UPTEC IT 08 010

Examensarbete 30 hp
Juni 2008

Correlation and Graphical Presentation
of Event Data from a Real-Time

System

Tobias Hedlund
Xingya Zhou

UPPSALA
UNIVERSITET

Teknisk- naturvetenskaplig fakultet

UTH-enheten

Besotksadress:
Angstrémlaboratoriet
Lagerhyddsvagen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 — 471 30 03

Telefax:
018 —471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Correlation and Graphical Presentation of Event Data
from a Real-Time System

Tobias Hedlund and Xingya Zhou

Event data from different parts of a system might be found recorded in event logs.
Often the individual logs only show a small part of the system, but by correlating
different sources into a consistent context it will be possible to gain further
information and a wider view. This would facilitate in finding source of errors or
certain behaviors within the system.

This thesis will present the correlation possibilities between event data from different
layers of the Ericsson Connectivity Packet Platform (CPP). This was done first by
developing and using a test base application for the OSE operating system through
which the event data can be recorded for the same test cases. The log files containing
the event data have been studied and results will be presented regarding format,
structure and content. For reading and storing the event data, suggestions of
interpreters and data models are also provided. Finally a prototype application will be
presented, which will provide the defined interpreters, data models and a graphical
user interface to represent the event data and event data correlations. The
programming was conducted using Java and the application is implemented as an
Eclipse Plug-in. With the help of the application the user will get a better overview
and a more intuitive way of working with the event data.

Keywords: logs, log file analysis, log file structure, event data, data modelling, event
data representation, event date correlation, event data profiling, graphical user
interface, CPP

Handledare: Daniel Flemstrom
Amnesgranskare: Kjell Orsborn
Examinator: Anders Jansson

ISSN: 1401-5749, UPTEC IT 08 010
Sponsor: Ericsson AB

Tryckt av: Reprocentralen ITC

Preface

This is a Master Thesis conducted by Tobias Hedlainthe Department of Information
Technology of Uppsala University, and by Xingya dhat the Information and
Communication Technology Department of the Royatitate of Technology. The thesis
work has been carried out at a lab in Malardaleivéisity for Ericsson AB. Other people
involved in this project include:

Alf Larsson, Project Manager for this project aicEson

Axel Jantsch, Examiner and Supervisor at the Rimygitute of Technology
Anders Jansson, Examiner at Uppsala University

Kjell Orsborn, Supervisor at Uppsala University

Daniel Flemstrém, Technical Supervisor at the EposLab

During this project Xingya Zhou's work effort hasdm focused on areas concerning OSE
and CPP, such as the programming of our test lpeaion and collecting log files; while
Tobias Hedlund has been working with areas closkd@nd user, such as the graphical user
interface and visualizations. Work that was conedatollaborative includes the research
part for background theory, related work, log filealysis, data model analysis and graphical
representation analysis. During the event datayaisadnd graphical representation analysis
parts, we divided the work on the different log filypes. Xingya Zhou was responsible for
the Execution Address Profiler and TSL log filedggpand also TSL related elements in the
Trace and Error log file type, while Tobias Hedlumdrked with the Kernel Trace and Trace
and Error Log files; the analysis parts concernimggCPU Load log file type was conducted
by both of us. Even though many of the parts wévialedd between us the work was still
conducted in a highly collaborative manner. Detabb®ut each of our contributions can be
seen inAppendix Aat the end of the report.

The terminology and abbreviations used throughuistthesis report is explained in the
Terminologychapter.

Acknowledgements

We want to thank all the people that were involuedhis project. Special thanks goes to
Alf, our project manager at Ericsson AB in Alvsfor sharing his valuable time, providing
us with necessary tools and pushing the staff ats&wn to helping out with various
necessities of the project. Daniel Flemstrom shaidd have special thanks for providing us
with contacts and pointing us at the right diretsio

People that was not directly involved in the projbat still deserves thanks are: Mikael
Krekola that assisted Daniel Flemstrém in helpimgwith the CPP related issues at the
Ericsson lab; Ravi Kumar Akkisetty for implementitige Rose Real Time part of the Test
Base Application and for being very helpful if weee had any questions about Rose Real
Time and the TSL log file; and finally Magnus Layedor giving us an informative seminar
in the Rose Real Time background theory for thigemt.

Tobias Hedlund, Xingya Zhou

Table of Contents

A o o 18 o1 o o S
1.1 Problem Overview............cccceeeeennnee.
1.2 Purpose and Criteria
1.3 Delimitation.........cceeeeiiiiiiieee s
Y =Y T To I D =T Tod o T o SRR
SN Ofo] o1 1] o101 1 o] o = PSP PPPPPPPPN
22 = = od (o | (0] Lo O 3
2.1 Embedded and Real-Time SYSEIMSuuiieeaaaiaiieiai it e e e e e e e e e e e eeneeees 3
2.1.1 OSE Real-Time Operating SYStemcooiiiiiiiieiiiie e 3
2.2 Event Data and Event Data Correlation...........ccoooiiiiiiiiiiiieeeeeeee e 3
2.2, 1 EVENEDALAtuiiiiiieiiiiiiieiee e ettt e e e e e e e 3
2.2.2 Event Data Correlationeeiieiiiiieeeeiiiiieeee e 4
2.3 Connectivity Packet PIatformuueiceccerveieeeeee et e e e e e e s e e nnnnnes 4
2.3.1 CPP SOftWare SIIUCIUIEcceeiiiiiiiiieemeit et iber e e 5
2.3.2 CPP Hardware SIIUCIUI..........uueiiieiiiiceee ettt et e e st ee e e e sieeeee e e 5
2.3.3 CPP EXecution PlatfOrm.........cooiuiiiiiisceee e 6
2.4 T00IS USEd TO COIECE LOGS .ciiiiiiiieeeeiei ettt e e e e e e 6
2.4.1 Remote Debug SUPPOIT.......uueeiiiiiii e 6
2.4.2 Trace & Error PACKaAgecooiiiiiieeieeee e 7
2.4.3 PrOfilINg ..ottt e e 7
2.5 RALIONAI TOOIS ...ttt et et e e e e e e e e e e e b a bbb st e e e e e eeaaeaaaaaens 8
2.5.1 Rational ROSE Real TiMe......cciiiiiiiiii et 8
2.5.2 RAtiONAI ClEAICASE. .. .ceeiiiiiiiiee ettt ecee et e ettt e e e e st e e e e e sbb e e e s snaeeeeeeeans 8
2.6 EClipse and EClIPSE PlUG-iNS.......cciiii e sttt e e e e e e e e e e s e s s eeeeeaaaaeaeeeas 9
2.6.1 EClipse WOIKDENCHuviiiiiiieiiiiie e e e 9
2.6.2 Standard Widget TOOIKItccceeiiiiiii e 9
2.8.3 JFACE ...ttt ettt ettt e e e e e e e e e e e e ee e e 9
G T L= = 1= 0 VY 10
3.1 Existing Tools and Approaches for Correlation oBBvDatac..euvvevveeeeeeeiinieenaaee 10
3.1.1 RUIECOIE CEP e 10
0 I o T U = PSR 10
0 0 T] = PSRRI 10
3.1.4 EVENt LOQ ANAIYZEN ...cooiiiiiee ettt 10
3.1.5 Eclipse TPTP Tracing and Profiling TOOIS.....ccweoooieiiiciiiiiiieeeeeeeeeeeee e 11
3.1.6 CONCIUSIONS.uiiiiieeiiiieie et cmree ettt e e e et e e e e rnaee e e e e neees 11
3.2 COMMON BASE EVENT ...ttt ettt e e e e e e e e s e e e e 11
4 EVENt Data ANAIYSIS ...cooeiiiiiiiiiiiiiieteeeee e 12
4.1 The Assigned Set Of LOQ FlES.......ooo e 12
4.1.1 The Trace and ErrOr LOQuuuuuueeeeeeimmmmeeeeeeeeteeaaaaaaaaaeaeaaaaaaanenseeeeeeeeeeas 13
4.1.2 The Kernel TracCe LOQ u e ettt e e e e e e e e e 13
T T I o TN @8 = U I T T I 1 o SRR 13
A.1.4 THE TSL LOQ i iiiiiiiiiiiiee ettt ettt e ettt ettt e e e sttt e e e et b ee s s ebbeeeeeeaanes 13
4.1.5 The Execution Address Profiler LOQcceeemieriiiiiriiieiierieeeeeeeeeesiesseesnenns 14
4.2 Log Collection via Test Base APPlICALIONueummreeeieeeeeeeiiiiiie i ee e e e e e 14
W R =15 A 2 - TN o o [=i o) o
4.2.2 L.0Q COlBCHON ...ttt e e
4.3 COrrelation ANBIYSISeeeieiiiiiiiiie ettt e e e e e e e e e e
4.3.1 Common Event Data.............ccccc.....
4.3.2 Correlation Possibilities
4.3.3 COrrelation ACCUFIACYueeeiiiiiiiiiaaiaeaiae ettt e e e e e e e e e e e e e aeannees
4.4 Graphical REpPreSeNtationuuiiitaeaaae ettt et e e e e e e e e e e e seeenab bbb eeeeeee e
4.4.1 Table REPreSENIALIONuvtiirreeeeeee s e e e eeeaeeeeseesessasssnnnrnsrennerreeeeeeeeees
4.4.2 Representing Log Information SUMMArYccceeeeriiiiiiieiiiiiiiiieeeeeeereeeee e 25
4.4.3 Time Chart REPreSentation e e e eeeesesseeestenneeeeeeeeeeeeeeeeeennan 26
4.4.4 Node Graph Representationcccccuivuriurirriieeiiiiriereeeee e e e e e s s e s sssssssseeneeees 26

4.4.5 Statistical Representation ... 27

4.4.6 Detailed TSL Specific Representation..........cccccooieeeiiiiiiiiiiieeeeeeeen 27
5 Implementation of the Correlation TOOIcc..vvviiiiiiiiiiii s 32
LN I [0 (T 0 = (= S 32
2 = = Y 1Yo Lo = PO 32
5.2.1 Specific vs. Generic Data Modeloocccei i 33
5.2.2 The Generic Data MOElcooooiiiiiiiiiie e 33
5.2.3 The Specific Data MOdElSuuuiiiiieeeee e 34
5.3 Graphical User INterface.........oooo ittt 35
5.3.1 APPIOACKH e e e e e e e e e e e 35
5.3.2 USEI ANAIYSIS ..ttt ettt e e e e e e e 36
5.3.3 Implemented FUNCLONAIILYcoeeiiiiis e 36
5.4 SOftWare ArCHITECIUIEiiiiiii ettt e e e e e e e e e 43
R YT T PSRRI 43
B14.2 ACHONS ..ttt ettt e e e st e e e b e e e e e nraeeeeeenanee 43
LT I 1 - (o o PR 44
Y A o [(o] £ PP SPP R OPPPPRPTN 44
Lt Yo o | 1= PP UTUPRRIN 44
5146 PaAISEIS ...ttt ettt b e e e e e e e e e e e eeeeaeanaaas 44
6 Comparison with the TPTP Tracing and Profiling Projectcccccccvviiiiiiiieenneenn. 45
6.1 Using the TPTP Tracing and Profiling Project ... 45
6.2 Advantages using the TPTP Tracing and Profilingéito..............cccoeeeeviiiiiiicicciiiienns 45
6.3 Advantages using the Correlation TOOI ... eeeiieeieeeeei e 45
T FULUIE WOTK ...ttt ettt ettt e e e e e e e s sannnee e e e e e s e ebbene e e s 46
7.1 Correlation ANAIYSIScooiiiiiei ettt e e e e e eeeaaeas 46
7.2 IMPIEMENTATION ...ttt ettt et e e e e e e e e e e e e e e e e e aaaas et et eeeeeaaaaaaaaaaaaans 46
7.2.1 Extension of the Correlation TOOL........... e 46
7.3 Log File Evaluation and SUQQEeSLIONScooeiieiiiiiiiiiiiiaaee et 48
7.3.1 LOQ File SIUCIUIESeeeeeiiieiieii ettt e e 48
7.3.2 LOQ File FOMMALS ...ttt e e e e e e 49
AR T T o Yo I 1 L= @ 1= | USRS 50
8 CONCIUAING DISCUSSIONueiiiiiiiiieeee e sttt e e e e e e e e e e e e e s sesnnnreeeeeeeeaannes 52
8.1 SUMMArY Of the RESUILS.......ciiiiii i s e e e e e e e e e e e e e eeeees 52
I o] 19T] ox= 11T] o 1< PR 52
8.3 Alternative SOIULIONScee it e e e e e e e e e e e e e e e e anneeees 53
8.3.1 Pre-processing of Event Data.............oiiceceiiiiiiiiieieceeeeeeeee e 53
8.3.2 Data Model VS. Dat@ BASEceeiiiiiiiiiie ettt 53
S (5T = o = 54
LO TEIMINOIOGY ..ttt ettt e e e e e e e bt e e e e e e sannr e e e e e e e e e s nnbbeeeees 56
OB Y o o T L=V = 10T PRSI 56
02 B L=] 1 1T o PP 56
Appendix A: Individual Thesis Contributions ..., 58
Appendix B: Data MOAEIS.........coooiiiiiiiiiii e 59
Appendix C: The Correlation TOOL............coooeviiiiiiie e 62
F Y o o 1] g [t Il o o [66

Vi

Index of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:

CPP System Areas

Connect to a CPP node

Processor hierarchy in a CPP node

Trace with RDS and Host environment

The process that logs an event usingeTsapport
Relation between log files and system

Test Base Application design, OSE to @&Emunication
Test Base Application design, OSE to Uddmmunication
Common event data between the log files

Common event data with the TSL log file

Load Module interactions

Process / Controller interactions

Actor interactions

Capsule states and transitions

TSL Event Type 4 example output

Trace and Error TRACES example output

TSL Log Event Type 1 example printout

T&E Log STATE CHANGE and REC SIG exampiatout
TSL Event Type 1 (transiton cost), exiEnqutput

EAP log, transition example output

Table representation of Kernel Traceient

Table representation of Kernel Tracegsses

Time chart view representing eventslation to time
Node graph representing Kernel Traceasigropagation
Two different TSL log browser view stiures

Example table view of Event Type 1 and 3

Example table view of Event Type 5, @ @n

Example table view of Event Type 10 &hd

Example table view of Event Type 4

TSL node graph of signal propagatioa tre

TSL event data represented on a tineeviith suggested filters
Event data correlation via time lines

Extending the application with a new fibg type

The generic data model

The TSL specific data model

The Navigation View

The Table Editor showing the Kernel Eragent data entries
The Table Editor showing the Kernel Eragent data processes
The Time Chart Editor together with Tradble Editor

The Time Chart Editor showing a linertlkigagram

The Node Editor

Interactions between event data reptasens in the GUI
Various GUI functionalities

Software architecture of the Correlali@ol

Kernel Trace, Trace and Error and CPldLdata models
The Common Base Event class hierarchy

YAML log structure

Log file structure showing TSL BlockEyent Type 1
Text log file structure showing TSL Bikaz, Event Type 1

vii

21
22
22
24
24
25
25
26
27
28
29
29
29
29
29
30
31
33
34
35
37
38
38
39
40
41
41
42
43
59
61
76
76
76

Index of Tables

Table 1: Trace and EITOr traCe QrOUPS..... e «eeeaaaauurrerreeeeeaesssasssssseseeessaassnnseeeeeeeess 13
Table 2: TSL BIOCK 1 CONTENTcoiiiiitcemmmm ettt e e e e e e e e e 14
Table 3: TSL BIOCK 2 CONTENTcoiiiiit ettt e e e e e e e 14
Table 4: LOg fil@ CrLEIaLoiiiiee ettt e e e e e e e e e e 48
Table 5: Log file formats, advantages and disa@®@a®...............ccooeeeeeeeeiiieiiiiiiieieeeen, 49
Table 6: Individual thesis CONIDULIONS ... eeeeeeieiiiiiiiieee e 58
Table 7: Decision points, specific vs. generic atalelccceeeeeeiiiiiniiees e 60
Table 8: Data that can be extracted from the KT&E ,TCPU Load and EAP logs............. 71
Table 9: Data that can be extracted from the TSH.LO.......uvveeiiiiiiiiiiiiceeeiee v, 71
Table 10: Common event data between the TSL aret @i files ..., 72

viii

Chapter 1: Introduction

1 Introduction
1.1 Problem Overview

Ericsson AB frequently makes use of the Connegtiviicket Platform (CPP) System. This
is an event driven complex real time system forkpaswitching where event data from
different parts of the system is recorded into lofjkese logs are often designed for
individual purposes and they record only the reglisystem information which is a small
part of the overall system. To examine a wider scopsystem information, log files with

event data from different parts of the system cdiddstudied. By also correlating the event
data further information could be gained. Today@ation possibilities have not yet been
analyzed and it is not apparent what further infition could be gained by doing this.
Further, the log files are studied in a static narthrough command line printouts which
can be a tedious job when analyzing and compatiegevent data. They are also not
consistent which implies that relationships betwemptured event data can be hard to find.

1.2 Purpose and Criteria

The purpose of this project is to correlate evextadrom different parts of the system and
represent these in a consistent context with thip loé a graphical user interface.

Correlations between the event data would faddifat finding source of errors or certain
behaviors within the system; while the graphicarusaterface facilitates in getting a better
overview of the system and a more intuitive waywairking with the event data. The

criterion’s given by Ericsson AB are that data maatel interpreters are defined for the log
files, and that the interface implementation iséoconducted as an Eclipse Plug-in.

1.3 Delimitation

We are aware of the wide spectrum of this thesisiastead of doing any deep studying in
any specific parts we have focused on the entivegss to give an overview and a proposal
that Ericsson can use for a future implementafidre project will focus on the correlation
analysis and graphical representation as the neaults, while the graphical user interface
will be used as proof of concept to earlier resdtsl as a prototype application to
demonstrate the user interactions with the evetat alad correlations.

This project will focus on retrospective event gsa only and analysis of system
monitoring will not be considered. There is alsoinput of system specific processes or
behaviours to this project, why the correlationlgsia is conducted on an observer level.
This means that event data attributes and relatralisbe analysed, but not the system
specific behaviour or rules. The correlation analygll be conducted on event data from the
same board on the CPP node. Correlation of eveatfdan different boards will follow the
same concept in many cases but we will not do aalyais in this area.

Due to time restrictions of the thesis an infrastuee for storing configurations and results
will not be provided.

1.4 Method Description

In the beginning of the project a crash course pvasided, where we got insight in how the
CPP system is built up and how the OSE system wken we had general knowledge of
the system the proceeding method was mainly a metjo approach We started from the
low layer of analyzing the logs and what data taat be extracted and correlated. When the

& Bottom-up parsing is a strategy for analyzing wwn data relationships that attempts to identify
the most fundamental units first, and then to itigher-order structures from them
1

Chapter 1: Introduction

event data was analyzed and extracted the datalnweale created for storing this
information. Further analysis was conducted on lkeent data is best represented and how
the data model should be structured and implemeiitedbe able to put the event data into
the data model the logs first need to be interprated parsed. Different ways of doing this
was considered and finally implemented. After thesetions analysis of how the event data
and correlations can be represented graphically eseaslucted followed by analysis and
implementation of the application and graphicalrusterface. In latter parts of this project
this implementation will be referred to as the @tation Tool.

Concurrent with earlier mentioned steps a Test Bagplication was created to better
understand the relations between the log files @nthe used as analysis ground when
representing the information in the Correlation [Too

For background and research part of the thesis srttee information was gathered from
meetings at Ericsson AB, internal documentationfram research articles and books. We
have used sources that we consider to be reliabteighout the project and we have not
made use of internet resources other than for @bndefinitions and product specific

information.

1.5 Contributions
The main contributions of this thesis are the folt:

« Analysis results of how the defined set of logs barprofiled and correlated

< Analysis results of how the event data can be sgmrtied graphically

e Suggestion of data model for the event data thatasyzed during this thesis

« A prototype plug-in for correlation of event daket demonstrates different ways of
representing the event data correlation.

e Suggestions of improvement for the log file formats

Chapter 2: Theoretical Background

2 Background
2.1 Embedded and Real-Time Systems

An embedded system is a special purpose compuatrighbuilt into a larger device [1].
Embedded systems often reside in machines thabgrected to run continuously for years
without errors and in some cases recover themséas error occurs. Many embedded
systems also have real-time constraints that mestmet, for reasons such as timing
requirements, safety, usability and fault-tolerajje

A real-time system should be able to manage tinpendent applications. The validity of a
real time embedded system is affected by two nssnes: one is the results that it produces
and the other is the time when the results arergeack

Today's real-time embedded systems are becoming rand more complex, and more
requirements are met such as scalability acrosipleulCPUs, multiple communicating in
multi-core and distributed environments. A realdimperating system, which must be able
to schedule tasks at or after certain specifie@ tis designed for supporting those complex
real-time applications.

A real-time operating system (RTOS) has three tyfienain duties: resource management,
time management, and inter process communicatip flere are many RTOS available at
the market that currently support complex real-tiamplications, such as OSE RTOS,
Symbian OS, ThreadX (Express Logic's advanced RT8S)LynxOS RTOS [4], etc.

In this project, OSE RTOS is used as the workingrenment. More information about this
operating system follows in the next section.

2.1.1 OSE Real-Time Operating System

OSE is a powerful platform produced by Enea fordbsign of real-time embedded systems.
It is deployed in approximately half of the worl8& mobile phones and base stations [5].
The main features of OSE platform are reliabilisgalability and simplicity of direct
message passing system [5].

Enea has been making great efforts to supportbtelsystem deployment and maintenance.
Currently, OSE provides several ways to ensur@lygiiy such as multi-level facilities for
error detection, built-in monitoring of criticaldies, fault tolerant system, etc [5].

Message communications between different procqisgs a significant role in real-time
embedded system designs. OSE uses a memory palbbtate for message buffers and has
a direct message-passing model which provides fasygnchronous inter process
communication. As a result, many program errorg thay occur during inter process
communications could be avoided.

2.2 Event Data and Event Data Correlation

2.2.1 Event Data

The word event is being used more and more freguenimany different areas of computer
systems. In a very general sense, an event mea@asti@am or occurrence that could be
detected by a program. For example, events carsdreaations, such as a mouse clicking in
a graphical user interface, a key pressing to #nbdard or system occurrence such as
hardware of software failures.

Chapter 2: Theoretical Background

Events play a significant role in system designd iamplementations. Many large systems
are designed according to event-based architect®@me complex applications such as
real-time embedded systems or distributed systemslesigned to respond to events, these
systems are called event-driven systems [6]. & kind of system, an event could be some
message, specified signal, token, value or matkat ¢an be identified by the ongoing
processes.

Events are very useful when monitoring complex eyst, such as telecommunication

networks, air traffic and stock markets [7]. Sorwerds are instantaneous, most occur over
an interval of time [8]. In order to better undarst the behavior of a system, much effort
has been made to monitor and trace these eventsn Wlsystem encounters an event, it
could emit an event data (or event message) tisatidbes the event [9]. These event data are
stored to a local or remote event log. For exampleen a disk of a server becomes full, the
server could generate a timestamped “Disk full” sage for appending to a local log file

or for sending over the network as an SRMPRap. In most cases event data are
appended to event logs in real-time, so event &wgsan excellent source of information for

monitoring the system [9].

