropagationEntry>
 <signalPropagationEntry id="1">
 <oseSignalNo value="8"/>
 <sendingActor actorAddress="1439346016"/>
 <receiveingActor capsuleName="slaveTslTopC" actorAddress="1439345344"/>

Appendix E: Log Files

74

 <umlMessageDeliveryLatency value="4636"/>
 </signalPropagationEntry>
 ...

 </eventType4>
 </block1>
 <block2>
 <collectTime seconds="53" nanoSeconds="552430000"/>
 <rtController type="Main">
 <eventType1>
 <transitionEntry>
 <transition capsuleName="slaveTslTopC"
 firstState="sendDummySig"
 secondState="stop"
 umlSignalNo="8"/>
 <transitionCost min="130" max="130" med="130"/>
 </transitionEntry>
 <transitionEntry>
 <transition capsuleName="slaveTslTopC"
 firstState="initial"
 secondState="sendDummySig"
 umlSignalNo="6"/>
 <transitionCost min="1211" max="1211" med="1211"/>

 </transitionEntry>
 ...

 </eventType1>
 <eventType3>
 <transitionEntry>
 <transition capsuleName="slaveTslTopC"
 firstState="initial"
 secondState="sendDummySig"
 umlSignalNo="1"/>
 <transitionCost min="3689" max="3689" med="3689"/>

 </transitionEntry>
 <transitionEntry>
 <transition capsuleName="slaveTslTopC"
 firstState="sendDummySig"
 secondState="stop"
 umlSignalNo="8"/>
 <transitionCost min="4636" max="4636" med="4636"/>
 </transitionEntry>
 ...

 </eventType3>
 <eventType5>
 <actorEntry>
 <actor name="application" index="0" />
 <count value="2" />
 </actorEntry>
 ...

 </eventType5>
 <eventType6>
 <actorEntry>
 <actor name="readReadyCR1" index="0" />
 <count value="1" />
 </actorEntry>
 ...

 </eventType6>
 <eventType7>
 <actorEntry>
 <actor name="application" index="1" />
 <count value="2" />
 </actorEntry>

Appendix E: Log Files

75

 ...

 </eventType7>
 <eventType10>
 <internalQueue>
 <peakSizeEvent pri="4" peak="1"/>
 ...

 </internalQueue>
 <externalQueue>
 <peakSizeEvent pri="2" peak="1"/>
 ...

 </externalQueue>
 </eventType10>
 <eventType11>
 <oseSignalCount value="0"/>
 <umlExternalSignalCount value="2"/>
 <umlInternalSignalCount value="0"/>
 </eventType11>
 </rtController>
 <rtController type="ClientPT">
 ...

 </rtController>
 ...

 </block2>
</roseRtProfilerData>

Appendix E: Log Files

76

D.5 Log File Formats

This section shows a few example printouts of the different log file formats.

Time: 2001-11-23 15:01:42 -5
User: ed
Warning:
 This is an error message
 for the log file

Time: 2001-11-23 15:02:31 -5
User: ed
Warning:
 A slightly different error
 message.

Date: 2001-11-23 15:03:17 -5
User: ed
Fatal:
 Unknown variable "bar"
Stack:
 - file: TopClass.py
 line: 23
 code: |
 x = MoreObject("345\n")
 - file: MoreClass.py
 line: 58
 code: |-
 foo = bar

Figure 47: YAML log structure

<block2>
 <collectTime seconds="53" nanoSeconds="552430000"/ >
 <rtController type="Main">
 <eventType1>
 <transitionEntry>
 <transition capsuleName="slaveTslTopC"
 firstState="sendDummySig"
 secondState="stop"
 umlSignalNo="8"/>
 <transitionCost min="130" max="130" med="130"/>
 </transitionEntry>
 <transitionEntry>
 <transition capsuleName="slaveTslTopC"
 firstState="initial"
 secondState="sendDummySig"
 umlSignalNo="6"/>
 <transitionCost min="1211" max="1211" med="1211 "/>

 </transitionEntry>
 </eventType1>
</eventType3>

Figure 48: Log file structure showing TSL Block 2, Event Type 1

 [Block 2] *****PROFILER Data for each controller** ***

Profiler (Controller = main)
 Profile Collect Time Seconds: 53 nanoSeconds : 552430000

 Event type 1 (transition cost)
 Key: slaveTslTopC: sendDummySig_stop_8 Val ue: min: 130 max: 130
med: 130
 Key: slaveTslTopC: initial_sendDummySig_6 Value: min: 1211
max: 1211 med: 1211

Figure 49: Text log file structure showing TSL Block 2, Event Type 1