Event data are also essential to better underdtandctivities of complex systems and to
analyze problems, particularly in the case of aapibns with little user interaction (such as
server or network applications). However, in masss, the logs are esoteric or too verbose
and therefore hard to understand; they need talbjected to log analysis and correlation in
order to make sense of them.

2.2.2 Event Data Correlation

As a baseline, correlation is defined as the drgwiha causal, complementary, parallel or
reciprocal relationship between different eventseldaon specific criteria [10]. Generally,
correlations could be interpreted as establishingnaling relationships between different
entities. When analyzing and monitoring a complgstean such as telecommunication
networks, air traffic or stock markets, designdvgags generate some logs to help them get
a better understanding of the system behavioursigbBers working in different areas of a
system usually design and examine their own lodesé& logs are sometimes not well
organized, information might overlap and complemmight exist among them. Thus the
event data from different sources need to be @igdlso that useless information can be
filtered out, important information can be croskerenced into a consistent context, and new
information could be generated.

2.3 Connectivity Packet Platform

Ericsson Connectivity Packet Platform (CPP) [11]aisplatform that is designed for
accessing and transporting user traffics in moéiid fixed networks. It was first designed
for Asynchronous Transfer Mode (ATM) and Time Digis Multiplex (TDM) transport, but
since then more and more support has been addadasunultimedia services for the third
generation of mobile telephony and Internet Prdtgtf®) transport. The CPP platform is
also very flexible and can be configured with difiet types of circuit boards according to
different design requirements. Based on this platfat is possible to develop different high
availability applications such as ATM and IP basedes, Radio Base Station (RBS), Media
Gateway (MGW), and Radio Network Controller (RNG}le Universal Mobile Telephony
System (UMTS) network.

A CPP node contains two parts, an application gadta platform part [11]. The application
part handles the software and hardware that iscgigin specific. The platform part handles

2 Simple Network Management Protocol

Chapter 2: Theoretical Background

common functions such as internal communicatiorpesusion, synchronization and
processor structure. This project has a focus empldtform.

2.3.1 CPP Software Structure

The CPP platform consists of five system areaviawis in the figure below. The areas are:
Development and Trouble shooting Environm@itE), the Core, Internet Protocol and
Connectivity (IP&C), Signalling and Operation anéiktenance (O&M).

Application
(RBS, RNC, MGW.....)

L]
Platforim

DTE Signaling

API - Application Programming Interfaces

DTE- Development and Troubleshooting Environn
IP&C — Internet Protocol and Connectiv

O&M — Operation and Maintena

Figure 1. CPP System Areas

DTE is software development environment for botpligation software and CPP software.
The tools can be used for debugging and buildiagl lmodules. A load module consists of
software that that can be executed a board.

2.3.2 CPP Hardware Structure

A CPP node can vary from the smallest node congigif a single subrack to a large node
consisting of several subracks. A subrack whichsiste of 28 slots is the smallest building
unit. It can be physically configured and updatettdifferent types of circuit boards such as
general purpose board, switch core board, medarstiprocessor board and special purpose
processor board. The CPP node that was used iprbjisct consists of one subrack and 11
boards. There are two ways to connect to it, eithi@rterminal server or via TCP/IP. The
boards and connection possibilities are showngarei 2.

Terminal Server

PC

CP/IP

Figure 2: Connect to a CPP node

Chapter 2: Theoretical Background

2.3.3 CPP Execution Platform

The CPP system execution platform consists of theliare and system software that
applications need to execute correctly in a multicessor system. CPP offers applications
an execution platform comprised of the following:

A number of processors and communication betwesm th

A distributed real-time OS, supporting robust aggdiion design

Operation and Maintenance (O&M) support for appiczs

A fault-tolerant real-time database

A robust fault-tolerant file system

Java Virtual Machine (for management applications)

A space switch

Different types of boards contain different proocess The processors in the execution
platform have a hierarchical order as shown in fE@g8. The processors in the Main
Processor Cluster have the highest rank. Thesegsors are referred to as Main Processors
(MPs) and are interconnected in a full mesh. TheCNBPthe center in a star topology with
Board Processors (BPs) at the end of the rays.€ekbkeution platform can be extended
beyond the BP domain by connecting one or more reiisite Special purpose Processor
(SP) or Media Stream Processor (MSP) to BPs [11].

BP

BP

BP

BP

SPB

Figure 3: Processor hierarchy in a CPP node
2.4 Tools Used To Collect Logs

2.4.1 Remote Debug Support

Remote Debug Support (RDS) is a system level dedyufyy the CPP node. It is used for
tracing OSE specific events such as signals betywemesses and the creation and killing of
OSE processes. The command interface of the debuggbe OSE shell and the users
should enable the trace actions themselves froradhmenand line interface [12]. The tracing

results will be stored in a log file called the Kek Trace log which is kept in the OS kernel
trace buffer. Signal target connection is using dieéault from Autodds. Figure 4 below

shows the procedure of signal tracing with RDS lao&t environment.

Chapter 2: Theoretical Background

OSE kerne

Signal symbols

Autodd Kernel
u N
HOST RDS ose_ldm Igzce

ose_ldm

Figure 4: Tracewith RDS and Host environment

2.4.2 Trace & Error Package

All software development meets kinds of errors aults during implementation. Trace &
Error package is designed to detect and handleseofoprograms running on a CPP node
[13]. This tool could be used as a complement hertebug support tools. There are two
functionalities supported in the T&E packagée tracing functionalityand theerror
handling functionality In this project, only the tracing functionality iised. With the help of
this functionality the system and functional belbavs can be traced and reported at
software development. As shown in Figure 5 belovenés to trace are found within the
process code and traced by means of “Trace Mackosiacro is responsible for logging of
one event. Most macros allow a message to be addbé log and the message is given as
text string.

@ Trace Macros

Figure 5: The processthat logs an event using Trace Support

2.4.3 Profiling

Profiling is a system function used to find outtlastecks in software programs running on a
CPP node [14]. There are two areas of profilingcfiomality: Sample Based Execution
Address ProfilemandCapsule based ProfileBoth of them have the same purpose as to find
out bottlenecks on a CPP node, but the scope betwesm is a bit different. In the
following sections, an overview of the two diffetgmofiling tools is presented.

Chapter 2: Theoretical Background

243.1 CapsuleBased Profiler

Capsule based profiler (CBP) is a profiling toot fdnified Modeling Language (UML)
applications running in a CPP node. It could bechmed both from the command line
interface and from the application UML model. CBlirently collects ten different event
types such as total OSE signal dispatch countsitian cost and message latency. The entry
keys of these events are based on either capsigeesl or actor instances. An event type is a
measurement type which is triggered by a specifidlLbvent such as message received,
message sent or state change [14]. This tool gesetfae Target Service Library (TSL) log
file that is one of the log files which was usedktiis project.

24.3.2 Execution Address Profiler

The Execution Address Profiler is a sample-based ttmat is used to measures the CPU
usage of different user defined memory areas dereifit C/C++ functions. This is done by
interrupting the CPU with a fixed periodic sampteduency and taking samples of the
current execution address [15]. This tool will extrmemory regions for C/C++ functions
with the help of a configuration generator calkeacprofppand perform execution address
profiling on the CPP node with the help of theecprofprofiling tool.

2.5 Rational Tools

There are two different Rational tools that areanmsgnt to know about for this project. One
is Rational Rose Real Time (RoseRT) and the otheRational ClearCase. These are
developed by the Rational Software division of IBKd they will be briefly described in the

following sections.

2.5.1 Rational Rose Real Time

Rational Rose Real Time (RoseRT) is software dewvaémt environment which is designed

to meet the demands of real time software. Devetopeuld use RoseRT to create models of
the software system based on the UML constructbis.necessary to introduce some main
concepts here which will be mentioned frequentiptighout the report.

The Capsuleis one of the most important concepts of RoseRTprévides coordinate
behaviour in the system and encapsulates the ffoavents. Capsules also give transparent
concurrency, easy thread assignment, state diaggaeration and message passing. It could
communicate with other capsules via ports and poi$o A state transition is executed by a
capsule when a specified trigger signal arriveshiapsule can have hundreds of states and
transitions.

Another important concept in RoseRT is Hutor. These are the instances of capsule classes
when the program is running on the target. Oneuwapsmn have multiple actors executing at
the same time.

A third concept that is important to know abouths threads(also calledcontroller). All
capsules should be incarnated on logical threaatsaife mapped to a physical thread of the
memory area in the target.

2.5.2 Rational ClearCase

Rational ClearCase is a software tool for revisiontrol (configuration management etc) of
source code and other software development agSktarCase forms the base of version
control for many large and medium sized busineasescan handle projects with hundreds
or thousands of developdiH].

ClearCase can run on a number of platforms inctudlinux, Solaris and Windows. It can
handle large binary files, large numbers of filagd large repository sizes. It handles

8

Chapter 2: Theoretical Background

branching, labeling, and versioning of directofi#8]. ClearCase has some unique features
such as VOB (Versioned Object Base), ConfiguratiBecord, Build Avoidance,
Unix/Windows Interoperability, and Integration wibther products.

2.6 Eclipse and Eclipse Plug-ins

Eclipse [17] is an open-source development framkwbat provides a common user
interface and workbench model for working with ®worlhe platform is built in layers of
plug-ins, each one defining extensions to the ektenpoints of lower-level plug-ins [18].
This extension model allows plug-ins to be devetbpéh a variety of functions to the basic
tooling platform and provides a nice integrationhwalready defined tools. By working on
an already defined platform developers can focushenspecific task instead of worrying
about integration issues such as different runemeronments.

To further understand the required implementatioanoEclipse plug-in based user interface,
a short overview of the Eclipse workbench, the @&an Widget Toolkit (SWT) and the
JFace toolkit is presented below.

2.6.1 Eclipse Workbench

From a high level perspective the workbench is adaiv through which all of the visual
elements of an application are organized. Thishes game window that is used for the
Eclipse development environment. The visual padsirfito the two major categoriesews
and editors Views allows the user to navigate, view, or providgher information about
objects that the user is working with in the wonktle, while Editors allows the user to
browse a document or input-object. Editors alsovathe user to edit and save objects, while
the views can save their states for the next theg are opened [18].

From a lower level perspective the workbench isaméwork that is supplying additional
toolkits for building the user interface. This frawork also defines extension points for
plug-ins to contribute user interface functiontie platform. Many of these extension points
are implemented using the Standard Widget TodB8%/T) andtheJFace framework [18].

2.6.2 Standard Widget Toolkit

The Standard Widget Toolkit (SWT), is a set of Jalass libraries created to provide
platform native user interfaces, and this is thappical tool kit used for Eclipse graphics.
The toolkit immediately reflects changes in the enhdng Operating System GUI look and
feel while maintaining a consistent programming glogh all platforms. It substitutes the
Java AWT and the Swing toolkit when implementing widgess/duts and events [18].

2.6.3 JFace

JFace is a user interface (Ul) toolkit that prosidelper classes for developing Ul features
that can be tedious to implement. It is designepréwide common application Ul functions
on top of the SWT library and provides an AR build MVC-based user interfaces with
the help of components referred to as viewers. Bagictionalities include populating,
sorting, filtering and updating widgets. JFace belpe developer to focus on the
implementation of the specific plug-in functionther than focusing on the underlying
widget system or solving commonly occurring Ul apgiion problems [18].

& Abstract Window Toolkit
® Application Programming Interface
¢ Model-View-Controller

Chapter 3: Related Work

3 Related Work

3.1 Existing Tools and Approaches for Correlation of Event Data

The event logs play important roles both in analysireal time and analysis at a later stage.
There is lots of research taking place in bothhefse two areas with both commercial and
open source projects in development. This thesls amly focus on retrospective logs
analysis and correlation, but it is still relatedthe real time, which is why both kinds are
researched and mentioned in this section.

For the real time analysis the event logs are &eior monitoring systems, since the event
messages in the logs usually are recorded inireal For retrospective analysis of the logs
collected from a running system, it is extremeliphd to better understand and analysis the
behaviour of the system. As a result, the desigoeutd find out the weakness of a system
and make decisions on how to improve it.

There are some tools already available for evegs lcorrelation and monitoring in the
market. Some of them are open sources and sonhemf are commercial products that can
be very expensive. In the following part, a fewenaisting tools are introduced. These are
Rule Core Complex Event Processing (CEP) Serve}, li8gsurfer [20], Simple Event
Correlator (SEC) [21], ManageEngine Event Log Amely[22], and TPTP Trace and
Profiling Tools [23].

3.1.1 RuleCore CEP

The ruleCore CEP Server is the solution to the lprobof how to know when a critical

situation has happened so that users can starbceg® to manage it. This is done by
providing real-time behaviour tracking and traciofyany events that are critical to the
system. It uses the Simple Rule-based Event Cdtoelaapproach for performance
management. Rule-base Event Correlation means d@oifgpsome rules such as if-else
statements for event data monitoring and correlafi@r example, in ruleCore CEP Server,
some simple rules are specified like accepting tirguents that include only name-value
pairs and taking events from a specified place.

3.1.2 Logsurfer

Logsurfer is one of the most useful tools for moriitg system logs in real time and
reporting on the occurrence of events. It also uskesbased approach as the ruleCore CEP
Server does. Its rules simply provide instructionswhat to do when it detects a particular
line in the incoming stream of log messages.

3.1.3 SEC

SEC is an open source platform independent tookutes-based event correlation. It was
created to be a lightweight tool that can be used@fwide variety of event correlation tasks.
The SEC configuration is stored in text files dgsueach rule specifying an event matching
condition, an action list, and optionally a Booleaxpression whose truth value decides
whether the rule can be applied at a given monm®BC has been successfully applied in
various domains like network management, systemitorimg, data security, intrusion
detection, log file monitoring and analysis, etc.

3.1.4 Event Log Analyzer

Event Log Analyzer is a web based, real time, el@gntand application log monitoring and
management tool. It collects, analyzes, reports] archives Event Logs from different
places such distributed windows hosts, syslog fdavices and application logs from web

10

Chapter 3: Related Work

servers and so on. It helps system administratotsotibleshoot performance problems on
hosts, select applications, and the network.

3.1.5 Eclipse TPTP Tracing and Profiling Tools

The TPTP Tracing and Profiling Project is in contrast witre previous mentioned tools
aimed for retrospective analysis of log files.sltai sub project for the Eclipse TPTP Project,
and it addresses the tracing and profiling phas¢hefapplication lifecycle [23]. It also
provides a framework for analyzing and correlatlog files, has extension points from
where log parsers can be created, and alreadyedefiews for analyzing and correlating
event data. For representing the event data it smage of the Common Base Event standard
that is explained further in tt@ommon Base Eveséction.

3.1.6 Conclusions

Most of the available tools are developed for résde monitoring such as Rule Core
Complex Event Processing (CEP) Server [19], Logsu[20], Simple Event Correlator

(SEC) [21] and ManageEngine EventLog Analyzer [2Rjch are described above. All of

them consider a rule based approach for eventatatalation in real time and are for this
reason less interesting for the context of thiggmto In addition, ManageEngine Event Log
Analyzer is a commercial product, it costs money] some special tools like HP openView
were designed for one particular network managemletform only. Among these existing

tools, TPTP is the most interesting one. This franrk was however found at the end of the
thesis project and because of this it was nevet irsthe implementation. Instead it will be

compared with our own tools in th@omparison with the TPTP Tracing and Profiling
Projectchapter and it will also be mentioned in Bhgure Worksection.

3.2 Common Base Event

The Common Base Event allows the use of a comminafiofor any log records from any
supported proprietary log files [18]. The proposames from IBM and the goal is to
standardize the format of events to assist in d@sigrobust, manageable and deterministic
systems [24].

Entries stored in the Common Base Event are definegroperties that are collectively
referred to as the 3-tuple, consisting of the feitg elements:

1. Id of component that reports the situation

2. Id of component that is affected by the situatiei¢h may be the same as
the component that is reporting the situation)

3. The situation itself

The data collected for the above 3-tuple are ptegsessuch as the reporter component,
situation, creation time, severity, property, mgesaextended data element, and sequence
number. For more complex logs the extended damaegleis used for including product-
specific attributes which allows user-supplied agtens for any attributes not defined in the
Common Base Event. The class hierarchy diagramfwither structural details can be seen
in appendix sectioB.3

Using the Common Base Event doesn’t mean that ppé&cation generating the log files
needs to be re-written, instead parsers can betadeginslate it into the new standard when
accessed. There are already defined tools in tA@TRamework (se&clipse TPTP Tracing
and Profiling Toolssection 3.1.5) to facilitate in such a translation

2Test and Performance Tools Platform
11

Chapter 4: Event Data Analysis

4 Event Data Analysis

This chapter will present the event data analyars @f the project. The sections included in
this chapter will present the log files that conttiie event data; the Test Base Application
that was developed to generate the different lleg;ficorrelation analysis of the event data;
and finally graphical representation for event date correlations.

4.1 The Assigned Set of Log Files

The logs that are considered during this projeettlae following:

» Target Service Library (TSL) log

» Execution Address Profiler (EAP) log
e Trace and Error (T&E) log

* Kernel Trace (KTR) log

e CPU Load log

These log files represent information in differgutrts of the CPP hardware and software
layers. The figure below shows a simplified diagm@fthe different system layers in relation
to the analyzed log files.

C/C++

Application UML Application

Java Application

Runtime C/C++

JVM TSL

S libraries, OSE Y\
[Event Logs ’ Profiling Logs
ﬁ Execution Address
Trace and Error Log Profiler Log
— . } Sub System (OSE+CPP) — —
Kernel Trace Log TSL Event Log
N 1L)
Hardware PMC
CPU Load Log
P—

"

Figure 6: Relation between log files and system

The log files that are grouped Bsent Logsare recording events taking place in the sub
system (OSE + CPP), while the log files groupe®madiling Logsare tracing and recording
information from higher level applications. The CRblad Log is a global log, showing the
overall status of the system.

The following sections will give a short overviewthe different assigned log files. Example
outputs from the same log files are shown in appesectionD.1, and a table of data that
can be extracted from these log files can be fonragppendix sectiod.2.

The log files have also been analyzed considefiegstructure and syntax from a parsing
and correlation perspective, but since this pamas directly related to the focus of the
project, this analysis with results will instead tpentioned in thé-uture Worksection of
this thesis.

12

Chapter 4: Event Data Analysis

4.1.1 The Trace and Error Log

The Trace and Error (T&E) log shows a history afareled trace and error events on the
system. The events are recoded with the use ofamaand it is frequently used by designers
for troubleshooting. The user can decide to pmfbrimation in messages that belongs to
predefined categories referred totiace groups Depending on the trace group the message
can contain either a simple user-defined stringa dormatted string that provides further
attribute information. The group and message vallrbcorded together with a time stamp,
load module and source component of the event. Biitte trace groups can individually be
switched on or off. Some of the groups that areadrtgmt to know about later in the report
are explained further in the table below.

Trace Group Group information

STATE CHANGE | Used to print the state change infdiomaof capsules in a RoseRT
application

SEND SIG Contains information of the signals serd RoseRT capsule

REC SIG Contains information of the signals receilgg a RoseRT capsule

TRACES Part of the TSL profiling and also calledeBv Type 9. This group
contains actor specific information

TRACEY Trace events related to OSE signals for RoseRTicabiolns.

Table 1: Trace and Error trace groups

4.1.2 The Kernel Trace Log

The Kernel Trace (KTR) Log records process spe€¥8E events that occur on the node.
This includes events such as sent signals, recesigdals, created processes, killed
processes and error events. The extended versihisdbg file also contains the binary that
is sent with a signal.

4.1.3 The CPU Load Log

CPU Load log stores the CPU utilization for differaneasuring objects such as process
type, process name or priority. There are 4 tydeSGRU-load logs available according to
different measuring objects or measuring ways. fest commonly used one is the CPU
peak load log which stores the information of e hundred CPU-load measurements. It is
measured by the system itself once the systens starhing. CPU utilization could also be
measured according to user specified measuringctsbjd@his could be done from the
command line.

4.1.4 The TSL Log

The TSL log collects ten different UML based eviies currently. There are two blocks in
TSL log: Block 1andBlock 2 Block 1 contains Event Type 4, 10 and 11 forsadirted
controllers. Block 2 contains Event Type 1, 3, 5,76 8, 10 and 11 for each started
controller. To be noticed, Event Type 9 is recorided &E log so it is introduced ifThe
Trace and Error Logsection. The TSL Log content ifable 2 and Table 3 gives an
overview of the TSL log structure. Some examplguoubf different event types is shown in
appendixD.1.4

13

Chapter 4: Event Data Analysis

Event Type

Details

Event Type 10

Internal queue peak size for different priorities
External queue peak size for different priorities
Defer queue peak size

Event Type 11

Total number of received OSE signals
Total number of received UML process external mgss3g
Total number of received UML process internal mgsesa

Event Type 4

Signal propagation tree

Table 2: TSL Block 1 content

Event Type

Details

Event Type 1

Transition Cost

Event Type 3

UML Message Latency

Event Type 5

UML Message Receive Counter

Event Type 6

UML Send Counter
UML Invoke Counter

Event Type 7

State Change Counter

RTMutex contention count

Internal queue peak size for different priorities
External queue peak size for different priorities
Defer queue peak size

Event Type 11 Message Receive Counter

Table 3: TSL Block 2 content

Event Type 8
Event Type 10

4.1.5 The Execution Address Profiler Log

The Execution Address Profiler (EAP) log collectse tCPU utilization per predefined
memory area or per C/C++ function. There are tvpes$yof execution address profiling logs.
One is generated by execution address profilindigaration tool which uses an .elf that is
generated when building a product as input andrgéeee a .reg file as output. The other is
generated from the to@xecprof(seeTools Used To Collect Logsection) which uses the
.reg file as an inputvhen the measured object is running on the taipmple log file
output can be seen in appendection D.15.

4.2 Log Collection via Test Base Application

Before analyzing the event data correlation pols#s the log files first need to be
generated to contain information of the same si@n@his was done by developing and
using two test base applications that will be desdrthroughout this section.

4.2.1 Test Base Application

The applications were designed based on studi€3Si, Rational RoseRT and a simple
pingpong application which has two simple proceshas communicates with each other.
Documents that were studied include internal docuat®ns of Ericsson such &esign
Rules for Trace and Error Usefd3], Execution Address Profiler User GuiftEs], Users
Guide for RoseRT Target Service Librar2s].

The two test base applications that we used weneelalged using OSE to OSE
communication design and OSE to UML communicati@sigh respectively. The OSE
parts of these test base applications were dewlapin the help of OSE programming,
while the UML part is programmed with RoseRT.

14

Chapter 4: Event Data Analysis

In both test base applications, T&E handlings wau#t into the program in order to do a
logging of the type of error or interesting evergkated to signals like where and when it
was detected. This was done by adding T&E macrob a8 SEND SIG and REC SIG to
each process. When the application is running ertarget the processes will keep track of
which trace group that is currently active.

4211 OSE to OSE Communication Design

There are two load modules (LM) used in this desggre is called master and the other is
called slave. They communicate with each otheseiading and receiving OSE signals. The
diagram showing the communication can be sedfigare 7. In the LM master, there is one
OSE priority process which is calledaster_requestn the LM slave, there are three OSE
priority processes calleslave_waitread_validandread_ready

(1) READ_REQUEST
Master LM (2) VALIDATA_DATA
master_request (3) LOCK_DATA
(4) LOCK_DATA_ACK
(5) VALIDATA_DATA_ACK
(6) READ_REQUEST_ACK

Slave LM

read_ready

Figure 7: Test Base Application design, OSE to OSE communication

These processes communicate with each other viasigfdgls. The picture above shows the
structure of the OSE to OSE Communication applboatiand the signal dependencies
between the OSE processes. This simple applicativalates the communication handshake
between a real master and a real slave. Bef@sterreads the data froslave it should
first send a request to the slave and then waithieracknowledge signal from slave. Other
signal communication takes place inside the slaMe @Qnly the handshake for read request
was simulatedMaster sendsREAD_REQUESTo slaveonce per second. The order of the
signals should follow the order of the signal numiepresentations from (1) to (6) in the
picture inFigure 7.

4.2.1.2 OSE to UML Communication Design

The OSE to UML communication design also consi$tsMo LM: one is master and the
other is slave. They communicate with each othersending and receiving OSE signals. In
the LM master, there is one OSE priority procedkedanaster_requestin the LM slave
there are five threads callatireadl thread2 thread3 thread§ time and main_thread
These LM are presented kigure 8 but onlythreadl, 2, and &re shown here since these
threads have the similar function sleve_wait read_valid read_readyin the OSE slave
(described in the previous section). Each of t&ads shown irFigure 8 contains one
capsule class.

15

Chapter 4: Event Data Analysis

(1) READ_REQUEST
(2) VALIDATA_DATA Slave LM
(3) LOCK_DATA
(4) LOCK_DATA_ACK
)
)

(5) VALIDATA_DATA_ACK
(6) READ_REQUEST_ACK

slavewaitC - readValidC - readReadyC

Master LM

master_request Thread1 Thread2 Thread3

Figure 8: Test Base Application design, OSE to UML communication

In this test base application, the handshake betwesster and slave has the same protocol
as the OSE to OSE communication application, bue loaly signal (1) and (6) are OSE
signals. The signals inside the slave LM are UMinals that are delivered by the actors
representing the capsules in each of the thread.

4.2.2 Log Collection

After completion of the test base application, Aaeoimportant task is to collect the log files.
We need the logs generated for the same test baseasttaking place in the same time
interval in order to provide sufficient informatidar correlation analysis of the event data.
The logs were collected by running the same apmicaseveral times and then collecting
the log files for each of these times.

From the OSE to OSE applications, Kernel Trace Lgce and Error Log, Error Log,
Execution Address profiling log and CPU load logulcobe collected in the same time
interval. From the OSE to UML application, all réma logs could be collected including
TSL log.

All logs should be cleared every time after logextion. In this way, it could assure that all
logs collected are from the same time interval. Bh#fers used to store logs are limited,
when the buffer is full, the new coming logs waptace the oldest logs entries which follow
the algorithm FIFO (first in first out). As a reguthe Test Base Application should be
controlled to execute in a suitable time interwahtake sure the buffers are not full or just
full and no log entries are replaced. This coulddbae by running the application several
times and find out the best suitable running tinleemvthe complete logs could be collected.
In this way, the logs collected will have the sataating and stopping time.

4.3 Correlation Analysis

Individually, the log files will only provide liméd information of events taking place in the
system, but by correlating them a wider view andhier information can be obtained.
Especially interesting is correlation between tien¢ and profiling logs (seEigure 6).
These two groups provides information about theesyslayer and the application layer
respectively, and by correlating them it will bespible to help bridge the gap between
system problem determination and debugging of egftins. In other words, it would be
possible to gain further information when lookimmg problems in different products.

In The Assigned Set of Log Filsgction the log files where introduced, and théada
elements that can be extracted from these areniegsan appendix sectidD.2. To be able

to correlate the event data of the different ldg fypes, data elements describing the same
events and either directly or in-directly corresg®to each other should be found. These are

16

Chapter 4: Event Data Analysis

the elements through which the event data can tvelated and they will be show below in
the Common Event Dataection. After this section each of the differextrrelation
possibilities will be presented in more detail. Tast sub section will cover the correlation
accuracy of these correlation possibilities.

4.3.1 Common Event Data

Based on the table shown in appensixtion D.2the common event data amongst the log
files can be found. Since the TSL log file type h@ny common data elements with all of
the other log files we will describe these in assafe table.

The common elements of all the log files except Ti#t log are described iRigure 9
shown below. In this figure all the event data clise corresponds to each other through
name or value.

Timestamp,
Process name,
Send event / SEND SIG,
Receive event / REC SIG

Process name, Execution | = Y
Kernel Load module name Address Process name Traceand LTS Log *
Trace Log Profiler Log ErrorLog ' 1
S 7 s . RN
7\ -//F *The TSL Log is not
Ti Process name considered in this diagram
imestamp, v Timestamp,

Process name CPU Load Log Process name

Figure 9: Common event data between thelog files

Figure 10describes the common event data between the T<hanother log files. In this
case the different event data doesn’t always dyrectrrespond to each other. More details
about the TSL common event data can be seen itabile presented in appendix section
D.3. Itis from this table that the diagram below weatracted.

CPU Load
Log

\\/T//

Timestamp,

Timestamp,
Process name

Process name,
Capsule name,

Execution Timestamp State name, Tra@e and
Address ' ’ S TSL Log UML signal number,
Profiler Log Capsules, ﬁ% Actor name, g L°§{

| Actors, — Sender address
. Transitions i .
Receiver address,

Timestamp, Signal propagation
Process name

Kernel
Trace Log

Figure 10: Common event data with the TSL log file
4.3.2 Correlation Possibilities

4.3.2.1 Correlation over Time

All the events that have a timestamp can be cde@laver time. This could be useful since
there is a big chance that the events taking @atee same time is dependent on each other
or at least relates to each other in some way. Ugirahe CPU Load log these events can
also be compared to the CPU load at the time higa¢vents take place.

17

Chapter 4: Event Data Analysis

The TSL log differs from the other log files sinttee event data is cumulative for each
timestamp. Before being correlated with the otlogrit should be handled either by being
compared with the accumulated information from haoievent type, or by subtracting the
information from previous TSL time stamp event lbefoomparison.

Before the event data can be correlated over tmaditnestamp first needs to be normalized
to the same representation and same reference @iarezerting time representation should
be handled in the interpreting step and then stioréite data model in a unified format.

To be able to use the same reference of time sain@ thoughts are required since this is
handled in different ways for different log fileShe time reference for KTR log is
represented by a 32 bit integer to represent ndeconds. The integer will restart from zero
when there are no more bits to represent the’timen warm or cold restart of the system.
The time reference for the other log files are espnted by date and time and will
continuously progress from time when the countes laat reset. In the case of the T&E log
the time counter will be reset only on cold restart

Through theSyslog which is not handled further in this projectwibuld theoretically be
possible to automate a synchronization calculafidns log file keeps track of all different
kinds of system restarts and has a timestamp shaoti itself affected by these. However,
when considering that different nodes will havdeti#nt restarts, which would make things
even more complicated, a better and much simplatiso is to simply let the user manually
synchronize the time through a time delta in ther irgerface.

4.3.2.2 Correlation over Process

By collecting information about a certain processf different log files and at different
times it will be possible to get a better view awhdifferent processes interact with each
other and with the system. Some of the informatiwat can be collected for the processes
include the T&E messages, received and sent sigmalsdependencies to other processes.
The process dependencies are especially interesiting the including processes might be a
possible explanation for a symptom in the system.

Different layers have different representation wfgesses. In the hardware layer a process is
represented with a memory address, in the OSE ldgeprocess is represented with the

defined process name, and finally in the applicatayer the representation is type specific.

For the TSL event data terms such as capsule nanteactor names are used. It could be

useful with the possibility to search one of themgresentations (e.g. memory address) and
also get information about the others represemtsti@®.g. process name) for the same

process. In the set of logs that was analyzedplttysical memory address of a process can
be found in the EAP log. If the memory address @pped to the process name, the

processes in KTR, T&E and TSL log would be searlghalso on memory address.

How the processes are interacting with each othesugh signal propagation is also
interesting and will be discussed in the next secti

4.3.2.3 Correlation over Component | nteraction

OSE Signal Propagation

By combining information from different log file$ is possible to track how OSE signal
propagation relates through different parts ofdhstem layers. These propagations and the
event data that can contribute with further infotiora are described below together with
diagrams showing the interactions. The informafionthese diagrams is created from our
Test Base Application.

% A 32 bit integer representing microseconds coordp to approximately 71 minutes.
18

Chapter 4: Event Data Analysis

Since the KTR event data shows signal propagatmnwden processes and information on
what load module they belong to, it will be possitd see component interactions on a load
module level similar to the diagram showrFigure 11

Kernel Trace

Signals

Signal id

Source load module name
Destination load module name
Event type

Signal count

Figure 11: Load Module interactions

Through KTR event data it is also possible to bedrteractions between the processes
themselves (sefeigure 12. Further, if the load module is created in RoséRAill be

possible to get the same interactions from the [Bgltogether with the delivery latency for
the signal propagation. Further information abbetprocesses can be gained from the T&E
log by the group and message attributes.

TSL Kernel Trace
Controller names Signal event
$ $ Delivery latency Signal id

Source process name
« slaveReady Trace and Error Destination process name
Process name Signal count
Group and message

Figure 12: Process/ Controller interactions

If the interacting processes / controllers are phat Rose RT product it will be possible to
find out how the signal propagates within this comgnt (seé&igure 13. Here the OSE
signal is propagated through UML messages betweseiRT actors.

Information on the actor interactions is foundhie TSL log together with the capsule they
belong to. This information only provides the aategmory address, but with the help of the
T&E log through the TRACET? trace group it is possito get the actual names of these
actors. Through the EAP event data with the presamte conventions this information can
be further complemented with the capsule hit ratio.

readValidC. TSL Execution Address Profiler
readValidCR1[0] Capsule class name Capsule hit ratio
Sending actor address

slavewaitC. Receivingactor address Trace and Error
slavewaitCR1[0] Signal propagation id Trace group TRACE7
Delivery latency (through TSL Event Type 9):

—— Signal number - Actor name
SlaveZ(C. :
Signal count - Actor address
slave2CR110] - Controller name

- OSE process id

Figure 13: Actor interactions

Capsule States and Transitions

If the model explained in the above section is moéel further, the capsule states and
transitions can be traced (deigure 14. All these different states can be traced androsd

in the T&E log file through the STATE CHANGE trageoup. Some of these transitions can

19

Chapter 4: Event Data Analysis

also be found in the TSL log and in this case mition about the transition cost and
message latency can be provided. By default ordyl1t?8 most cost expensive transitions
will be shown in the TSL log, but this number migjet re-defined by the user [25].

Each of the transitions corresponds to a symbtadign the EAP log file. However, due to

the EAP naming convention it is impossible to knatvat transition corresponds to what
function. If transitions and functions could be mag@ it would be possible to get

information about the hit ratio for transition cesponding functions and also the physical
address for these functions / transitions.

i - TSL Execution Address Profiler
isterOseSi \ Capsule class name Function hit ratio
registerisesig 4 Start state Function physical address

= — Destination state
UML signal number Trace and Error

" waitForvalidate Transition cost Trace group STATE CHANGE
o DataAck o Msg latency - Actor trace object

- New state
Transition count

Figure 14: Capsule states and transitions

4.3.24 Correlation between different runs

If data is collected from different runs, these ldobe compared to each other. The
anomalies could either be manually compared thraugraphical view or they could be
collected and shown to the user through a diffexepport.

4.3.25 TSL Specific Correlation

As has been introduced in previous part, TSL Loliects ten different events to help the
designer to get a better understanding about treeRD application. For example, when
tracing and logging the event data with the mogteesive transition cost (Event Type 1)
and message delivery latency (Event Type 3), Is t#le designer what the worst case
behavior of the model is and where to improve tbedRT application.

Besides RoseRT Profiler, designers also use Traderr&r Macros to trace system and
functional behaviour on a capsule level at RoseRgnam development. This tool could be
seen as a complement to RoseRT Profiler. Sometimfsmation provided by a single
debug tool is limited and not sufficient enough whabserving complex problems. For
example, TSL log provides the accumulated inforamasiuch as the amount of state changes
or how many OSE signals that has been receivedg\ithdloes not provide any detailed
information like when the states change took plaicethen each OSE signal was received.
This information can instead be found in the T&,land by correlating these event data
the designer might obtain further information thraght aid when debugging the application.

There are some other debug tools such EAP Pralitdr RDS that were not designed for
RoseRT applications but could also be adapted &y tfiRoseRT designers do not use those
tools for debugging or troubleshooting as they dgvéeheir programs. However, both the
EAP log and K&T log contain common event data tatld be abstracted from TSL log.
Further useful information may be generated byeatating those common event data from
independent sources.

In this section, the correlation possibility betweESL log and other logs (T&E log, EAP
log, CPU load log and KTR log) will be analyzed é&&n the common event data that
previously was shown iRigure 1Q

Correlation between TSL Log and T& E, KTR Log
In Trace & Error log or KTR log, there is no evelata related to signal priority, message
queue or RTMutex, so the correlation analysis adfrEVype 8 and 10 was skipped here.

20

Chapter 4: Event Data Analysis

Event Type 4 and Event Type 9

FromFigure 1Q it shows that both the TSL Log and T&E log consaihe event data sender
address and receiver address. Those addressehearghysical memory addresses of
different actors. They are collected by Event Type TSL Log and Event Type 9 in T&E
log. In the following part, the correlation via igal memory addresses is analyzed
according to the simple example outputs of Evergely inFigure 15and Event Type 9 in
Figure 16

Signal Propagation Tree
Signal propagation ID: 1 Signal: 5 se nt by: 0
received by: slavewaitC. 1207479648 delivery latency: 1891

Figure 15: TSL Event Type 4 example output

[1970-01-02 00:03:24.932] slavewaitCR1 ../../initi alizeAll.cc:182 TRACES:
[RTProfiler EVENT_TYPE_9 - Actor Informatio n)
Actor: slavewaitCR1 [0]
Actor adress: 1207479648
Physical thread (controller name): Thread 1

OSE Process: 66591

Figure 16: Trace and Error TRACE5 example output

From the above figures, it shows that both of trmmtain the physical memory address
1207479684 With this address, all actors in the signal pgaten tree could be mapped to
their corresponding controllers and OSE proces3 e signal propagation is described in
actor level, and only T&E log provides informatio#lated to actors, thus only T&E log has
possibility to correlate with signal propagatioedr While after mapping the address the
signal propagation tree could be expressed in Q8&eps (physical thread) level and it will
provide possibility to correlate event data in K&E via processes. In addition, the capsules
could also be mapped to their actors. From the alfigures, it also shows that the capsule
classslavewaitChas the actoslavewaitCR1 This result will be further used in the latter
Correlation Analysigart of this report.

Event Type 1 and Event Type 3

In TSL Log, transition (Event Type 1) is descritigda capsule name, two states, and the
UML signal number that triggers the transitikiook at the example log sheetsHigure 17
andFigure 18below.

In Figure 17 it shows that during the time interval from whiéhe RoseRT Profile was
started to the logging tim@0:05:34 one most expensive transition took place at depsu
slavewaitCin Threadl From a designer point of view, some questionsrtiight arise when
obtaining this information include: when did thigpensive transition take place? Why is it
So expensive? Is it possible to make the expensdesh No answers could be provided by
TSL log because it only stores accumulative infdaroma While some of the questions could
be answered with the help of related event datrded in T&E Log.

In the T&E package, the trace groups STATE CHANGE &EC SIG can be used to
describe a transition when they are combined tege®y doing this, detailed information
about transition could be obtained. However, thedrgroups STATE CHANGE and REC
SIG are based on actor level, while the transitime®rded in TSL log are described based
on capsule level. This means that to be able teelate them the capsule name has to be
mapped with the actor name as discussed in theopiesection. This could be done by
mapping the physical memory address from Event Byped Event Type 9.

From Figure 17 it shows that the most expensive transition tpdkce when capsule
slavewaitCchanged state fromvaitForValidateDataAcko sendReadRegA@{ter receiving
UML signal 4. Figure 18 shows that the UML signal which triggers the tidos was
received at tim&0:05:30.916and that the transition was triggered at tide05:31.144 It
implies that there might be some bottlenecks betweme 00:05:30.916 and time

21

Chapter 4: Event Data Analysis

00:05:31.144since the most expensive transition cost tookeplaithin this period. Further
log analysis should be focused on this period.

[RoseRT Profiler Data] Fri Jan 2 00: 05: 34 1970

***profiler (Controller = Thr eadl) ***
Profile Collect Time Seconds: 129 nanoseconds 1 746279000
Key: sl avewai t C. wai t For Val i dat eDat aAck_sendReadReqAck_4
Value: min: 4507010 max: 5131949 med: 496929 4

Figure17: TSL Log Event Type 1 example printout

[1970-01-02 00:05:30.916]

slavewaitCR1../src/target/Cello/RTActor/enterState. cc:59 STATE CHANGE:
waitForValidateDataAck

[1970-01-02 00:05:30.916]

slavewaitCR1../src/target/Cello/RTActor/logMsg.cc:7 6 REC SIG: Signal:
VALIDATE_DATA_ACK, Port: slaveWait [0], Sender: rea dValidCR1 [0]
[1970-01-02 00:05:31.144]

slavewaitCR1../src/target/Cello/RTActor/enterState. cc:59 STATE CHANGE:
sendReadRegAck

Figure 18: T&E Log STATE CHANGE and REC SI G example printout

From the above example, it shows that by corrajatiansition from TSL log and T&E log,
the designer could obtain the integrated knowleadgaut what the worst case is and when it
took place and the improvement could be done aowptd further analysis.

The message delivery latency (Event Type 3) isesgmted in the same way as transition
cost in TSL log, while in the T&E log, message dely latency needs to combine
information collected from trace group SEND SIG,QREIG and STATE CHANGE. When
this is done it could be correlated in a similaywaa the transition cost.

Event Type 5, 6 and 7

Typical question could be answered with profilingeBt Type 5 (uml message send count),
Event Type 6 (uml message receive count) and Ewgme 7 (state changes count) is “what
is the most frequent executed actors within a RRdlieation”. It could help the designer to
get a good understanding about the behaviors d®'& &pplication. If the designers want to
obtain more detailed information like what kindroéssage was sent/ received by the most
frequent executed actors, they have to examin& &telog.

The Trace and Error macros provided different tygfetsace group for RoseRT applications

on capsule level or actor level. In RoseRT appboa event data related to uml message
received and sent for each actor could be tracddagged by the trace group REC SIG and
SEND SIG respectively, and the event data relatestate changes for each actor could be
traced and logged by the trace group STATE CHANGE.

More detailed information like received signal nwnbsignal time and the sender of the
signal for the most frequent executed actors cbal@bstracted from the T&E log with the
help of those trace groups. By combing these detadvent data together with the
accumulative information got from Event Type 5, iida/, the designer can get a better
understanding of the application behavior.

Event Type 11

Event Type 11 collects the number of received ngessdthe internal messages, external
messages and OSE messages) within a controllere Eie one counter for each type of
messages. By counting and logging the received agess the designers can obtain the
knowledge about communication frequency for eaatitroler. However, if the designers
want to do a deeper analysis to the communicateEmaiour of a RoseRT application,

22

Chapter 4: Event Data Analysis

event data collected by this event can be a bitigdet. There is no information about the
senders, signal contents or message sending tirsengxin the TSL log file. While these
detailed event data could be abstracted from T&f Thus, the designers will have to
correlate Event Type 11 from TSL log with relategm data from T&E log in order to get
a deeper understanding of the communication behesioThe ways to perform the
correlation will be a bit different in terms of theessage types under correlating.

The trace group TRACE?Y is used to record the rememf OSE signals for each thread.
With the help of two attributes TRACE7 and threaane, all entries related to OSE signal
reception could be found out from T&E log. By doitlgs, the following information could
be abstracted: received OSE signal number, sendeess id, and the message receiving
time. Among the assigned log files, only T&E logntains OSE process id, it should be
mapped to the corresponding OSE process name én tireknable further correlation. This
could be done with the help of RDS. All processgscating on the target could be
displayed together with corresponding process tipand priority by typing the command
“rds display process”to OSE Shell. The process id abstracted from T&g dould be
correlated with the one got from RDS; as a regsb#, designer could get the following
integrated information: received thread name, k&xEOSE signal count, and received OSE
signal number, sender process id, sender process and the message receiving time. As
introduced in previous section, Kernel Trace logoatontains sender name, OSE signal
number and receiver name. Those common event dald loe further correlated to find out
all related entries in Kernel Trace log from whitte signal sending time and the load
module name of the sender could be abstracted. \Wieis done the designer could get an
integrated knowledge about the communication belhavof a RoseRT application with
another application.

To be noticed, dynamic processes could have seddfafent process ids for every time
when it was created, a new process id will be assigWhile static process always uses the
same id until the application is restarted. Thenewata got from the commanidds play
process”just contains current process id of a dynamic ggecThus, it is recommended to
log process name instead of process id in T&E loghat the mapping procedure from
process id to process hame could be avoided.

Trace & Error macros provide the trace group tREC SIGto log received UML signals
(both of UML internal and UML external signals)am actor level. From Event Type 11 in
TSL log, the designer could get the informationwhmow many UML internal or external
signals were received for each controller. The éolygontroller name of Event Type 11
could be correlated with event data got from tlaedrgroup TRACES, by doing this all
actors name within this controller could be absedcAfter knowing all actors name within
a controller, all logged entries related to UMLm&{s could be found with the help of the
trace macrdREC SIG.By analyzing those entries together with relateeiné data in Event
Type 11, the designer could understand the UML comoation behaviours of a RoseRT
application at a higher level.

Correlation between the TSL log and EAP log

From Figure 10, it shows that both TSL Log and EWB contains event data about
timestamps, capsules, actors and transitions. i@ $tamp could be correlated directly,
while it could not help too much for the system erstanding without further event data
correlation because both of the two logs store modative information and too many entries
will be got if only timestamp is correlated.

If the transition described in TSL log and EAP loauld be correlated, it will provide the
designer with more important information. In TSlglasome most expensive transitions or
message delivery latency are collected, in EAP tlog executing frequency for each
transition is collected. If they could be correthieto a consistent context, the designers

23

Chapter 4: Event Data Analysis

could get a much more integrated view about théesysehaviours. By doing this, the
designers could obtain the knowledge about whatMbrst case of a RoseRT application is
in terms of transition cost or message delivergray and what the executing frequency is of
the worst case. Base on this result, designer nliglgome improvements to the application.
The first hot point in improve will be the transiti with high frequency.

It is useful to correlate transitions from TSL lagd EAP log, while it is impossible with
current collected event data in two log files. IBLTlog, transition was described with
capsule name, two states, and one UML signal nuniiartrigger the transition between
two states, which is shown Figure 19 While in Execution Address Profiling log, transitio
Is expressed as a symbol name including capsule,raector number, transition number, and
UML signal content, which is shown Figure 2Q

Key: sl avewai tC. wait ForVal i dat eDat aAck_sendReadReqAck_4 Value: min:
4147847 max: 13643694 med: 9475573

Figure 19: TSL Event Type 1 (transiton cost), example output

Slavel: ZN16slavewaitC_Actor30transition3_gotValid ateDataAckBaseE 1 0.00%
Slavel: ZN16slavewaitC_Actor25chain3_gotValidateDa taAckEv 1 0.00%

Figure 20: EAP log, transition example output

In Figure 19,it shows one of the expensive transitions stanebdL log. The transition took
place between stateaitForValidateDataAclandsendReadRedAekhenslavewaitC

received the UML signal which was represent by neiab InFigure 20,it shows that the
transition represented by the symbol naime16slavewaitC_Actor30transition3_got
ValidateDataAckBaseE ~ was hit once during measuring period. It is s@dift to know if

they are describing the same transitiofigure 19andFigure 20.Thus we suggest adding
some extra information about the states and redeidL signal number just as what have
been done in TSL log to the symbol name in EAPWben it describes transitions. By doing
this, the two aspects of the transitions from T&d. and EAP log could be combined
together and provide a better view of the systenateur for the designers.

4.3.2.6 Further Correlations

Countable attributes can be compared and showaidtion to each other. Signal count
between components can for example be comparée tmoimponent hit rate or to the CPU
load for a certain process or priority. If signalat is put in relation to signal latency this
might give further information for tracking systexarformance.

Another form of correlation is filtering of attribes to show only the interesting set of
information. This will be mentioned more specifit the Graphical Representatioand
Graphical User Interfacsections.

4.3.3 Correlation Accuracy

A general limitation when correlating timestampsthat the events many times are not
granular enough to sufficiently trace a chain oérdg between log files. T&E log has the
maximum timestamp accuracy of milliseconds whilee tKTR and TSL log has
microseconds as maximum accuracy.

If attributes are compared over a string variatilere is a chance that the attribute has the
same value even though they represent differemiezies. In the assigned set of logs, the
process, method and symbol names can avoid thesenstances to some extent by also
compare through the load module or method pacKkaaetie component belongs to. Similar

precautions can also be made for the string atégom the TSL log.

24

Chapter 4: Event Data Analysis

4.4 Graphical Representation

Humans are very good at recognizing patterns aothalies in a visual context [26]. By
representing the event data graphically an ovendaw be presented from where the user
more easily can navigate and analyze the data.dBasethis together with results from
previous sections, analysis about visualizatior &l given. The results from these sections
will later be used as a base for the Graphical Wsterface (GUI) implementation of the
Correlation Tool and the GUI implementation will farn validate the theoretical results
concluded in this section.

Since the there is no GUI implementation for theLT&g file in this project, extended
graphical analysis about this log type is donehmDRetailed TSL Specific Representation
sub section.

4.4.1 Table Representation

All the event data analyzed in this project casome way be represented in a table. From
here the entries can be sorted by sequence nutimbestamp, component name or any other
attribute according to the user preferences for fimment. It is also a great way for
navigating, filtering and searching propertiesafge amounts of associated event data. An
example of a table showing the entries of a KTRfilegs shown in Figure 21.

(21)Time: 1279612.079 ms

Receive <1001> From: m15.ppc:master_request To: s15.ppc:slave_wait
(22) Time: 1279612.091 ms

Send <1002> From: s15.ppc:slave_wait To: s15.ppc:read_valid

Sequence | Time (ms) Destination
number

21 1279612.079 Receive 1001 m15.ppc:master_request s15.ppc:slave_wait
22 1279612.091 Send 1002 s15.ppc:slave_wait s15.ppc:read_valid

Figure 21: Table representation of Kernel Trace entries

Another use of the table view is to show collectefibrmation for frequently occurring
attributes such as component name or event type.cblected information could contain
statistics such as number of occurrences for coemsnor event types, the component
dependencies, etc. Figure 22 shows a table repatieenof process information collected
from the KTR log file.

Receive | Send Number of Dependencies
events events | dependencies
s15.ppc:slave_wait 10 5 5 2 master_request, read_valid

s15.ppc:read_valid 10 5 5 2 slave_wait, read_ready

Figure 22: Table representation of Kernel Trace processes

4.4.2 Representing Log Information Summary

It would be good for the user if he in some wayldaget an overview of the different log

files without actually have to open and look throupe data. Information that would be
useful to know is how many entries the log file taoms, what time span the events take
place, what different event types it contains &tas kind of information could be shown

either in a log properties view, a static view eraadialog. Further information could be a
short description of the log file type, and if niplé files are selected, information on how
they can be correlated.

25

Chapter 4: Event Data Analysis

4.4.3 Time Chart Representation

An intuitive way in representing event data in tiela to time is with the help of a time line
chart. By doing this, the events can easily beeatated over time by being represented in
relation to the time line and to each other. Anressv can be presented that would be
impossible to see through raw text or a table sapriation. With various colors or shapes it
would also be a fast way to spot entries that stand from the usual patterns. The data can
be navigated through a zoom function where moraildet information can be given at a
certain time interval. The figure below shows aaragle time chart with events in relation
to time.

(21)Time: 1279612.079 ms

Receive <1001 > From: m15.ppc:master_request To: s15.ppc:slave_wait
(22)Time: 1279612.091 ms

Send <1002> From: s15.ppc:slave_wait To: s15.ppc:read_valid

Receive <1001> From: m15.ppc:master_request To: s15.ppc:slave_wait

Other Event
D Data

m Kernel Trace
Event Data

—
B
]
]

L

1279612.079 ms 1279612.127 ms
Figure 23: Time chart view representing eventsin relation to time

If the event entries specifies countable data siscthe case for CPU Load Log, this data can
be represented with a diagram showing how the velhamges over time. The diagram can
be shown together with the event representatioptamed above to put these in the same
context. The user would in this way be able totbeeevents that were recorded at the time
of anomalies in the countable event data. For G#ld kevent data it could also be valuable
to compare diagrams from different runs to eaclkeroth

Further functionality could be tool tips for theests, clickable icons to show further
information, a legend for the time charts and ifilvhere the user can specify what data to
show.

4.4.4 Node Graph Representation

Events that contain source and destination compgengam be represented graphically by
nodes and connections similar to the graphs ifCthreelation over section (section 4.3.2.3).
The figure below shows a simple example of KTR ¢wdata being represented by nodes
and connections.

26

Chapter 4: Event Data Analysis

(21) Time: 1279612.079 ms

Receive <1001> From: m15.ppc:master_request To: s15.ppc:slave_wait
(22) Time: 1279612.091 ms

Send <1002> From: s15.ppc:slave_wait To: s15.ppc:read_valid
(23) Time: 1279612.109 ms

Receive <1002> From: s15.ppc:slave_wait To: s15.ppc:read_valid
(24) Time: 1279612.113 ms

Send <1003> From: s15.ppc:read_valid To: s15.ppc:read_ready
(25)Time: 1279612.127 ms

Receive <1003 > From: s15.ppc:read_valid To: s15.ppc:read_ready
(26) Time: 1279612.132ms

m15.ppc Signal <1001 >
master_request

m15.ppc
slave_wait

Signal <1002>

m15.ppc Signal <1003> m15.ppc
read_ready read_valid

Figure 24: Node graph representing Kernel Trace signal propagation

At a lower level of event propagation the inforroatwould be too comprehensive to show
all at once, why a filter function is crucial toeus) these cases. Again, as mentioned in the
Correlation oveiCorrelation over Component Interacti@ection, the information given by
our assigned set of logs can give information dérimctions from a load module level,
through process/controller and capsule level, ddawrthe transition level of Rose RT
capsules. Since all this information is given itulkbbe possible to traverse the levels of
representations through children or parent compsnéfrfor example a load module node is
clicked, the interactions between processes withimmcomponent can be shown. Further, if
the process is created by RoseRT, this componenbealicked to show information of the
capsule interactions taking place in that particydeocess; and finally an actor can be
clicked to show information of the state transiidaking place in the controller from where
the actor was instantiated from.

This way of interacting with the event data canused if the user wants to see the OSE
signal propagation graphically to get an overvidihe system. It would also be useful if the

graphics can be connected to the actual valuesesepted by the event data. The
connections could be connected to information saslsignal number, amount of signals

sent, and delivery latency; while the nodes cacdiaected to information such as process
name, capsule hit ratio, or any other informatioovled by the log files.

4.4.5 Statistical Representation

Event data representing statistical information barshown through various charts such as
bar charts, line charts, pie charts and otherss fdpresentation might be nice to look at, but
for the set of log files created with the Test BApglication, we found these representations
less useful. It could however be a good idea to asdimes when the data is too
comprehensive to view in a table or for finding mxaties when comparing data recorded
from different runs.

4.4.6 Detailed TSL Specific Representation

According to the event data and correlation anslgsiTSL log in the previous section, some
suggestions about how to represent the result gr@phare given in this section. Because
of time limitation, the GUI of TSL log is not impigented. But our suggested graphical
presentation could provide some valuable resuttadat project work.

27

Chapter 4: Event Data Analysis

446.1 TSL LogBrowser View

Before going into the details of TSL log, it is tegtto have an overview such as how many
controllers there are and what they are about otispdy, which types of events are
collected for each controller or all controllers.

Two alternative ways about the TSL log browser veme suggested in the following. The
first way is to show an overview according the i@ structure of the TSL log files. There
are 4 different objects: log, block, controller agekent in TSL log. So a log file structure
with 4 depths could be used. This structure is shtmathe left inFigure 25

Another way to show an overview is a simplifiedusture according to different event types
stored in the log files. Three depths are usedim tiype of log file view: log, event, and
controller. Blocks are neglected here and all alatrs collect the same event will be
gathered together and listed under the event Jpes structure is shown to the right in
Figure 25

Block and Controller Event Type
oriented structure oriented structure
» Log1
Block 1 » Log 1
Event Type 10 > EventType 1
Event Type 11 o Controller 1
Event Type 4 o Controller 2
Block 2 ° ...
Controller1 - Controller N
Event Type 1 Event T
ype 3
EventType 3 Event Type 4
Contr.c;ller 2
Event Type 11
» Log 2 » Log 2
» Log 3 » Log 3
»
>

Figure 25: Two different TSL log browser view structures

Both of the two suggested log browser view striegurave their strong points. For the block
and controller oriented structure which is showrthie left inFigure 25 it is easy for the
user to identify how many different controllersrdare and what they are about respectively
in the log file, and what event types are colledtgcevery controller. In this way, it is not
easy for the user to identify how many controllealected one specified events if the
controller number is a bit large.

For the event type oriented structure it is easgeatify how many controllers that contain a
specified event. However, in this way it is notcemvenient for the user to identify the event
types that are collected for each controller. Thst bvay is probably to present this in both
ways and let the user make the decision on howdw she content.

44.6.2 TSL Tableview
As mentioned inTable Representatignsection 4.4.1, all event data can in some way be
represented in a table view, including event dataSL log. It is however not a very good
idea to represent all event data abstracted fromn [6§ in only one table because of its
complexity. A better solution would be to represewent types with different structures in
different tables. According to the content of th#edent TSL event types, four tables are
suggested to be used for storing the event datantElata in Event Type 1 and 3 can be
presented together in one table as showkigare 26 event data from Event Type 5, 6 and 7
can be presented in another table as showgine 27 event data from Event Type 10 and
11 can be put in a table as showrfFigure 28 and finally the event data from Event Type 4
should be presented in separate table.

28

Chapter 4:

Event Data Analysis

Controller | Capsule name 1'st 2'nd UML Transition cost Latency
state state signum |min |max |med |[min |max |med
main Slave wait stop 1 165 164 16p 112 112 112
Figure 26: Example table view of Event Type 1 and 3
Controller | Collect time (sec) | Actor name | Actor index Rec msg | Sent msg | State change
main 106.422747000 slave 0 1345 0 1103
Figure 27: Example table view of Event Type5, 6 and 7
Controller | Inter queue per priority Intra queue per priority Defer | OSE UML UML
of1]2[3[45[6[7]0]1]2[3]a]5]6]7 signal |intra | inter
slave 213/ 31 200 0 1 0 01 31 (2|1 2 20 34 23
Figure 28: Example table view of Event Type 10 and 11
Sig prop id | UML sig num Send by Received by Cost
Capsule name Actor memory addr
1 5 0 slaveWaitC 1250078048 872
1 3 1250078048 readValidC 1250079136 1603
1 3 1250079136 readReadyC 1250078672 890
1 4 1250078672 readValidC 1250079136 582
1 8 1250078048 slaveTsITopC 1250077376 4161

Figure 29: Example table view of Event Type 4

4.4.6.3 Nodegraph

In Figure 3Q the node graph of a simple signal propagatioa iseshown. As has been
analyzed in the previous part, TSL signal propagettiee could be represented in two layers:
actor layer and controller layer. Both of the tvaydrs are shown iRigure 3Q The actor
based signal propagation tree, which is abstraftted original log file, is isolated from
OSE. The process based signal propagation treleecnthher hand could be traced and logged
both through the KTR and the TSL log.

With the help of this node graph, it is much eagiedentify the signal dependencies among
different capsules and different controllers. A plmoutput of signal propagation tree
represented as a node graph can be sdegune 30

1250077376
slaveTsITopC

Correlate
Event type 4
from TSL
with TRACES
from T&E log

—

Sig prop
order:
533484

1250078048
slavewaitC

1250078672

readReadyC Thread3

Thread1

Thread2
1250079136
readValidC

Figure 30: TSL node graph of signal propagation tree

Also the event data from TSL Transition Profile Bige(Event Type 1 and 3) can also be
represented by a node graph, in a similar way aweland as shown i€orrelation
Possibilities,sectiord.3.2.3

44.6.4 Extended Time Chart View
TSL log collects accumulative information for theod@RT model so there might be
hundreds of entries in the time line for each laggiime. It could not help the users too

29

Chapter 4: Event Data Analysis

much if all the entries are shown at the same tBoee techniques are needed to filter out
event data that the users might not be interestésl.suggest two ways to perform this
function shown inFigure 31 One type of the two suggested TSL log browsewsiéshow

in Figure 27) is also included in this figure.

As shown inFigure 31, one way to filter in some entries from time liseto design a filter
dialogue with some main attributes listed behindastoxes. Take a simple example, when
the checkbox of the attributdran cost” was selected, only the event data related to
transition cost Event Typel) will be shown in TSL time lie. There might be still many
entries at the same point of the time line if saveontrollers collecEvent Type 1The user
might just want to shovransition costfor a specifieccontroller or even more specific like
for a capsule In that case, a specific filter is suggested. &mes the users might not
remember the name of different controllers thastsxin the log files, in this case, the log
browser views suggested in sectioould be helpful. By looking at the log browserwie
shown to the left ifFigure 31,it is easy for the users to get an overview atloeTSL log
files. It might also be possible to add a filtendtion to theTSL log browser viewBy doing
this, the uses can open a time chart view with amigresting entries directly from the log
browser view.

Profiler (Controllerc Thread1)

-TSL Log 1 » Eventtype 1 (transition cost) (TSL Log
_ Key: slavewalitC: d
BLOCKT registerOseSig_waitForValidateDataAck_5 SAUANICO=, msg latency
—-ET4 Value: min:1159 max:1159 med: 1159 msg rec msg sed
-ET10 ;
—ET11 sig prop State change
-BLOCK?2 TSL D D \:I peak sig Total dispatch

-Main Filter: | Thread1 IOK

—ET1
- ET3

»-Thl’;ﬁl]d] [1970-01-02 00:05:29.696]avewaitCR1 ../src/target/Cello/RTActor/logMsg.cc:76

ZET3 REC SIG:signo:1001, Port:slaveWait[0], Sender:readValidCR1[0]

_ETS [1970-01-02 00:05:29.696]

_ET6 slavewaitCRL1../src/target/Cello/RTActor/enterState.cc:5 T&E Log

_ET7 STATE CHANGE: waitForValidateDataAck « RECSIG SEN SIG

:g?o TRACE5 TRACE?

-ET1 T&E L] L] [] [] ERROR STATE CHANGE
+Thread2 PARAM INFO
+Thread3 . "

Filter: slavewaitCR1 oK

Figure 31: TSL event data represented on a time line with suggested filters

Figure 32shows a simple example about how to correlateditedata from TSL log and
T&E log by time line. With the help of the filtehewn inFigure 31, three transition entries
in Thread 1could were found out, it is also suggested to stiearansition in a node graph
as shown irFigure 32.Detailed event data of transitions could be shawf&E time line
via selecting the attributeREC SIGand STATE CHANGEN the filter dialogue and
specifying a more specific name likewvewaitCRXlook at example ifrigure 31) for T&E
time line. Figure 32gives an overview about how the result will beelikhen correlated a
transition. By doing this, it is easy to find ohettime interval when the worst case took
place in the time line and further analysis cowddone by zooming in that time interval to
check what something else happened during thatgeri

30

Chapter 4: Event Data Analysis

FriJan 2 1970
Transition Cost (Thread1)
Key: slavewaitC: B_C_4
TSL |Og _____ m Key: v If
A 5 B 4 cC 1 A
T&E log - Ll LR]
—
[RoseRT Profiler Data] Fri Jan 2 1970
profiler (Controller = Thread1)
Event type 1 (transition cost)
Key: slavewaitC: C_A_1 Value: min:'560 max: 791 med: 631
Key: slavewaitC: A_B_5 Value:min: 671 max: 1159 med: 723
Key: slavewaitC: B{C_4)Value: min: 4507010 max: 5131949 med: 4969294
[1970-01-02] slavewaitCR1 ../../logMsg.cc:76 Port: slaveWait[0]
Sender: readValidCR1[0]
[1970-01-02] slavewaitCR1 ../../enterState.cc:76

Figure 32: Event data correlation viatimelines

The time chart view might be useful for represaptihe event data and it will be more
powerful when complementing with log browser viewde graph and table view.

31

Chapter 5: Implementation of the Correlation Tool

5 Implementation of the Correlation Tool

The Correlation Tool is implemented as an Eclipgggfh. It consists of parsers, data
models, Graphical User Interface (GUI) and undagytalculations. By implementing this

tool we will be able to confirm our previous resudts well as allowing further analysis. With
the GUI implementation we will also give suggessiam how the user can interact with the
event data and the correlations. The aim is tdifaig in debugging and resolving problems
within the system.

The Interpreters and Data Model sections will handle decisions on structuring and
organizing the event data with the help of intelgn® and data models. Following these
sections the GUI will be presented together with @orrelation Tool functionality in the
Graphical User Interfacesection. The last section of this chapter is theftware
Architecture section where the Correlation Tool architecturepigsented with further
information on how the different components arenemted.

5.1 Interpreters

To traverse and do calculations on the event daghould first be interpreted and stored in a
data model. Correlation and calculations could tmeedbefore storing the information in the
data model, but at this stage the advantages waspparent and it was decided to only do
the normalization processing at this stage. Cdioglapre-processing will however be
discussed in th&€oncluding Discussiorchapter in the end of this report based on our
experience working with the event data.

From the elements presented in Event Data Analysishapter there are a few that needs to
be normalized before being stored in the data mdeledt and foremost is the timestamp
where all the sources are normalized in a uniforfioechat to enable correlation over time
(see theCorrelation over Timesection). Further normalized data are the sighalumbers
that are either stored in decimal or hexadecimahéd in the different log file types.

The log files that was handled are all in raw teximat and most of them are strictly
structured which helps when they are to be parsetl sdiored in a data model. Since
performance isn't an issue in this project worlwiis decided to use the java.util.regex
library? for parsing the log files. The parsers have begriémented independent from the
user interface, so that future parsers can be addaty way without affecting the rest of the
system. All event data that is handled in the Catien Tool will depend on the data model,
and how the information gets there is of less wieigh

The TSL log file differs from the other log files/ lbeing very complex and without any
strict format. Regular text parsing is for this gea not a good option, and instead a
suggestion of an XML structure was proposed todsoa. This structure can be seen in
appendix sectiorD.4. The structure was however never implemented Gmaplications
section in theConcluding Discussiochapter) and for the moment only an example parser
for the structure was created. This parser handilee Event Type 1 and 3 and is
implemented using the JDOM libréry

5.2 Data Model

For storing the event data, a generic data modebkan considered in comparison with the
use of specific data models defined for each differtype of event data. For better

& The Java regular expression API
® JDOM is a Java-based solution for accessing, miéating, and outputting XML data from Java
code (www.jdom.org)

32

Chapter 5: Implementation of the Correlation Tool

compliance with the Correlation Tool the impleméota was done as a Java Object
Oriented structure. Discussion and conclusions talioel data model approaches can be
found in theSpecific vs. Generic Data Modskction belowFollowing this section the
defined data models will be presented.

5.2.1 Specific vs. Generic Data Model

Both the specific and generic data model approagvees conducted for the data model
implementation. The specific data model was owt fapproach, but due to bad experience
using this strategy and information found on then@wmn Base Event we choose to change
to a generic data model approach. A generic datiehapproach will contribute in a bigger
abstraction and will facilitate when developing coon views for different kind of log
formats. This approach will also assist developeeglapting new log and trace data without
rewriting the existing code. The decision pointatttvere used for this conclusion can be
found in appendix sectioB.2 Due to our implementation strategy of data model
coherence it was a minor problem to also suppgéereric data model.

The diagram below shows a simple overview of ther€ation Tool implementation and
what is needed by the user to extend the tool avitkew log file type. The left side shows the
extension requirements in a specific data moderagmgh and the right side shows the
requirements in a generic data model approach.

Specific Data Model Approach Generic Data Model Approach
LogFile LogFile
0 &
™\ /7‘
Parser < C_/\ Parser « (e
g / \ g
Data | Generic
Model DM RX|
& A
GUl Table Data Model GUI Table s GenericDM zgﬁgéfrlﬁ _____
Editor Extension Editor Extension | Extension
e e]
Time Chart Data Model Time Chart s GenericDM i gﬁgﬁﬁ
Editor Extension Editor Extension | Extension
o SRR |
Node Data Model Node N GenericDM { ?:gﬁgfrl‘f
Editor Extension Editor Extension | Extension

Figure 33: Extending the application with a new log file type

5.2.2 The Generic Data Model

The figure below shows the generic data model dedJibere was no time at this stage of the
project to get familiar with the Common Base Efdntt the design of the presented data
model is still inspired by the same approach. Tdta dhodel is currently defined to work for
KTR, T&E, and EAP event data and the CPU Load daight also be used through the
Extended Data Element. Due to the complexity offitB& log, we chose not to use a generic
approach for this log file type.

2 See theCommon Base Evenéction
33

Chapter 5: Implementation of the Correlation Tool

‘ & GenericEventData & GenericEntry © ExtendedDataElement

o entryList: List<GenericEntry= dmports o affectedComponent: GenericComponent «imports . o children: List<ExtendedDataElement-

o headerinfo: String —'—"—3 o event GenericEvent — — — — 31 o name: String

o logFieTime: TimeStamp o extendedDataElement. ExtendedDataElement o type: String

o |ogFileType: String o segNo: Long o values: List<String>
T o sourceComponent. GenericComponent
h o timeStemp: TimeStamp =0 0f——————— =

|aimparts |

| | F Imports
J

e e —
© DateEntry Sl | __ | : & GenericComponent
madel rommalized timeStamp GTAimEzStamp ! M | } (& GenericEvent a SR
o day int | M nCYmaRIed Ineai o message: String o name: String
@ month: int o date: Date€ntry o type: String o owner: String
a year. int o microSeconds: long o value: Long o type: Siring

Figure 34: The generic data model

In the presented data model the different attraie optional and the Correlation Tool has
to adapt the output depending on what informatidrattis presented. In the
GenericEventDatalass the header info, log file time and log tgp@& be specified. It also
contains a list of generic entries where informatioom each entry in the log file is
specified. TheGenericEntry class stores information of sequence number, Staenp,
source component, affected component, and the .eVeatsource and affected component
are of the typeGenericComponentind here information about functions, methods or
processes can be specified. The event attribudktigpe GenericEventaind here information
about event type, event value and event messageresl. In th&extendedDataElemewtass
further event data can be added if the generictsire is not sufficienfThe TimeStamglass
store dates in thBataEntry class and the time units from hours and beloworsserted to
microseconds The full date and time can be collected througgtdString()function.

5.2.3 The Specific Data Models

Since the specific data models that were constluftie the KTR, T&E, EAP, and CPU
Load Event Data now are replaced by the generiz whaidel, these will not be explained or
shown in this section. They are however still supgabin the implementation and our results
concerning these can be seen in appendix saBtibiThe TSL log is however still presented
with a specific data model, which is shown in tiegdam below.

2To normalize the time for future correlation
34

Chapter 5: Implementation of the Correlation Tool

© TimeStamp & RoseRTProfilerData
madel normafized timeStam
- i elmports | o blockOne: BlackOne o cl‘i::}tuuer
o date: Daterry o blockTwe: BlockTwo
o mictoSeconds: long o timeStamp: o typeName: String
- o collectTime: TimeStamp
almparts dmpntt Impart;
mports. | /]; 77777 7/, oA \jlp ,,,,,, WP | eventTypet: TranstionProtieEvent
i W o evertTyped: TransitionProfileEvent
(& BlockTwo o ewentTypeS: ActorProfieEvent

& BlockOne
block bilnck o eventTyped: ActorProfieEvent
o eventType?: ActorProfieEvent

a evertTypel(: MessageGueuePeakSizeEvert

o timeStamp: TimeStanp
o everdTypel Ot MessageQuensPeakSizeEvent
o evertTypel1: MessageReceiveCountEvent

o controllerlist: List=Cortroller=

a eventTypel1: MessageReceiveCourtEvert

«\mpunx/ s \ wimports '

R & e G i S et |
I i \ \ [cetomsomty [ceivmeroms™ |
almports ’ <«Imparts «lmparts lmparts
LR o \ o [\ I

amports |
(& MessageReceiveCountEvent

)
£2 SignalPropagationEvent
block messageReceiveCountEvent

biock SieriaProgagation

© ActorProfileEvent

hilock actorProfileEvent

(& MessageQueuePeakSizeEvent
block messageRueuePesiSizeEvent

& TransitionProfileEvent
biock transilionPrafiEvent

o oseSignalCount: int o deferQ RTMessageGueus a actorEntryList: ArrayListzActorEntrys a transitionEntryList: ListTransitionErtry= s entryList: ListsSignalPropagationEntry=

o umiExternalSignalCount: int

o externalt: RTMessageQueus | |
smparts
v

| | et
‘ & ActorEntry
L elmpnt: bluck actorProfieEvent

o uminternalSignalCourt: int o internald RTMessageQueus

© TransitionEntry {2 SignalPropagationEntry

(& RTMessageQueue

block messageQueuePeakSizeEvent

(9 RTMessageEntry

block messagetiueusP akSizeEvent

o actorieme: String
o actorindesx: int

block trensitionProfieEvent

block signalPropagation

a transitionCost: TransitionCost

2 TransitionCost
hiockitransitionPrafileEvert

© Transition
block transttionPrafisEvent

(8 deliveryLatency: int

o riMessageEntryList: ArrayList=RTMessageErtry= o value: int a transition: Transition (8 receiverAddress: int
I o I 57 receiverCapsule: String
dmports
dmports = SEEROUY: o < miports 5 senderAdress: int

40 sighlumber: it
i sigProplek int

o pesksize: int

e o min it o capsulehame: String
a ma int o firstState: String
o med: int o secondStats: String

o umiSignaiho: int

Figure 35: The TSL specific data model

The RoseRTProfilerDat&lass is the main class. It contains the two dfie TSL blocks and
a time stamp. Both of the block representationstasondifferent controllers, and the
controllers are in turn storing information of théferent event types. ThEBmeStamlass
that is used by both the main class andBloeckOneclass, stores the time inCateEntry
class and in microseconds for hour units and beldw.TimeStampglass used by this model
Is the same as the one used in the generic datalmod

With the TSL data model we took the freedom to ssigome new names for the different
TSL log file attributes. The intra and inter quesi@ow called internal and external queue to
avoid confusionEvent Type 1 and 8re both referred to agansition Profile Eventsnd
Event type 5, 6 and are referred to aActor Profile EventsEvent type 10 and 1dre called
Message Queue Peak Size ExmmitMessage Receive Count Evesgpectively.

5.3 Graphical User Interface

In this section screenshots will be shown of th#edint components in the finished
prototype GUI together with explanation and theutftits behind them. All the event data
representations can also interact with each otlegending on what elements that are
selected by the wuser. This will be explained furtie the Interaction between
Representationsection. Features not implemented but that mighaideful are presented in
the Future Worksection.

Information on how the finished interface can beduso find the reason for an error or
certain behavior can be found in appendix secfich

5.3.1 Approach

The GUI implementation is based on the previouplgal analysis, and with the help of
our Test Base Application we have constructed adeenarios where we want our GUI to
be useful.

Since the analysis part is the main focus of thiggat, the GUI needs to provide fast results,
why the application was implemented as a prototypethis project there were also no

35

Chapter 5: Implementation of the Correlation Tool

specified requirements of the visual results whied us to conduct the programming
iterative and evolutionary.

The project manager for this thesis has acted omustdor the interface functionality and

with his help we choose what functionalities tHadidd get more or less priority throughout
the iterations. Information from the meetings wiso aised for assumptions on which the
end user might be, to aid when designing the iatexf

View components were used for browsing the log filed,eitor components were used for
the event data views since they need to take leg #is input objett

Using the features described in tBmphical Representatiopection as criteria, we decided
to use the Zest libratyor the Node Editor, and implement the Time Cleatitor using the
SWT graphics library The reason why we didn’t chose a more advanbeali for the time
chart was because of the lack of support for dhtetactions in other examined libraries.
Further information about the graphical librarikattwas studied can be seen in appendix
sectionC.1

5.3.2 User Analysis

For the users the comprehensive goal of using tree@@tion Tool is to profile and correlate
log files using a graphical user interface. Scarsavhere the tool might be useful follow
below:

e General examination and comparison of the log files

« Finding the reason of an error or a certain behaviy the different event data
relationships

* Collecting information about a certain event orqass from different log files

» Getting an overview of how the product interactthwine rest of the system through
visual presentation of the propagation tree anémiht dependencies

The user will also like to interact with the datad way that is not possible with simple
command prompt printouts. These interactions irelusbrting, filtering, graphical
representation, comparison and correlation betiagfiles. He might not have knowledge
about the different log structures and the log enntwhich is why the system should be
intuitive and not include acronyms or pre-knowledgeumptions.

The user might also want to adapt the interfacevaok with further log files, why the
programming should be conducted in a way thatifateéls in future extensions.

5.3.3 Implemented Functionality

5.3.3.1 Navigatingthe Log Files

The figure below shows the Directory and Logs Vidlrough the Directory View the user

can browse to the path where the log files areed{aand by clicking the directory of choice
the contents of the directory will be shown in ttegs View. From the logs view the log

files can be navigated. The TSL log file can beerded to show the different event type
contents. By doing this, correlation between speeWent types and other event data will be
enabled. Since the TSL log is not yet supporteceittending information is for the moment

just dummy data. By selecting one or several ltgs fdifferent actions will be enabled or

2 seeEclipse and Eclipse Plug-irgection for information on these components
P Zest is a GEF based visualization toolkit for Es#. The primary goal is to provide easy graph
based programming (www.eclipse.org/gef/zest/zeg).ph
° SWT is an open source widget toolkit for Java giesdl to provide efficient, portable access to the
user-interface facilities of the operating systemswhich it is implemented (www.eclipse.org/swt).

36

Chapter 5: Implementation of the Correlation Tool

disabled depending on which files and correlatitmst are supported by the different
actions. The actions can be executed either bitiatiche icons on the toolbar or through a
context menu if the right mouse button is clicked.

Currently both specific and generic data modelssapported for storing the log file event
data. The user can select which one of these hteswamnepresent the event data through the
context menu and thBwitch Data Model Representati@ction. The actions will do the
appropriate operations depending on which repratent that is currently active
(implemented functionality might vary slightly).

& CorrelationTool - Eclipse SDK. @@gj
File Edit Mavigate Search Project Run ‘Window Help
i Q- & 4] B 5 CorrelationTaol &
T Directory view 2 = =l
By
[atmp
= dell
&= Documents and Settings
(= DownloadDirector g
e >
B Logstiew 2 il
[&] 0309_a.ktr Al
-|oa| 0307_4.tae
|25 0309_6.ktr
|sa| 0309 _6.tae
=[] 0309 6.ksl
i Example TSL content:
i collect Time
=1 Block Cne
=1 Collect Time
i Event Type 10
i Event Type 11
#- 1 Block Two
5] 0a09_6_readme.txt
- [R
|a%| 0310_2.kae
|| atrmp.kkr b
< >
e

Figure 36: The Navigation View

5.3.3.2 TheTable Editor

In the Table Editor shown in Figure 37 and FiguBetl¥e log file entries are represented in
rows and columns. In the bottom of the editor themeetwo tabs where the user can choose
to either list all entries in the log file or lisil unique component names with collected
information of the components. For the moment @dine data in the generic data model is
supported by the entries table view, while KTR 3i&E specific data models also support
the component list table view. Figure 25 showsdhent data of the KTR log file where
each row represents one log file entry. Figure@8&ains information about the event types
for which each of the component process is resplimshow many other processes the
process interacts with, and the names of thesegses.

Different tables can be opened for different logsfiso that the user can compare the
different event data. Through the column that regnés the normalized time stamp the event
data can be synchronized to each other over titme.nbrmalized time stamp corresponds to
the time used in the Time Chart Editor

The different attribute columns can be sorted ddjpegnon what the user would like to find
and compare amongst the event data. If an entilycleed, example highlighting is used for
the process names to facilitate in navigating tuefiles. The process names in the selected
entry will be highlighted in the same table andaditsother opened tables of the same or of
different event data types.

8 The Time Chart Editor will be presented in ffitee Time CharEditor section
37

Chapter 5: Implementation of the Correlation Tool

& CorrelationTool - KTR Profile [0310._2.kir] - Eclipse SDK

File Edit Mavigate Search Project Run ‘Window Help
= qa, 7 5 *D Refresh Table T4 | [CarrelationTool | ta
T Drectoryvew 52 C @KRAdeme0kI _— =
| B cyy ~ seqna normalized. .. | log time {ms) signal event signal id sender.owner sender.process | FeCelVEr.OWNEr | receiver.process |
E 1] 0.0 213222,405 Create process 0 slavel Threadl M T I
1111 1.126 213223.531 Send 65633 slavel kime: Main Zs_prochar_proc
£ 1.138 213223.543 Receive E5633 slavel time: Main Cs_prochar_proc
- g - 3 1.252 Z13223.657 Send 393732 slavel kime Main Sys_OMZSF_teGlobal
(= DownloadDirector 4 1258 213223663 Receive 393732 slavel time: Main Sys_OMCSF_teGlobal
#-[=> Eclipse Warkspace % | 5 1.3 213223.705 Send 31900 slavel kirne: O5E ase_huntd
£ >] 1.307 213223.712 Receive 31900 slavel Kirne: Q5E ose_huntd
— = = 7 1.337 213223.742 Send 393742 slavel kirne Main Sys_Osa_Wtp_Maniag...
Te Logs view &2 =0l|s 1.349 213223.754 Receive 393742 slawel Hirne: Main Sys_Osa_htp_Manag...
= 9 1.426 213223.833 Send 31900 slavel tirne: OSE ose_huntd
EDEEIL | 1.432 213223.837 Receive 31900 slavel time: OSE ose_huntd
A 11 1.451 213223.856 Send 32706 slavel tirne: Main ase_ttc
&1 Block One -} B 1.458 213223.863 Receive 32706 slavel time: Main nse_ttc
1 Collect Time 13 1.498 213223,903 Send 393733 slavel time Main Sys_OMCSF_teGlobal
i Ewvent Type 10 I 14 1.503 213223908 Receive 39373 slavel tirne: Main Sys_OMCSF_teGlobal
1 Event Type 11 1] 15 1.842 213224.247 Send 22020096 slavel ki slavel main_thread
-1 Block Two 16 2,246 213224.651 Send 65633 slavel Threadl Main Cs_procyar_proc
i] 0509 6 readve.bt 17 2,252 213224.657 Receive 65633 slavel Threadl Main Cs_procyar_proc
=l uatE e . 2,329 213774.734 Send slavel £ obal
| I‘GE!% 0310_2.ktr 19 2,334 213224.739 Receive 393732 slavel Threadt Main Sys_OMCSF_teGlobal
- o] 0310_2.tae a|) 20 2,375 213224.75 Send 65633 slavel Thread2 Main Cs_procVar_proc !
| % > Entries | Process

Figure 37: The Table Editor showing the Kernel Trace event data entries

£ CorrelationTaol - KTR Profile [0310__2.ktr] - Eclipse SDK FER

File Edit Mavigate Search Project Run ‘Window Help
it Q- - 45 Refresh Table Hiot % | [CarrelationTool | 2
= = =5 . =
e orecoryvew 5 = 0| @ meiofssiozled i . B -
-~ process name oWNEr Nane total... send... receive .. create... kil... dependencies = dependends on |
Cs_procvar_proc Main & 1] & a a & time, Threadl, Thread2, Thread3, ThreadS, ma:
E ||| sys_omcsF_teclobal Main 11 0 11 o o 6 time, Threadl, Thread?, Thread3, Threads, ma
R Sys_Osa_ftp_Mana... Main 1 0 1 il 0 1 time
‘j Document and Secty Thread1 slavel 75 58 15 1 1 10 Cs_procvar_proc, Sys_OMCSE_tedlobal, ose_h)
{2 DownloadDirector Threadz slavel 23 13 10 i 0 4 Cs_proc¥ar_proc, Sys_OMCSF_telobal, Thread
[#-[= Eclipse Workspace % | Threads slavel 13 8 s a a 3 Cs_procYar_proc, Sys_OMCSE_teclobal, Thread
£ » Threads slavel 3 3 o a a 2 Cs_proc¥ar_proc, Sys_OMCSF_teGlobal
= = main_thread slavel 14 1} 14 o o 2 time, Threadl |
= Logs View &2 master_request m03093.ppc 16 8 [i 1 4 Cs_procvar_proc, Sys_OMCSF_teclobal, ose_h)
ose_atm_inh Main 21 0 21 1] 1] 1 Threadi |
ose_fss Main 5 0 5 1] 1] 1 Threadi
g ose_heapd_cleanup slavel 1 0 1 1] 1] 1 Threadi
B 1 B!Dck One) 2| se_huntd OSE 4] 4 il il] time, Threadl, master_request
1 Collect Time ose_tte Main 1 0 1 i i 1 time |
1 Ewvent Type 10 ||| time: slaval 20 15 g a a 7 Cs_prociar_proc, Sys_OMCSF_tedlobal, ose_h)
-1 Event Type 11
| 2| i | 3|
| % > | Entries | Process |

Figure 38: The Table Editor showing the Kernel Trace event data processes

5.3.3.3 TheTime Chart Editor

In the Time Chart Editor (shown in Figure 39) ther data entries will automatically be
normalized on the first event that takes placehm lbg file. If more than one log file is
selected to be shown at the same time, it will alstmmatically calculate and use the biggest
time span of these for the time scale. If the nseds to synchronize the different event data,
he can select the log files of choice, bring up ¢batext menu and select “Change Time
Delta”. This will bring up a dialog from where thuser can specify a positive or negative
time delta. When the user clicks refresh from tireeTChart Refresh button, the charts will
be re-drawn with respect to the new properties.

The Time Chart Editor currently supports any ewdgitia with a timestamp that is put into
our generic data model. In this case it will shaeleof the event data entries as icons on a
time line in the fashion shown in Figure 39. Th&fedent event types will be put as
checkboxes to the right of the time line, from weh#he user can filter what information that
is to be shown. The entries that contain an eridrb® shown in red color, and the other
entries will be shown in cyan color. When the mope@ter is moved within one of the
diagrams a trace line will be shown at the positbthe mouse pointer and also in the other
opened diagrams. The trace line will show at wima¢ the user currently is pointing and for
all events that take place during that time, in ahthe diagrams, the entry icon will show a
highlighting color. If the mouse pointer is left awing over one or multiple entries, all
entries taking place at that time will be showm itool tip table (see Figure 39). The user can

38

Chapter 5: Implementation of the Correlation Tool

also click on the different entry icons which wllit them in an activated state (shown with
golden color). If the user clicks the “open entriasexternal table editor” button, the
activated entries will be opened in a table editbere they can be examined further.

For the CPU Load log specific features are addat dows the data to be shown using a
line diagram. Since there is no parser for thisfitgyyet, dummy data is added when the
user wants to use any CPU Load log for the TimerQhditor. Currently, only background
and interact quotas will be shown, but this carlye&® extended to include any kind of
countable data and support for any kind of log fl@ example of the line diagram together
with the entries diagram is shown in Figure 40.

For both of these representations, the data thetidsvn in the diagram can be traversed by
using the zoom function. Time is in this case dpetin microseconds in the start and end
text boxes followed by clicking the refresh buttarnich will re-draw the entries for the new
specified time.

As mentioned in th&raphical Representatiogsection, this event data representation might
be useful when traversing and comparing eventgference to time. By finding the event
that describes an occurrence in the system, otleerte taking place at the same time can be
examined to see if one of these events might beahse of the problem.

& CorrelationTool - TAE Profile [0321_2.tae] - Eclipse SDK
File Edit Mavigate Search Project Run Window Help

Cis & & @ X oir Refresh Tabie 75| [Coreletiontonl | >
Te Directoryw 22 7 5@ e chart 2 =i m)
= L;: E—\ - Start: |98220000 | End: 35000000 [clear selection | [Open Active Entries in external Table view |
= Config.Msi
= dell
i i Documents am - o o - - Kernel Trace: 0321_2.Hy
[#- (= DownloadDire: 85220000 = T-;ggs—_b;: 40 = 95000000 [#]creats process [7] send

(= Edlipse Worksp [¥IReceive Kill process
Edlipse Workse
Edliose workse

| >

<
= = = | Trace And Error: 0321 _2.tae
i = [1 - L e
e Logs View 2 i} e - T-;n:ac-:m - 95000000 [l race? [l TRAcES
= = T =
@M BTI Timestamp Component Group Message
&l 0309_4.t2e A 90916000 us slavewsitcRI TRACE? Removed registration of OseSignal 1001 registered by slavewaitCR1
las| i
E 0309_6.ktr 20916000 us master_request INFO master_request receives 1006, READ_REQUEST _ACK From Threadl
[0309_6.tae I_“ TAE Profile [0321 2 tae] &5 a0916000us master_request INFO delay L sec 4
#-|d%| 0309_6.ts| Mormalized time. .. Log time (ms) | Group{ 90816000 s time TRACET RTTimersynobject:: timedwait() 1
\""|=_ 0309_6_readme.t: 89412 4194660 PARANODSIEO0OUS slavewaltCR1 STATE CHANGE sendReadReqack
lsul 0310 2.kr 1 :g:g :mggg :EEAS o0S16000us slavewaltCR1 STATE CHANGE registerCseSiq
L] 0310_2.tae i S1astht FRROJ 0916000 s slavewaltCRL TRACE? Capsule slavewaitcR1 registered oseSignal 1001
L%‘ﬂ 0821_2.kr F9668 4144316 TRACRO0916000 us__application ERRCR application(0)@stap received unexpected message: Top%regload data: vaid ||
Lo 0321_2.bae 4144016 THFG m. quest receives 1006, REA, .. s master_request 210
[&] atmp kr 4144316 THFC) C

.47
: |55

5 time:
Process slavewsibCR1

1‘51 dakafile.bxt 4144916 TRACE? R
(2] datafilez. bxt A ke 4144316 STATE.., sel

___(e | 2| | | Entries | Companents

nbject: itimedwalt()
ReqAck

e

Figure 39: The Time Chart Editor together with the Table Editor

39

Chapter 5: Implementation of the Correlation Tool

& CorrelationTool - Time Chart - Eclipse SDK
File Edit Mavigate Search Project Run Window Help

- & @ - 7 *o [| E correlationToal
T Directory View 52 = O || @ gime chart £3 =0

G G

ERE

Start: | 45000000 | End: | 94893272 [Clear selection | [open Active Entries in external Table view

100% CPU Load: Dummy Data

M Interact Quota

M Background Quota

= 45000000 94893272
Te Logs View &2 a

D= i
[0118.cpu | | Kernel Trace: 0321 _2 ki
= - - -

122_2.kr 45000000 | 68749157 SEa32T2 [Clecreats process [5end
|| D122_2.tae [#]Receive [kl process
[7 o321 2.k
[&] 0321 _2.bae

vertTypel_sxamplel.ts
[& kerneltrace_smallktr | Trace And Error: 0321_2 tae
= - - e T —
[slave.ean 45000000 | 6749197 54893272 [ARacez [HtRaces

Timestamp Component Group Message [¥]STATE CHANGE [VIREC 51
68220000 us _master_request INFO Master: Lam here! | [FIPARAM [#]mro

[“]ERROR

Figure 40: The Time Chart Editor showing a line chart diagram

5.3.3.4 The Node Editor

The Node Editor can show all event data in the gerdata model that has a source and
affected component (in the assigned set of log fiks includes only the KTR and TSL log).

All components will be drawn as node and each efetvents taking place between them will
be drawn as a connecting arrow as shown in Figlr@Hde connecting arrows point either in

one direction or in both depending on the everd,datd the amount of interactions is shown
in text next to the arrow. Different layouts candmtected from the Layout Algorithm drop

down menu. Amongst these tlpring layout will try to put groups of connecting nodes
separated from other groups; tertical / Horizontal algorithms will put the nodes in either

a vertical or horizontal line; and ti&rid layout will put the nodes with equal distance in a
grid fashion.

When one or multiple components are selected tiwdsbe highlighted with the first level
highlighting (yellow) and the connecting componewtt have a second level highlighting
(orange). Also the interactions between the compisnean be selected. If tl@pen Table
Editor button is pressed a dynamic table will be opehetifilters the content depending on
the node editor selection. It will show the enttiest contain the selected node editor source
components, together with selected component gairsinteraction is selected.

40

Chapter 5: Implementation of the Correlation Tool

& CorrelationTool - Node Editor [0122_2.ktr] - Eclipse SDK TE®x

File Edt Navigate Search FProject Run ‘Window Help

i K o@ Q- § o o et ﬁ CorrelationToal
= i

»

o
%
4

e Directory View &2 & Mo 2
Open Table View
= Config,Msi
P -

&= dell
£ [Documents and Settings

master reéuest
DownloadDirectar
= Eclipse Wwarkspace

clipse Waorkspace 2

(> Eclipse Workspace 3 |
= 3

Gl b | Layout Algorithms [Vertical |
M= atmp

Cs_prociar_proc

Tnkeractions>=

Sys_OMCSE_teGlobal

B4 interactions

[teractions >

T2 Logs view 22 =0

L% OL18.cpu a\

[ot1a.k I
= '

[o122 2 tas & Node Selection [0122_2.kr] 3

229 3.k Se... MNormalized... Log time (ms) Event Signal1d | Source Cwner Source Pracess Destination Ow... | Destination Pro...
3 364,703 1268828.731 Send 1007 515.ppe slave_wait mi5.ppc mastsr_request
o] 02203 2 kae 7 366,728 1268830.676 Send 65633 515.ppe slave it Main Cs_procyar_proc
[o309 d.kr 8 9366, 768 1268830.716 Receive E5634 Mainy Cs_procar_proc s15.ppe <lave_wait

[= 0309 +tas 9 9366, 706 1268830.734 Send 393732 s15.ppe slave_wait Mair Sys_OMCSF_te...

= o 10 9366.803 1268830.751 Receive 393741 Mairy Sys_OMCSF_te... s15.ppec slave_wait

1] 0309_6.kr 21 20148,131 1279612.079 Receive 1001 m15.ppe master_request s15.ppe slawe_wait

Lsbl 0309_6.tae ~l| 2z 20148143 1279612.091 Send 1002 s15.ppe slave it s15.ppe read_valid =

A

= 4 | Er_r_-;t_r\es P’rﬁocerss.v_

Figure 41: The Node Editor

5.3.3.5 Interaction between Representations
If multiple editors are opened at the same timesehwill give different highlighting

depending on the user selection in other editors.

When an entry is selected in any of the Table Eslitbe components in that entry will be
highlighted in the same table and in any otheretatuintaining components with the same
name. In the Time Chart Editor, the correspondimigyewill be highlighted if they display
event data from the same log file.

If one or multiple nodes and connections are setent the Node Editor, the entries in the
Table Editors that contain source components with same name or corresponding
interactions will be highlighted. The same entmel also automatically be activated in the

Time Chart Editor.

& CorrelationTool - Node Editor [0122_2.kir] - Eclipse SDK [i=]E3]

Fle Edt Navigste Search Project Run Window Help
i Q- 4 IR Sl Refresh Hode View | [ConelationTodl |
B Time Chart &2 [S
T || startijo_ | End: [33t4m004 | [Clsar Selection | [Gpen Active Entries in external Table view | Open Table View Layout Algorithm: | Yertical [
20 Kermel Trace: 0122_2.r
i i i i
% | i i el [Glsond [Rereve < braivar_prac
Trace And Error: D122 2.tae
i i i
o Galand LMFO
L
@ KTR Profile [0122_2.kir] &2
se... | nomalzed... | lagtime (ms) signalev... | signalid | senderowner | sender.process | receiver.owner | receiverprocess “
18 9366.83 1768830.832 Send 393732 s15.ppc read_valid Main Sys_OMCEF _ts. .
14 9366.89% 1768890.844 Receve 093741 Man Sys_OMCSF_te... s15.ppc read_valid
15 9366903 1768830851 Send 65633 s1S.ppc read_ready Main Cs_procyar_proc
16 9366.931 1766690.879 Receve 65634 Man Ce_procvar_proc s15.ppc read_ready
17 9366.943 1768A30.891 5 e read_ready Main Fte...
\AA 955 12ARR30 AN R FA7741 Fain Swe OMCSE ba 15 anc. ¢ b
Entries | Process
@ TAE Profile [0122_2.tae] 52
narmalized... log time (ms) araup message BvEnt ... | eventname owner file fine: o
20148 15156744 IWFQ bkt 1003, VALID,,, Process clave_walt dave.c 156
20148 15156744 INFQ bbbt 1003, LOCK ., Process read_vald slave.c 178
20148 15156744 INFO BEGEERI AR EY Tr0d. LOCK Process read_ready slawe.c 197
20148 15156744 INFO SRRt bR | RO ALY Process read_valid slawe o 183
20148 15156744 INFO HEXFELFFRELEF 1006, READ_, Process master_request master.c 175
15157744 THEC) Aobbdotkakatalbk 1001 READ REOLL Praress. master pEaLESE masker.c 173 bl
Entries | Process
e

Figure 42: I nteractions between event data representationsin the GUI

5.3.3.6 Other Functionalities
Other functionalities are shown in the figure belamd explained further in the following

sub sections.
41

Chapter 5: Implementation of the Correlation Tool

& CorrelationTool - Text [0321_2.kir] - Eclipse SDK.
Fle Edit Mavigate Search Project Run Window Help

i & & Q@ & iy 7 | comrelationTool
T2 Directory View 52 = O || & eventTypel_sxamplsl.ts| &3 & Text[0321_2 k] 22 Sl
=R Jal) Al Label: Shows an exanple bar chart where T5L event type 1 or 3is parsed and profile | FileName: 0321 _2.r
(= atmp Date: FriMar 21 15:23:22 CET 2008

(82 et ey € Filter Dialog

= del Bar C| ppee oy
& G= Documiants and Satti 5 Enter a fiter {the beginning of the name is sufficient) I

B Soioard i The search vl be conducted over process-, funcion-and ~ [4R508 02

: 275 | method names. (Grayed out options are not yet implemented) R

[+ Edlipse Workspace

Criterias

41.794
= From =

% (= Eclipse Workspace 2
1% Eclipse Workspace 4w | 225

Hame

2l - Loanfo: rds.ker
Logfile type: Kernel Trace

£ 3 | 200

. Shows the interaction events taking place between
' processes

fspan: 1355913.297 - 1356063.3 ms.
entries: 174

& Synchronization Dialog

Time interval | Enter new delta (-3 |0

Start time:

fo: TE_examplez tae

i Example TSL content: | |

End i
U e type: Trace And Error
267200 | erals; Shows group and message together with corresponding
wentTypel_examplel.tsl q i7 > Fror i process and kime
oo ”2'5,3? Time span: 68.0 - 442472.0 ms

i collect Time i ET: foe

ic Min es E3 TI1) Time: 3176142.834] Totalentries: 105
#- 1 Block One Eangary Create process slaveiT) PO entries: 102
i Block Two (12) Time: 3178142.644)
= " — Receive <31002 From{ FRROR entries: 3
|s%| kerneltrace_small.ktr M Transition 1 M Transition 2 © Transition 3 CITransition 4 (13) Time: _ 3178142.849)
[&] slave.eap W Transition 5 Gend <22020097 Fron ~ Correlation: Trace And Ervor with Kernel Trace

Details: Can be correlated over tims and process

£
= Tooks: Time Chart isw, Tabls View, Fiter

Figure 43: Various GUI functionalities

The Information Dialog

The Information Dialog shows a short descriptiod ansummary for the user selected log
files. It also gives a short description of how tifferent log files can be correlated and
through what tools the correlation can be conduciggbical information that might be
displayed can be seen in the Information DialoBigure 43

TheFilter Dialog

From the Logs View, the user can filter log fileeat data from a filter dialog. From here the
user can specify a name pattern that will be 8lieupon in the selected log files. When the
user has defined the filter, the entries contairtimg specified criteria will be opened in

separate table editors for each of the log fildg Filter Dialog also shows other useful filter
criteria, but these are not yet implemented.

The Time Delta Dialog

As mentioned in earlier chapters a dialog for cliagipg file time delta can be opened from
the context menu. From here a positive or negditne delta can be set for the selected log
files. The changes will be shown in Time Chart &diand Table Editor when these are
opened or refreshed. The next time the Change Daia dialog is opened it will display
the currently stored time delta to be changed.

The Text Editor

Any file in the Logs View can also be opened inexfTEditor, where the raw format of the
log files or any other document can be displayed.TSL log files with XML representation
the content will be printed by the JDOM libraryarstructured XML format.

Through the context menu option calledofile in Text Editorthe TSL log files with XML
representation of event type 1 or 3 can be profitedxt format

The TSL Bar Chart Editor

As an early demonstration of our example TSL paiicethe XML structure, a bar chart can
be shown to profile the different values of TSL mviype 1 and 3. The implementation is
made in JFreeChérand the code includes a function that convertg#reerated chart to an
image before being shown in the editor.

2 JFreeChart is an open-source Java chart libramgrémting complex charts.
42

Chapter 5: Implementation of the Correlation Tool

5.4 Software Architecture

Below is a simplified diagram of the Correlationdl'that includes the GUI, the engine and
external classes. In the following sections andeer of the data flow between the different
groups of classes will be described.

GUI
Views R .
Navigation View LogFiles
Directory View Logs View
Data
Model
Dialogs Information $
Dialog
Parsers
Filter Dialog Actions ¢
<
Change Time —— ! v
Delta Dialog [~ | | Engine Parser
Engine
—_— Correlation
Editors :
Engine
Table Editor %iiirs?gsl
ime Ch ' Data Model 4
Mt e Extensions
Node Editor DE?(ttzrs(i)gﬁl

Figure 44: Software architecture of the Correlation Tool

Information on how the Correlation Tool can be axsd with support for a new log file
type can be found in appendix sect©r3.

5.4.1 Views

The Navigation View shows directories and filedhie system and the extending Directory
View applies a filter to only show the directories.

The Logs View shows the different log files contlnin the selected Directory View
directory. From here different actions can be etettulepending on what log files that are
selected.

5.4.2 Actions
The existing different actions are the following:

* Change Time Delta Action

* Filter Action

* Log Information Action

* Node Action

» Switch Data Model Representation Action
e Table Action

e Time Chart Action

* TSL Bar Chart Action

When the action is executed it will send refererafethe input files to the specific dialog or
editor class. Some of dialogs will return infornoatithat is then treated by the action. Since

43

Chapter 5: Implementation of the Correlation Tool

the actions are abstracted from the logs view, aees can easily be created and added by
the user.

5.4.3 Dialogs

The different dialogs will make use of the Parsed €orrelation Engine to either display or
handle the event data from the input files. ForRhier Dialog the filter information added
in the dialog will be returned to the calling actithat in turn will open the corresponding
Table Views to show the filtered entries. The CleaBglta Dialog will return the user input
and make appropriate changes to the file properties

5.4.4 Editors

The Editors are created with most of the functibipahdependent from what data model
that is used. They will however need to be extenditk this information before they can

show any information. These extending classes duillcalls to the Parser and Correlation
Engine to handle the data, and then display tliggnmation in the editor. The editors can be
registered as listener and/or providers for selacthanges from other editors and will
change highlighting accordingly.

The Time Chart Editor consists of the Box Chart aime Chart widgets, and in this case it
is these widgets that are to be extended withmiatdel support. Further widgets could in the
future be added to show other types of time charts.

For all the Editors, the base class extensionsaaily be added or removed to support other
data models or other information.

5.4.5 Engine

The Correlation Engine handles tasks that ofterusedl on the event data, these can be tasks
such as finding entries containing certain infoiorator comparing information from
different event data.

When calling the Parser Engine the user specifibg iwants the data to be parsed to the
generic or specific data model, and the enginesoki depending on the input file type
make a call the right parser class to handle thdile. The data model will be returned and
then passed along to the class that was askirthdanformation.

5.4.6 Parsers

The parsers are independent from the rest of tls¢esy architecture. Parsers can be
constructed in any way as long as it takes a §lenput parameter, interprets the information
and puts it in a data model that can be handlatidgystem.

44

Chapter 6: Comparison with the TPTP Tracing andffirgy Project

6 Comparison with the TPTP Tracing and Profiling Project
6.1 Using the TPTP Tracing and Profiling Project

The TPTP Tracing and Profiling Project seems likelaust base from where a correlation
tool can be built. It provides help classes anérgegc log adapter for parsing log files to the
Common Base Event model, even though this is natllathat intuitive process. When the

parser is built the new log file can be used inTRI P user interface by importing the log
file to the workspace. At this moment the log fin be viewed in a table view showing the
default table columns or correlated with other fdgs over time. The table view also

includes basic functions such as filter over sayefind entries by attribute value, and

sorting. If an entry is clicked further informatiaan be shown in a property view where all
the Common Base Event data is shown for that entry.

The project correlation view shows that the logiestare related to each other by drawing
lines between icons that represents the entries. difiries are listed with even spaces
without being related directly to the time. If thser wants to enable further correlations he
has to extend the TPTP correlation engine to desdiow the log file event data can be
associated. From the user interface the same aborelview is used, but lines are now
drawn depending on the new criteria. The user ¢sm @ rule based analysis on the log
files by extending the TPTP analysis engine andigpa symptoms catalogue.

6.2 Advantages using the TPTP Tracing and Profiling Project

The advantage with TPTP includes a very nice iatikgn with the Eclipse framework and
the abstraction of parsers, correlations and aisalysm the main code. The symptoms
catalogue function is a useful tool and was newvglemented in our own project. Otherwise
most functions that the TPTP Tracing and ProfilPigject tool are also implemented the
Correlation Tool.

Another advantage of TPTP is the Generic Log Adaptéch can provides two alternative
ways for the programmers when they are developarggus for their log files: one is the
rule-based adapter and the other is the statictedafvith rule-based adapter, programmers
do not have to do any programming work to desigmaeser; they just need to create an
adapter configuration file and then set some ralesut the structure and format of the log
files need to be parsed. The rule-based adaptensizaily be used for application log files
that have a fixed and simple log record format.t#is adapter uses a java class to parse a
log file. In this way, programmers need to do sqgava programming to read the original
log files and then store them in Common Base EvEmis type of adapter can be used for
some complex log files that are difficult to sumimarby rules.

6.3 Advantages using the Correlation Tool

The Correlation Tool has many general and log $§ipdtinctionality that is not included in
the TPTP Tracing and Profiling Project basic fumuslity. These include support for
opening several table views with selection listgramd highlighting to facilitate comparison
and manual correlation; a process summary tabkneidn for Kernel Trace and Trace and
Error Event Data; a time chart view in relationthe actual time with event type filtering;
and the node view to track process dependencies.

45

Chapter 7: Future Work

7 Future Work

In this section suggestions will be provided onufatwork that can be done on this project.
Areas that will be handled are future correlatioralgsis, implementation, and log file

structure. For the log file structure discussiod amaluation of the log files will be provided

together with suggestions on how these can be weprdo better support correlation with

other log files.

7.1 Correlation Analysis

CPP system information is recorded in many diffefeg files from where the assigned set
of log files for this project is just a feBy doing further analysis on other log files it Mok
possible to provide further information to complerthe analysis handled in this thesis as
well as providing information between the new ldgs. In a future implementation, support
for further log files would also give more detailefiormation and a more complete picture
of the system which would facilitate when tracimgpes or system behavior.

Correlation of log files between different boardowd also be analyzed to see if useful
information can be extracted and how this infororattan be presented. This could be done
by designing two simple applications that commutgisawith each other while running on
different boards. The Test Base Application canirbproved to support this function by
adding code for managing the board informationideditity.

Correlation beyond the observer level would beriefautomated functions to give warnings
if something is out of the ordinary. One exampléhis use of rule sets that can define what a
process should and shouldn’t do, or how the evembsild occur in time and in relation to
each other.

7.2 Implementation

Since the Correlation Tool provided by this projeets built for getting fast results, the base
code is not robust enough to be used for a finiglteduct. The purpose for the tool should
instead be to add extensions for further analy$igwent data, correlations, graphical
representation and user interaction. If a new prbdsito be developed in the future, we
recommend using the TPTP trace and profile framkewbhis framework seems to have a
robust implementation of basic functionalities thatild be a good base for extending with
the functionalities suggested in this project thgetwith other Ericsson log file specific

functionalities.

7.2.1 Extension of the Correlation Tool

7.21.1 Parsersand Data Model

The generic data model provided with this projeotknshould be sufficient for simple log

files and could in other cases easily be extendddfurther attributes; but for a generic data
model that hopefully can be used for any kind af fde we recommend changing the
present data model to the Common Base Event. €hisinres some studies in how Common
Base Event works, but after that it should be sémgude substitution where information is
retrieved in the data model extension classes.

In order to extend the Correlation Tool with a niag file type, a new parser has to be
developed. If the log file is easy to summarizehwitles, an adapter can be used to aid in
this process. By using the adapter the developerdedine the parser by specifying rules
instead of doing actual programming and as a rebalf do not have to understand the
structure of the data model.

46

Chapter 7: Future Work

As mentioned earlier, the T&E log file currentlyrs structured messages in some of the
defined trace groups. If the parsers are extenoldécndle this information before storing to
the data model, further information and correlaioan be provided by the Correlation Tool.

7.21.2 Dynamically Adding Log Files

Yet another advantage that we found when usingnergedata model is that it would be
much easier to implement functionality for dynanflicadding support of new log file types.

If this feature is implemented the user would bke &b dynamically tell the system about a
new parser and for what log file type it should dssigned, instead of having to make
changes directly in the code.

7.2.1.3 Support for the TSL log file

As mentioned in th€orrelation Analysissection, it would be very interesting to correlate
the TSL log with the KTR and T&E logs, since thiswld bridge the gap between product
debugging and system problem determination. Thigept presents several different ways in
how this can be done, but as of now there is nsgpar implementation to verify the results
in a practical context. It is of course possibleteate a text parser for the original TSL log
file, but the structure of the log file is complard is not designed for being parsed. If a
XML representation of the log file is provided tharser could be better structured and more
reliable. Since the TSL log file has a more comp#tsucture which might be hard to
represent with a generic data model we suggesthbadpecific data model is used also for
future work.

The TSL Event Type 8 (RTMutex contention count) wiaser analyzed in this project, for
further implementation, it is necessary to do samestigations and analysis about the
RTMutex contention.

7.21.4 TheEditors

The editors could benefit from being further intggd with the Eclipse framework. This
includes integrations such as Eclipse rulers that show where errors and warnings take
place in comprehensive information and propertiakd to show further information about
the log files. Each of the editors should alsoudel more advanced features for searching
and filtering. It would be a great advantage fa tiser if he could filter on any attribute to
reduce information to contain only what is inteiregst How each specific editor can be
further developed follows in the sections below.

Information about graphical libraries that can Is=difor future work can be found in
appendix sectiof.1

The Table Editor

Some event data information might be too comprakierie show in a table. An example of
this is the message attribute in the T&E log thahatimes can be too long for a good
overview in the table editor. A solution could lmeanly show basic information in the table
editor and make use of a dialog or another vieshitmwn the more detailed information. The
more detailed information should in this case beneated to the table in some way, for
example by selecting or double clicking an enttywbuld also be good if the user could
export the information in the table editor as aeaprsheet. This would allow the user to
convert the data into any type of diagram or report

The Table Editor could also benefit from having @lyf implemented highlighting
functionality. For the moment example highlightiisgsupported for component names, but
this could be extended to any of the attributethéngeneric data model. The user should also
have the option to select what columns that argvsheince big log file structures otherwise
wouldn’t give any good overview of the data.

a7

Chapter 7: Future Work

The Time Chart Editor

For better user interaction the Time Chart Editould benefit from interactive zoom and

time delta functionality. Here the user could clidkag or scroll when zooming or setting the
time delta functionality. If the user still wants include a zoom function using values, the
possibility to specify time in other units than miceconds should be included.

For the moment the Time Chart Editor is built usiagg SWT graphics. If it was to use SWT
components instead this would enable basic SWTtitumalities such as component based
tooltips, selection providers, drag and drop, etc.

Selection providers should also be implementedhsd $election of the entries can be
reflected in the information shown in other editors

The Node Editor

The current implementation uses the default plgb@hms given by the Zest library. If
there are many components to plot, the plots caresmes be too messy for giving a good
overview. To solve this, additional algorithms danimplemented to arrange the nodes in a
better way. There are also other libraries thatspexialized in similar areas that might be
better suited.

If the TSL event data is to be supported, the Neditor could be extended for traversing
between the KTR component representations of O§fakpropagation down to the lower
levels of the TSL transition representations (aggested in th&raphical Representation
section). In this case the parent component camsbd as a filter to show a limited amount
of child components. If the developer decides totlde implementation in another or
additional way it is still essential that a filter used since the information in lower levels
otherwise would be too comprehensive. This incluthescurrent implementation of KTR
processes that in some cases will plot too manggases for giving a good overview.

7.3 Log File Evaluation and Suggestions

If an implementation is to be made in the futureduld be beneficial if present log files are
adapted-, and new log files are designed with ithisonsideration. The following sections
will handle evaluation of the log files that wagdsn this project and suggestions for a good
log file structure. References in these sectiomsuaed for the different formats, while the
criteria and conclusions are based our experiethcesghout this project.

7.3.1 Log File Structures
A few criteria for a good log file strategy arelected in the table below

Criterion Situation

Readability If the log file is to be read directl§thout any application to first
handle the data, the structure should be easwtbfoe the user.
Since the log file also might be interesting farser not familiar
with these particular attributes it is also goodhbbreviations and
acronyms are avoided. Everything in the log fileudtn't always
be explained since this could inflict with the rahiiity, but in
these situations explanations should instead baded in an
external document (to avoid the necessity of espert

Easy to implement The structure of the log filewdd not be a tedious task for the
programmer to achieve.
Easy to parse If the log file is to be interprelbgdh parser, the log file structure

should be adapted to facilitate in this task.

Table 4: Log file criteria
48

Chapter 7: Future Work

For the set of log files that was used in this @bpn observation that applies for all log files
is that readability is the property that is pustiirThe event data representations use some
acronyms, but this is still acceptable since anermal document with log structure
explanations often can be found. Since all of tgslthat were given for the project are
represented by pure text output the implementgiam is easy to achieve and is no issue in
these cases. For the easy to parse criteriongthét wvaries depending on the log file. Using
text output requires the use of string operatiomd @egular expressions, but can in some
cases be facilitated by making use of externalplaiging applications. For most of the logs
the output is strongly structured in a way thatsiiderake this task too hard. The exception
Is the TSL log that has a large content and thaniwaesigned for text parsing.

7.3.2 Log File Formats

Four different formats were studied to find out e¥hione would be best suited for the
different types of log files. These file format® drext format, XML format, YAML format
and Common Base Event. Example printouts usingetli@snats are shown in appendix
sectionD.5. Below is a table showing advantages and disadgastfor each of the formats.

Format Advantages Disadvantages
Text Format It is fast to implement and gives It is not the best format for
readable log file output. parsing, but if the log file is not to

complex and is strongly
formatted, a parser could be
created using regular expressions
XML Formaf This format is good when being | It is inadequate for being read in
interpreted by applications or raw output.

parsers, since libraries for XML
operations commonly are
provided for most programming
languages.

YAML " Good for being interpreted with | Lacks in support for real time
applications or parsers and at thereading. If the user that is printing
same time it gives readable raw| the log file is not familiar with the
log file output. structural rules he has to first
learn about these. This is not a
common standard for log files,
why other situations might occur
where YAML is not supported.
Common Base It is easy to migrate between The Common Base Event is
Event applications if Common Base represented by XML format, but
Event is used. is even less readable than a user
defined XML structure.

Implementation classes are
provided for Java, to facilitate in
the log file output, but the format
can also be used in any other
programming languages.
Table 5: Log file formats, advantages and disadvantages

We believe that the best way for now is to use Xidt log files that are not meant to be
read manually, and use a strongly formatted texxhdd where the log file needs to be read

@ The Extensible Markup Language (XML) is a gengnalpose extensible markup language
® YAML is a human-readable data serialization forthait takes concepts languages such as XML, C,
Python and Perl

49

Chapter 7: Future Work

from raw output. From these formats the log filaa either be parsed to a user defined data
model or to a Common Base Event structure wherghesed by the application.

7.3.3 Log File Content

7.3.3.1 Sameformat of data

If the log file attributes have the same format $onilar data unnecessary calculations can
be avoided. This is always convenient, but wouldrizee valuable at real-time monitoring
since calculation time is more important in thisea

7.3.3.2 Acronyms, abbreviations and special definitions

Even if the log files have a good structure andraaglable for the immediate user, it might
still not be intuitive for other users. This mightcur when lots of acronyms, abbreviations
or special definitions are used which implicates tleed of experts and communication
overhead when working with the log files. Theseuthidherefore only be used if it helps the
readability of the log file; and when they are ysédvould be good with a reference to an
external document explaining the definitions.

7.3.3.3 Log file specific comments

Kernel Trace Log

The KTR log is a bit ambiguous with the “from:” aftd:" fields in the log events. When the
event action is a send action the process spedifidte “from:” clause it the source process
(the process that is responsible for the actiorifewhthe event action is a receive action the
source process will be the process in the “to:Usta

Trace and Error Log

The total memory that could be used for Trace amdrBog is not very large, if the memory
size was extended it would be possible to storeexiagnine more entries. The accuracy of
the time cannot distinguish the time when a sigved sent out and when it was received. It
is better if the accuracy could achieve microsesond

In Trace and Error log, the OSE signal number cdddrepresented both in decimal or
hexadecimal, while in KTR log, it uses decimal épnesent a signal. If both of the log files
represents the signals in the same format it wbaldasier to compare these when read from
the original output.

Execution Address Profile Log

For the moment the EAP log contains further infdioraof the TSL transitions, but without
the possibility to correlate these two event datsis could be possible either if a naming
convention is introduced containing the capsules®and destination states in the TSL log
file together with actor name, or if further dasaimtroduced in these or through other log
files.

CPU Load Log

As mentioned inmmhe Assigned Set of Log Filesction, there are four types of measurements
that can be shown with the CPU Load log. Here dhly CPU peak load log contains
timestamps, while the others contain the integnaitiberval of how long it takes to measure
the CPU utilization. For further correlation betwebe CPU Load log and other log files it
would be valuable if timestamps were added for #tart and stop time of these
measurements.

The accuracy of CPU peak load is 0.01%, while then CPU Load logs measured for user
specified objects such as process name, procaesfypor process type the accuracy is 1%.
Since many of the specified objects might have fleas 2% or 1% but more than 0% CPU
load, it would be interesting and useful to have=ter accuracy also here.

50

Chapter 7: Future Work

TSL Log

In Block 1, Event Type 11 the present log file githe labelOSE intrawhere it should be
UML intra. Theintra andinter queues and signals can also easily be misreadvaridel it
would be better to refer to theseiaternal andexternal

This log file is also very comprehensive which nsake hard to compare event types
between different controllers and blocks. For te&son it would be much easier to traverse
the information with the help of an external apalion. To do this it is however required

that the log file is represented in an XML log fitefacilitate in parsing.

51

Chapter 8: Concluding Discussion

8 Concluding Discussion
8.1 Summary of the Results

Correlation research for retrospective log analgsithe Ericsson CPP system hasn’t been
done before. This project is a first approach mo fbut what correlations that is possible and
if a tool for interacting with the event data andhlyzing correlations is of interest. In this
project we have shown that correlations are passdmd we have analyzed the different
possibilities for which of these that might giveédresting and valuable information.

The correlation possibility analysis was based a files collected from the Test Base
Application. By designing this application we cowdllect the required log files and get a
better understanding of them and their relationgingy correlation analysis we found some
weaknesses of the log files including time accuracy the log structure. We have
mentioned these together with some suggestionsniprovements in thd-uture Work
section.

Further research contributions include parsingheflog files, data model approaches for the
event data, and graphical representation of evatat dnd event data correlations. For the
TSL log file we have provided a suggested XML dtmoe and a more extensive graphical
presentation analysis.

The implemented correlation tool provides data nwdad parsers for the different log files
and a graphical user interface through where the ecen profile and correlate the event data.
Various concepts of presenting the event data anélations have been verified through the
interface and further suggestions have been prdviciedifferent functionalities that might
be of interest. The Correlation Tool is also adimd prototype that due to de-coherence
easily can be extended with further parsers, daidels, editors and views.

In a late part of the thesis we found out about FHTace and Profiling Framework that we
consider to be very relevant to this project. Tdupplication was evaluated and compared
with our own achieved results, and based on thesecame up with suggestions in the
Future Worksection. In the same section we will also givegastions on how the project
can be developed further which includes a sub @ecivhere we evaluated and gave
suggestions on the log file structures.

8.2 Complications

In this project we really wanted to do an implenagion to verify the TSL correlations since

these were some of our more important results. &eecwith the conclusion that the log file

presentation wasn't suitable to be parsed in thesgmt format why we designed and
suggested an XML representation instead. When wsepted these results at a technical
presentation at Ericsson it was said that the sgmtation would be implemented for us to
use, why we chose to wait with this part of thejgrb When we realized that the

representation wasn't going to be implementedniretit was too late for us to come up with

any optional implementation. We do however consttier analysis results to be our main
results event though they were not verified in acpcal context. We also decided to

compensate with further graphical analysis and igeal diagrams on how an interface

implementation might look like.

When we found out about the TPTP trace and prdfitiroject and Common Base Event at a
late stage in the project, we first did not knowatvho do with this information. It did
however turn out to be a good complement to thertepnce it allowed us to evaluate our
own results better in a comparison and also to gefer suggestions in theuture Work
section.

52

Chapter 8: Concluding Discussion

8.3 Alternative solutions

8.3.1 Pre-processing of Event Data

If the event data is pre-processed before the nmdtion is stored in a data model the data
content can be reduced and a first detection efesting data can be done at an early stage.

A filtering function at this stage might be usefiuthe data is comprehensive or if there is

need to save bandwidth, to limit how much data ihatored or handled at one time. Often

this is used when the purpose of the log analgsidaar, such as if intrusion attempts in a

network system need to be spotted. In these gn@tntries that are not relevant might be
filtered without affecting the analysis [27]. Inromwn case the purpose of our log analysis in
not clear, the data that is to be used is not gergprehensive, and there is also no need to
save bandwidth, why this function as far as we kimrmedundant.

A detection function might be good to find anomsulike the log file and mark this in the data
model so that it is later easier to spot or compat@r in an application. This function is
more useful when there is a rule set so that ooevkrthat something might be strange, and
is probably more useful in a real time system wheomalies should be detected at an early
stage. It might however be a good idea in the chskis project to set a severity value for
each of the entries, so that they later can bed@md compared over severity [24]. This can
be set either if a pattern in the log entry is knpwr by the log entry type. The severity
value is used by the Common Base Event that wassied earlier.

Other common pre-processing functions include graupf events of the same type taking
place at the same time [28]. This could also beedarour case, but since the data that we
have been working with is not very comprehensiedtwouldn’t be much to gain by doing
this.

8.3.2 Data Model vs. Data Base

We chose to store the event data in a class odefdgta model since the time limit didn’t
allow us to get familiar with or analyze a dataéapproach. Advantages of using a data
base could be already defined functions for comgatiiltering and retrieving information.

It would also support larger data sets in comparigith the present data model and it
includes predefined functionality for saving thextemt information.

53

Chapter 9: References

9
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

References

Embedded System Design: A Unified Hardware/Softivareduction
Frank Vahid, Tony Givargis; Wiley 1.S.ed edition¢ctober 2001

Designing Embedded Hardware, Second Edition
John Catsoulis; O'Reilly Media Inc; May 2005

ThreadX product homepage
http://www.rtos.com/page/product.php?id=1
Last viewed 28 of February 2008

LynxOS RTOS product homepage
http://www.lynuxworks.com/rtos/rtos.php
Last viewed 10 of Mars 2008

OSE: Real-Time Operating System and Embedded Omweld
Enea, Product brochure, http://www.enea.com

High Speed and Robust Event Correlation
Yechiam Yemini, David Ohsie; IEEE Communicationsgdaine 34(5), pp. 82-
90; May 1996

Event Pattern Detection for Embedded Systems
Jan Carlson; Méalsardalen University Press DissenstNo. 44; 2007

Actions and Events in Interval Temporal Logic
James F. Allen, George Ferguson; The Universifgadhester, New York,
Technical Report 521; July 1994

Tools and Techniques for Event Log Analysis
Risto Vaarandi; Tallin University of Technology, €oral Dissertation; June
2005

Security Warrior
Cyrus Peikari, Anton Chuvakin; O'Reilly Media Inéebruary 2004

CPP Survey
Ericsson Internal Documentation

Remote Debug Support
Ericsson Internal Documentation

Design Rules for Trace and Error Users
Ericsson Internal Documentation

Profiling
Ericsson Internal Documentation

Execution Address Profiler User Guide
Ericsson Internal Documentation

ClearCase
Ericsson Internal Documentation

The Eclipse home page
http://www.eclipse.org
Last viewed 28 of Mars 2008

The Eclipse help system
http://help.eclipse.org

54

Chapter 9: References

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Last viewed 28 of Mars 2008

ruleCore Complex Event Processing Server, prodagtidpage
www.rulecore.com
Last viewed 21 of April 2008

LogSurfer product homepage
http://www.crypt.gen.nz/logsurfer/
Last viewed 23 of April 2008

SEC — Simple Event Correlator, product homepage
http://www.estpak.ee/~risto/sec/
Last viewed 293 of April 2008

EvenLog Analyzer product homepage
http://manageengine.adventnet.com/products/evedmtbiex.html
Last viewed 19 of April 2008

TPTP — Test and Performance Tools Platform, prdy@chepage
http://www.eclipse.org/tptp/index.php
Last viewed 8 of May 2008

Canonical Situation Data Format: The Common BaserEY.1.0.1

David Ogle, Heather Kreger, Abdi Salahshour, J&smmpropst, Eric Babadie,
Mandy Chessell, Bill Horn, John Gerken, James Sdinddike Wamboldt;
Version specifications, published 2004

Users Guide for RoseRT Target Service Libraries
Ericsson Internal Documentation

Designing Interactive Systems
David Benyon, Phil Turner, Susan Turner; Addisorsli& March 2005

The Intelligent IDS: Next Generation Network Intamsmanagement Revealed
Andree Yee; NFR Security Inc; July 2003

Aggregation and Correlation of Intrusion-Detectidferts
Hervé Debar, Andreas Wespi; Lecture Notes In CompBtience, Vol. 2212, pp.
85-103; August 2001

55

Chapter 10: Terminology

10 Terminology

10.1 Abbreviations

Abbreviation Description

API Application Programming interface
AWT Abstract Window Toolkit

BP Board Processor

CBE Common Base Event

CPP Connectivity Packet Platform

DTE Development and Troubleshooting Environment
EAP Execution Address Profiler (log file type)
GUI Graphical User Interface

KTR Kernel Trace (log file type)

LM Load Module

MP Main Processor

MPC Main Processor Cluster

MSP Media Stream Processor

MVC Model-View-Controller

OSE Operating System Enea

RDS Remote Debug Support

RoseRT Rational Rose Real Time

RTOS Real Time Operating System

SP Special purpose Processor

T&E Trace and Error (log file type)

TSL Target Service Library (log file type)
SWT Standard Widget Toolkit

Ul User Interface

UML Unified Modeling Language

XML Extensible Markup Language

10.2 Definitions

Term Definition

Abstract Window Toolkit AWT is Java's original platform-independent windowi

(AWT) graphics, and user-interface widget toolkit.

Actor A RoseRT actor is an instance of RoseRT dapsiultiple
actors can execute at the same time.

Capsule A RoseRT capsule contains states andttogrssand

provides coordinate behavior for the system. Tlcasebe
instantiated as actors. (SRational Rose Real Timggction
2.5.1)

Common Base Event

Common Base Event is an IBM pagbstandard for
events in various applications (S8emmon Base Event
section 3.2)

Evolutionary Development

Development where the ifigations are defined
throughout the development itself. It usually falothe
following four steps: idea, specification, implertegion,
evaluation and give a new specification

JDOM library

JDOM is a Java-based solution for asagg, manipulating,
and outputting XML data from Java code. More infation
about the JDOM library can be found at httpwiv.jdom.org

56

Chapter 10: Terminology

Load Module

The load module corresponds to a prodhet is built for
the OSE operating system. When loaded to the sytstem
program will be executed as one or multiple proegess

MVC architecture

MVS is short for Model-View-Conlier and the MVC
architecture is divided into these three parts. Wbdel
represents the data and information of the apjmicand
the rules used to manipulate the data\Mtesvcorresponds
to elements of the user interface such as textkiiox
items, and so forth; and ti@ontroller manages details
involving the communication to the model of usetiats
such as keystrokes and mouse movements.

Remote Debug Support
(RDS)

Remote Debug Support is a system level debuggehéor
CPP node (seleemote Debug Suppdt4.l1).

Swing

Swing is a widget toolkit for Java. It progi&la native look
and feel that emulates the look and feel of seydetiorms
and it also supports changing the look and feahdur
runtime.

SWT

The Standard Widget Toolkit (SWT), is a sefafa class
libraries created to provide platform native useeifaces
(seeStandard Widget Toolkisection 2.6.2)

XML

The Extensible Markup Language (XML) is a gealer
purpose extensible markup language. More extensive
information can be found &ttp://www.w3.org/XML/

57

Appendix A: Individual Thesis Contributions

Appendix A: Individual Thesis Contributions

Details about each of the individual contributicofsthis thesis can be seen in the table
below. Note that the project contributions not ajsv@orrespond to the contributions in the

report.

Chapter

Tobias Contributions

Xingya's Contributions

1 Introduction

Report: 1.1,1.2,1.3,1.4,15

Report: 1.1

2 Background

Helped in gathering information foradlthe
theoretical background

Helped in gathering information for all of the
theoretical background

Report: 2.6

Report: 2.1, 2.2, 2.3, 2.4, 2.3

3 Related Work

Gathered information about CommoseHzavent
and TPTP, and helped in all of the other parts

Helped in all the parts except for Common Base
Event and TPTP

Report: 3.1.5, 3.1.6; 3.2

Report: 3.1.1,3.1.2,3.1.3,3.1.4,3.1.6

4 Event Data Analysis

Analyzed all the different log files for data tha
can be extracted and correlation possibilities

- Analyzed graphical representation for all the
log files except the TSL log

t - Analyzed all the different log files for data
that can be extracted and correlation
possibilities

- Created the Test Base Application and
collected the log files with appropriate tools

- Analyzed graphical representation for all the
log files including the TSL log

Report: 4.1, 4.1.1,4.1.2;4.3,4.3.1,4.3.2.1,
4.3.2.2,43.2.3,43.2.4,43.2.6,4.3.3;4.44.4
4.4.2,443,44.4,445

Report: 4.1.3,4.1.4,4.1.5;4.2;4.3.1,4.3.2.5;
4.4.6

5 Implementation of the
Correlation Tool

- Interpreters for Kernel Trace and Trace and
Error log

- XML log representation for the TSL log

- Designed the generic data model

- Helped to designed the data model for the T]|
log

- Analysis results regarding different graphica
libraries to use with the GUI

- Implemented the Correlation Tool applicatio
including the graphical user interface

- Interpreter for the Execution Address Profiler
log
- Helped to design the data model for the TSL

log
SL

Report: 5.1,5.2,5.3,5.4

6 Comparison with the
TPTP Tracing and
Profiling Project

Compared the TPTP Tracing and Profiling
Project with the Correlation Tool provided by
this project

Tried out the Generic Log Adapter included in
the TPTP Tracing and Profiling Project

Report: 6.1, 6.2, 6.3

Report: 6.2

7 Future Work

‘Wrote about suggested future work in the ar
of the project, including correlation analysis,
implementation and log file structures

- Evaluated the log file structures

ea- Wrote about future work for the Test Base
Application, support for the TSL log file and
about extending with a generic log adapter.
- Evaluated the T&E, CPU Load and TSL
specific log file structures

Report: 7.1,7.2,7.2.1.1,7.2.1.2,7.2.1.4 , 7.3
7.3.1,73.2,733.1,7332, 7333

Report: 7.1, 7.2.1.1, 7.2.1.3, 7.3.3.3

8 Concluding Discussion

Wrote summary of the resalbmplications in
the project and alternative solutions

Wrote parts in th&ummary of the Results
section

Report: 8.1, 8.2, 8.3

Report: 8.1

9 References

Collected and read references froaresk in
the project

Collected and read references from all areas in
the project

Report: 9 Report: 9
10 Terminology Report: 10.1, 10.2 Report: 10.1
Appendix A: Individual Report: Appendix A -
Thesis Contributions
Appendix B: Data Models Report: B.1,B.2, B.3 RépBr3

Appendix C: The
Correlation Tool

Report: C.1, C.Brror! Refer ence source no
found., C.3

Appendix D: Log Files

Report: D.2, D.4, D.5

Table 6: Individual thesis contributions

58

Report: D.1, D.2, D.3

Appendix B: Data Models

Appendix B: Data Models

B.1 Specific Data Models for Kernel Trace, Trace and Error and CPU Load

Kernel Trace Event Data Trace and Error Event Data \
drtertaces
G si N\ © IComponent
model kernellrace @ KemelTraceEventData e — model traceAndError
modsl kemelTrace © ertrylist ListeTraceAndErrorEntry>
a sddress: String
a contert String a riryList: List<k riry extends. | dmports ® gelEvertType0
i pi¥ @ geitlame()
J " TraceAndermortnty | < | 6 geownen
—_— model trace AndError N A~
(& KemnelTraceEntry t mplemants | dmplemerts
el kemalTracs o component: IComponent == =41 | == -
_] 2 s C] MethodComponent & ProcessComponent
group: String |
a destinalionProcess: ActorProcess madel traceAndEnTe mateltrace AndError
o message: String L |
a evert String - |
. - - © timeStamp: TimeStamp o classhame: String i o evertType: ComponertType
& ActorPracess p iy) o classPath; String IR o fleLine: int
‘ model kernelTrace o signalData: Signalliata | a eveniType: ComponentType | a tieame: Stri
| (cDerive, MPOts 5 sipnnit Long V4 | | iy
o ownerhams: String o methodName: String o processhame: String
o sourceProcess: ActorProcess - | | |
0" ropssshisma: Siring a timeStamp: TimeStamp = /ooty N derports | | | amports
& S

N\ “mports

<enumerations
3 ComponentType
riode e

|
|
Lo
\ L
CPU Load Event Data [& TimeStamp

¥ METHOD_EVENT
¥ pROCESS_EVENT

(] P:I:.r‘it‘?l‘.ﬂ:_djl-‘smenl o date; DateEntry
& microSeconds: long

o priorty: int

o quota: double \'J"E“Ll e FPL_'L“'!?"W o TimeStamp()
. ® gubucn it e
I © CPULoadData s i dpaley @ seleiakh) «Cad Imports. ; m—
| R e ket el interoctGuoto: doubie @ gelTatailiz0) | <SPS o dayint
e IO o priortyloadList: ListePriontyl osdElemerts ® seibaieg) e
{ o cpuLoadEniryList: List<CPULOAMEntry> o tmeStamp: TimeStanp © tostingl) 8 yesr il

Figure 45: Kernel Trace, Trace and Error and CPU Load data models

The data model iRigure 45represents the KTR, T&E and the CPU Load EvenaDall of
them include a main event data class with arrayshefentries. The KTR data model
represents the source and destination processawiflttorProcesslass and the signal data
is stored in theSignalDataclass. The T&E data model has two different regmestions for
the component classes depending on if the compdeesmtmethod or process. The CPU
Load data model has a defined class to store tbatprioad element. Th@imeStamlass
that all of the separate models have in commoresttire time in th®ateEntryclass and in
microseconds for hour units and below. The fulledad time can be collected through the
toString()function.

59

Appendix B: Data Models

B.2

Decision points

Specific Data Models

Decision points, Specific vs. Generic Data Model

Generic Data bflel

Information
retrieval

With this strategy it is possible to
specify the exact attributes by nan
and where to find them in the dat3
model. The developer doesn't hay
to know specifics about the log file
to use the data model.

When using this approach the
nattribute names will have to be at
| a generic level.

e

Implementation
difficulties

The implementation design can
follow a logical pattern given by
the log file structure and would be
straight forward proces

When implementing the data mod
in an application it has to have
support for all the different specifi
data models.

The abstraction is not very good,
and the developer has to change
already written code to add suppo
for new log data.

It could sometimes be hard to
create a generic design if the log
diles have big variation in
structure.

eWhen developing an application
the operations that can be

> conducted on all the different
kinds of log files only have to be
written once.

This approach will contribute in
rabstracting the code and facilitate
adapting new log and trace data.

Extension
possibilities

When adding support for further
log files the user is required to
program a parser, create a new d
model, and extend the existing
classes to support the new data
model.

A new parser is all that is needed
when extending with support for a
at@ew log file type with basic
features.

The application still needs to be
extended to use the more specific
information in the log files, but
this can be done in a higher
abstraction layer than when using

Table 7: Decision points, specific vs. generic data model

60

specified data models.

Appendix B: Data Models

B.3 Common Base Event Class Hierarchy
S pBa e want
Gruitanslontame | 5tring
locallnztanceld : Swring
gralobalinstanceld : String |
greveationTime “String I +reporterC omponantid
A eeerity short i
1 | weriarity :Fh'"t 1 +sourceCompanzntld
ment @msg : Steing i T (R
SrepeatCount © short [
0.1 gelapzadTires ! long Comparntidentifizition
i grequincetiumbar : (ong Glaction | tring
MzgDarElement nerelon String s 10 GlocstionType - String
ganzgld String srutherbata - Stringll {_)a!pplimion:_s'tring_ -
SmsgldType : String: _ﬁei!t.u‘t_inr"i’miré!nfnem - String
grmagtatalogld : String P 3 [@rompotent: Siring
gritgtatalagTolens : Stringd 1 U Hub GubComponent :String
Lmgatalag . String rasoleldtnth Geompanantid Typs : String
grnsglocak :String @instanceld | String
gmaatatalagType - String @proceszld - String
ghreadid : Steing
grompanent Type : String
StariSitiation szituafiion +essociatadbuents
|
@ruccessbisposition ;String wi 0.n {} T _,
getuaticnCuslifier | String Siuatian PR 0.
. Seategorybame | String TR ATREET
_Sthituuhn ‘r} 1 @ geententid ; Siring
gsuccesslisposition - String 2 &ipe - Steing
Jituationualifier - String ZpEme Sing
SranteatiEie : Fing-
Conpattsitiation +assodiationZnginedlifo
gauceassDispaxition :Steing Hritation e eazsotistiorEngine st dedDataElemants
getuationbizpoaition : String | .1 A 1.0..n 1
D Sirtatipn Tpoe AssociationEngine Exctendzdlatatlement +childfen
BeporiSitiation greasoningSoope ; String il - 5tring itiame S1ring
B name ; String m!pe':_itring. Oon
epateaaory s i Stype : String gnizles : Stringll
Ohaialue © bytall
Featurabituation

afeaturaDisposition Strikg

Sorallables Ruation

ConfiguraSituation

SeperationBispusition Siring
Zprocessinglizposition ; String
SanilabilityDisposition = String

GauccessDisposition : String

Dependansyzituation

RaquastSiuation

HdepzrdencyDizpazition : String

@zuccesziizpozition : Strirg
@eituationdualifier ; String

CreateSituation

GitharSiuation

ganzcesslizposition : String

anyDats Stringl

Dastroyitustion

Gruccesshispasition : String

Figure 46: The Common Base Event class hierarchy

61

Appendix D: TPTP Tracing and Profiling Project

Appendix C: The Correlation Tool

C.1 Java Graphic Libraries

The Criteria andResultsections below will explain the process used tosehthe graphics
library to be used with this project. THeurther Information section will give further
information about graphical libraries for future nko

C.1.1 Criteria

When we started to look for graphics libraries weWw that we wanted to be able to draw a
time axis and clickable objects. We also wanteleti@ble to draw diagrams that could show
CPU load and relate this to countable entries friih@ other logs, i.e. signal count,
transaction costs, process hit-rate etc. The Idsashould be SWT compliant since the
eclipse platform is built using this library forewis and graphics.

C.1.2 Result

The last criterion came to be somewhat of an olest&wen though many of the libraries we
looked at was said to be SWT compliant, it usuatigant that the diagrams could be
translated into an image before being shown irettipse view, which makes the operation
of clicking the chart harder to achieve.

Some of the libraries that seems most promisingtlaaidwe have tried out are:
* GEF (Graphical Editing Framework)ttp://www.eclipse.org/gef)
» Zest ttp://www.eclipse.org/gef/zest)
e JGraphwww.jgraph.com)
» JFreeChartwww.jfree.org/jfreechart)
* Actuate BIRT qvww.birt-exchange.com
* SWT library fttp://www.eclipse.org/swt)

GEF and Zest are fully SWT compliant, but miss filngction to draw axis's and diagrams.

JGraph, JFreeChart and Actuate BIRT all seem @aggd and have nice diagram functions,
but have to be translated into an image before theybe shown in an eclipse plug-in. Since
no one of the above libraries (and also other fiesd seemed to be sufficient we thought
about using images for showing the diagrams, aedWT graphics to manually draw the

clickable graphs. It might also be possible to &esice axis’s with one of the above

libraries as an image, and then draw clickable S)yfphics on top of the image.

For graphically represent relations between statel processes (e.g. transitions between
states and signals between processes) Zest coaddybed option. Here you can add nodes
and connections between them and make both thesmodkconnection clickable. The same
operations can also be done in GEF and JGraplzdstitseems easier to work with.

C.1.3 Further Information

We also found other graphical libraries later ia groject that seems promising, but that we
never analyzed further. These include:

» aiSeg(http://www.aisee.com)

* EMF (http://www.eclipse.org/modeling/emf/)

62

Appendix D: TPTP Tracing and Profiling Project

The Birt-Exchange community sifeww.birt-exchange.comyas created late in our project,
why we didn’t further explore this place. It wasated due to the demand for supported
products and services based on Eclipse BIRT aoduid be used to further examine BIRT
support for spreadsheets and diagrams in Java.

The Zest library has released a new version with features since the one we used in this
project.

63

Appendix D: TPTP Tracing and Profiling Project

C.2 Using the Correlation Tool

The user should collect the log files that mightrélevant for tracing the behavior (amongst
those that is currently supported). For the appboao recognize the different log files these
has to be named with the file endirngs, tae eap tsl andcpu for the Kernel Trace, Trace
and Error, Execution Address Profiler, TSL and AQRIad log respectively. When the logs
are collected Eclipse should be opened including @orrelation Tool plug-in. The
Correlation Tool perspective can then be openettienWindow/Open Perspective/Other”
menu option and the user can navigate to whereldbefiles are stored through the
Navigation View. From here the user can examineeent data in two different ways.
Either by comparing events taking place at the sime as the system behavior, or by
finding process dependencies.

For comparing events taking place at the same timee user can select the log files
containing time stamps and sele@gen with time chart editorfrom the context menu. If
there is need of time synchronization the useratemge the time delta for the log files by
selecting respective log file and choosghange Time Deltafrom the context menu, enter
the time difference, close the dialog, and finalbdate the Time Chart. By finding the event
that describes the occurrence of the system behdlki®mevent data taking place at the same
time can be examined to see if one of these evamtbe the cause of the problem. The user
can observe the entry information by hover the raqu@nter over the relevant entry icon, or
by selecting the relevant entries and press @geh with table editor’button which will
show more extensive information in a table editor.

For finding process dependencies the user cantsmiecor multiple Kernel Trace log files
and chooseOpen with table editor”By clicking the process tab in bottom left coroethe
table editor, all unique processes are listed tagetvith the processes they interact with.
The same information can also be seen graphicgllingtead selectingOpen with node
editor” from the context menu. If the user knows at wiratess a certain system behavior
takes place, he now knows what other processesirtteaficts with this processes which
might be possible reasons for this behavior. Fuitifermation about these processes can be
found by selecting the log files containing infotioa about the processes and selecting
“Profile using filter”. Here the user can enter the name of the procasskepress the okay
button, which will open table editors from all teelected log files containing information
about the process.

For further functionalities that can be used wihhk Correlation Tool see tHeplemented
Functionalitysection (sectiob.3.3).

64

Appendix D: TPTP Tracing and Profiling Project

C.3 Adding support for a new log file type
Adding support for a new log file type can be donthe following two steps:

1. A parser has to be created and registered in tteePBNgine. The Parser has to take
a file as input, interpret the log file and put thiormation in the data model.

2. The new log file type should then be set as enafdedhe Logs View actions of
interest in the Logs View class.

If the functionality given by the Correlation Taslnot sufficient, the Logs View action can
make a call to a class extending one of the preséiibrs. Correlation or profiling

calculations can be added to the Correlation Engihde the editor is responsible for
showing this information.

65

Appendix E: Log Files

Appendix D: Log Files
D.1 Example Log File Outputs

D.1.1 Trace and Error log, example output

[1970-01-13 01:07:35.248] Threadl ../../errorHandle r.cc:712 TRACET:
regController: ctr = 55D30FF8, ctrListHead = 55D2AA 40, pid = FO47B
[1970-01-13 01:07:35.248] Thread2 ../../errorHandle r.cc:712 TRACE?7:
regController: ctr = 55D30EAS, ctrListHead = 55D2AC 10, pid = E0475
[1970-01-13 01:07:35.248] Thread3 ../../errorHandle r.cc:712 TRACET:
regController: ctr = 55D318F8, ctrListHead = 55D2AC 60, pid = 8047C
[1970-01-13 01:08:25.316] application ../../slaveTs ITopC.cpp:289 INFO:

incarnating all the actors of application

[1970-01-13 01:08:25.316] slaveTsIDummyCR1 ../../in itializeAll.cc:182 TRACES:
[RTProfiler EVENT_TYPE_9 - Actor Information]
Actor: slaveTsIDummyCR1[0]
Actor adress: 1439870592
Physical thread (controller name): Thread 5
OSE Process: 525437

[1970-01-13 01:08:25.316] slaveTsIDummyCR1 ../enter State.cc:59 STATE CHANGE:
waitForDummySig

[1970-01-13 01:08:25.316] slavewaitCR1 ../../initia lizeAll.cc:182 TRACES:
[RTProfiler EVENT_TYPE_9 - Actor Information]
Actor: slavewaitCR1[0]
Actor adress: 1439870304
Physical thread (controller name): Thread 1
OSE Process: 984187

[1970-01-13 01:09:03.468] slavewaitCR1 ../../logMsg .cC:76 REC SIG:
Signal:READ_REQUEST, Port:slaveWait[0], Sender:read ValidCR1[0]

[1970-01-13 01:09:03.468] slavewaitCR1 ../../RTActo r/logMsg.cc:130 PARAM:
Signal:READ_REQUEST, Data:osesig: 1001

[1970-01-13 01:09:03.468] slavewaitCR1 ../../RTActo rlenterState.cc:59 STATE CHANGE:
waitForValidateDataAck

[1970-01-13 01:09:03.468] readValidCR1 ../../logMsg .cc:76 REC SIG:
Signal:VALIDATE_DATA, Port:readValid_to_slaveWait[O], Sender:slavewaitCR1[0]

[1970-01-13 01:09:03.468] readValidCR1 ../../logMsg .cc:130 PARAM:
Signal:VALIDATE_DATA, Data:void:

[1970-01-13 01:09:03.468] readValidCR1 ../../enterS tate.cc:59 STATE CHANGE:
waitForLockDataAck

[1970-01-13 01:09:07.412] application ../src/target /Cello/RTActor/badMessage.cc:196 ERROR:
application(0)@stop received unexpected message: To p%regLoad data: void

66

Appendix E: Log Files

D.1.2 Kernel Trace log, example output

(7) Time: 3178142.655 ms
Create process slavel:Threadl

(11) Time: 3178142.834 ms
Create process slavel:Thread2

(15) Time: 3178143.041 ms
Create process slavel:Thread3

(111) Time: 3246360.358 ms
Create process m0226.ppc:master_request

(120) Time: 3266362.117 ms

Send <1001> From: m0226.ppc:master_request To: s
(121) Time: 3266362.252 ms

Receive <1001> From: m0226.ppc:master_request To
(122) Time: 3266362.440 ms

Send <22020096> From: slavel:Threadl To: slavel:
(123) Time: 3266362.509 ms

Receive <22020096> From: slavel:Threadl To: slav
(124) Time: 3266362.555 ms

Send <22020096> From: slavel:Thread2 To: slavel:
(125) Time: 3266362.604 ms

Receive <22020096> From: slavel:Thread2 To: slav
(126) Time: 3266362.641 ms

Send <22020096> From: slavel:Thread3 To: slavel:
(127) Time: 3266362.666 ms

Receive <22020096> From: slavel:Thread3 To: slav
(128) Time: 3266362.690 ms

(240) Time: 3271080.383 ms

Kill process m0226.ppc:master_request
(241) Time: 3273034.918 ms

Kill process slavel:Threadl

67

lavel:Threadl

: slavel:Threadl

Thread2

el:Thread2

Thread3

el:Thread3

Thread2

el:Thread2

Appendix E: Log Files

D.1.3 CPU Load log, example outputs

The CPU Load log will contain different informatiatepending on the parameters used to
obtain it. Some example outputs of the CPU Loadai@gshown below.

$ capi peak
Top hundred peak load measurement

Log entry = 1: Thu Jan 1 23:59:03 1970

irg 0.10
prio 00-07 0.31 0.11 0.68 0.07 0.03 0.05 0.00 0.00
prio 08-15 0.00 0.00 69.790.00 0.00 0.00 0.10 O. 00

prio 16-23 0.05 0.00 0.00 0.00 0.04 0.00 0.01 0.00
prio 24-31 1.96 0.76 0.00 0.00 0.00 0.00 0.00 0.02
bg 15.91

$ capi type pri 23
CPU load report

Integration interval: 200000 microseconds

Process name pid type % % % % % % % % % %
Thread3 2046¢c pri23 0 0 0 0 0 0 0 0 O O
main_thread 30469 pric23 0 0 0 0 0O 0O O OO O

$ capi name master_request Threadl
CPU load report

Integration interval: 152000 microseconds

Process name pid type % % % % % % % % % %
master_request a0481 prilé 0 0 0 0 0 0 0O O 0
Threadl e047apric3 0 0 0 0O O1 0O0O0OO

$ capi prio

CPU load report

Integration interval: 200000 microseconds

Processes % % % % % % % % % %
Int 1 1 1 1 0 0 0 o0 1 1
bg 96 97 97 98 99 99 100 100 96 96
pri0 o o0 0O O O O O o o o
pri31 o o0 o o o o o o o o
Total 99 100 100 100 99 100 100 100 99 100

68

Appendix E: Log Files

D.1.4 TSL log, example output
[RoseRT Profiler Data] Sun Feb 8 06:02:45 1970

[Block 1] *****PROFILER Data for all contro
Profile Total Collect Time Seconds: 32 nano

Peak Signal Intra (InternalQs) Size per Priority
Priority Level :0 Peak :0

I'D'.riority Level :6 Peak :0
Peak Signal Inter (IncomingQs) Size per Priority
Priority Level :0 Peak :0

I'D'.riority Level :6 Peak :0
Peak Signal Defer (DeferQs) Size: 0

Total OSE signal dispatch count 1
Total UML inter signal dispatch count 7
Total OSE intra signal dispatch count 1

Global RTLayerConnector mutex contention count O
Sjgnal Propagation Tree

Signal propagation ID: 1 Signal: 5 sent by: O rece
delivery latency: 1006

[Block 2] *****PROFILER Data for each contr
Profiler (Controller = main)
Profile Collect Time Seconds: 32 nanoSeconds

Event type 1 (transition cost)

Key: slaveTs|TopC: sendDummySig_stop_8 Value:

Event type 3 (msg latency)
Key: slaveTsITopC: initial_sendDummySig_6 Value:

Event type 5 (msg receive)
Key: application[0] Value: 2

Event type 7 (state change)
Key: application[0] Value: 2

Event type 10 (Peak Signal Inter (IncomingQs) Size
Priority Level :4 Peak :1

Event type 11 (total dispatch count)
OSE signals: 0
UML signals inter process: 2
UML signals intra process: 0

Profiler (Controller = Thread2)

69

”ers*****
Seconds: 657549000

ived by: slavewaitC.1439346016

oller*rxx
1 657657000

min: 69 max: 69 med: 69

min: 1912 max: 1912 med: 1912

per Priority)

Appendix E: Log Files

D.1.5 Execution Address Profiler log, example outputs
Qutput type one
#

Output from:
./6 -f lThome/uabafin/exjobb/Correlation of data
Generated:

Tue Mar 18 12:12:25 2008

#

Oxffffffff 1
0x00000000 100
0x00000064 92
0x000000c0 92
0x0000011c 96
0x0000017c 96
0x000001dc 104

[TslISlave.ppc.elf

slavel
_Z20new_readReadyC_ActorP1
_ZN16readReadyC_ActorC2EP
_ZN16readReadyC_ActorC1EP
_ZN16readReadyC_ActorD2Ev
_ZN16readReadyC_ActorD1Ev
_ZN16readReadyC_ActorDOEv

2RTControllerP10RTActorRef
12RTControllerP10RTActorRef
12RTControllerP10RTActorRef

0x00000408 92 _ZN16readReadyC_Actor9chai n3_tl1Ev

0x00000464 324 _ZN16readReadyC_Actorllrts BehaviorEii

0x00000c50 36 _ZNK16readValidC_Actorl2g etActorDataEv

0x000045c0 7700 _vsOutFmt

0x000063d4 224 snprintfOutFoo

0x000064b4 88 vsnprintf

0x00006828 152 viprintf

0x000068c0 116 fprintf

QOutput type two

Command Line: execprof -p 25 -f /c/usr/slavel.reg

slavel :_Z20new_readReadyC_ActorP12RTContro llerP10RTActorRef 0 0.00%
slavel :_ZN1l6readReadyC_ActorC2EP12RTContro llerP10RTActorRef 0 0.00%
slavel :_ZN16readReadyC_ActorC1EP12RTContro llerP10RTActorRef 0 0.00%
slavel :_ZN16readReadyC_ActorD2Ev 0 0.00%
slavel :_ZN16readValidC_Actor22chain2_gotVa lidateDataEv 1 0.00%
slavel :_ZN16slavewaitC_Actor25chain3_gotVa lidateDataAckEv 1 0.00%
slavel :_vsOutFmt 90 0.02%
slavel :snprintfOutFoo 0 0.00%
slavel :vsnprintf 0 0.00%
slavel :efs_outfmt_put 69 0.02%
slavel :efs_stdout 0 0.00%

70

Appendix E: Log Files

D.2 Datathat can

be extracted

The data that can be extracted from the differegtfiles are shown in the tables below.
Since the TSL log is slightly more complex this a&ut in a separate table.

- Sender process

- Sender owner
(load module)

- Receiver process

- Receiver owner
(load module)

- Process dependencie

- Delay time between
sent messages

- Trace group
- Message

From trace group
STATE CHANGE:
- New state

S
From trace group

SEND SIG and REC

SIG:

- Signal name

- Signal number

- Port

- Sender process
- Receiver process

From trace group
TRACES:

- Actor name

- Actor address

- Physical thread
- OSE process id

number

KTR log TAE log CPU Load log EAP log

- Sequence number - Timestamp - Log entry no - Load module name
- Timestamp - Component name - Timestamp - Log generation time
- OSE event type - File or object name | - Interact quota - Address

- Signal id - File line number - Highest priorities - Symbol name

guota (including load
- Total quota at a module, process and
certain time function)
- Hit rate per symbol
component

Table 8: Data that can be extracted from the KTR, T& E, CPU Load and EAP logs

TSL section

Section info

Data can be extracted

Header

Header of the TSL log file

Time stamp, adlitgr name , Profile Total Collect
Time

Event type 1

Transition cost

Event name, capsule name, captatke £ ML signal
number, transition cost (max, med, min)

Event type 3

Message latency

Event name, capsule name, capatde $ML signal
number, message latency (max, med, min)

Event type 4
Tree

Signal propagation

Event name , Signal propagation ID, UML signal
number, sender address, receiver capsule name,
receiver address,

delivery latency: 1006

Event type 5

Total uml msg receive

Event name, actor name, antiex, UML message
received count

Event type 6

Total uml msg sent

Event name, actor name, acttex, UML message
sent count

Event type 7

Total state change

Event name, actor name, autex|j state changed
count

Event type 10

Peak Signal Size per Priorit

y Event name, eventigigpe, priority level, peak size

Event type 11

Total dispatch count

Event name,aditype, signal dispatch count

Table 9: Data that can be extracted from the TSL Log

71

Appendix E: Log Files

D.3

Common Event Data between the TSL and Other Log Files

The common event data between the TSL log and &iheris shown imable 10below. In
this table,yesmeans that the common event data can be abstfaotedhe related log files
directly; indirectly means that the common event data could not beaabsd without any

extra information or dealing methods. For exampbgsule name could be found both in
TSL log and Execution address profiling log, butexecution address profiling log, it is

represented together with some redundant informatitich needs to be filtered away.

TSL T&E KTR EAP CPU Load
Time stamp yes yes yes yes
Controller name yes yes yes
Total Collect Time
ET 1,3 | capsule nan yes indirectly

capsule sta yes yes

UML signal No indirectly | indirectly | indirectly

transition cost/

message latency
ET 5, 6, 7| Event nam

actor nam yes indirectly

actor inde: yes indirectly

UML message rec count/

UML message sent count

state changed count

delivery latenc

receiver addre: yes

sender addre yes

receiver capsule nai indirectly

Signal propagation | yes

UML signal number indirectly indirectly
ET 10 Event nam

eventqueue typ

priority leve

peak size
ET 11 Event nam

signal typt indirectly

signal dispatch count

Table 10: Common event data between the TSL and other log files

72

Appendix E: Log Files

D.4 Suggested XML format for the TSL log

The XML structure below describes one of our testes. Where multiple entries can be
added to the structure three dots (...) will be shown

<roseRtProfilerData>
<generationDate value="Thu Jan 15 11:35:24 1970"/>
<block1>
<totalCollectTime seconds="53" nanoSeconds="55260%>
<eventTypelO>
<internalQueue>
<peakSizeEvent pri="0" peak="0"/>
<peakSizeEvent pri="1" peak="0"/>
<peakSizeEvent pri="2" peak="0"/>
<peakSizeEvent pri="3" peak="0"/>
<peakSizeEvent pri="4" peak="1"/>
<peakSizeEvent pri="5" peak="0"/>
<peakSizeEvent pri="6" peak="0"/>
</internalQueue>
<externalQueue>
<peakSizeEvent pri="0" peak="0"/>
<peakSizeEvent pri="1" peak="1"/>
<peakSizeEvent pri="2" peak="0"/>
<peakSizeEvent pri="3" peak="0"/>
<peakSizeEvent pri="4" peak="1"/>
<peakSizeEvent pri="5" peak="0"/>
<peakSizeEvent pri="6" peak="0"/>
</externalQueue>
<deferQueue>
<peakSizeEvent pri="0" peak="0"/>
</deferQueue>
</eventTypel0>
<eventTypell>
<oseSignalCount value="1"/>
<umlExternalSignalCount value="7"/>
<umlinternalSignalCount value="1"/>
</eventTypell>
<eventType4>
<signalPropagationEntry id="1">
<oseSignalNo value="5"/>
<sendingActor actorAddress="0"/>
<receiveingActor capsuleName="slavewaitC" actidess="1439346016"/>
<umlMessageDeliveryLatency value="1731"/>
</signalPropagationEntry>
<signalPropagationEntry id="1">
<oseSignalNo value="3"/>
<sendingActor actorAddress="1439346016"/>
<receiveingActor capsuleName="readValidC" actintress="1439347104"/>
<umlIMessageDeliveryLatency value="2568"/>
</signalPropagationEntry>
<signalPropagationEntry id="1">
<oseSignalNo value="3"/>
<sendingActor actorAddress="1439347104"/>
<receiveingActor capsuleName="readReadyC" actdrégs="1439346640"/>
<umlMessageDeliveryLatency value="1780"/>
</signalPropagationEntry>
<signalPropagationEntry id="1">
<oseSignalNo value="4"/>
<sendingActor actorAddress="1439346640"/>
<receiveingActor capsuleName="readValidC" actinttess="1098920712"/>
<umlMessageDeliveryLatency value="1030"/>
</signalPropagationEntry>
<signalPropagationEntry id="1">
<oseSignalNo value="8"/>
<sendingActor actorAddress="1439346016"/>
<receiveingActor capsuleName="slaveTsITopC" ctidress="1439345344"/>

73

Appendix E: Log Files

<umlMessageDeliveryLatency value="4636"/>
</signalPropagationEntry>

</eventType4>
</block1>
<block2>
<collectTime seconds="53" nanoSeconds="552430600"
<rtController type="Main">
<eventTypel>
<transitionEntry>
<transition capsuleName="slaveTs|ITopC"
firstState="sendDummySig"
secondState="stop"
umiSignalNo="8"/>
<transitionCost min="130" max="130" med="139"/
</transitionEntry>
<transitionEntry>
<transition capsuleName="slaveTs|ITopC"
firstState="initial"
secondState="sendDummySig"
umiSignalNo="6"/>
<transitionCost min="1211" max="1211" med="12/t

</transitionEntry>

</eventTypel>
<eventType3>
<transitionEntry>
<transition capsuleName="slaveTsITopC"
firstState="initial"
secondState="sendDummySig"
umiSignalNo="1"/>
<transitionCost min="3689" max="3689" med="36&

</transitionEntry>
<transitionEntry>
<transition capsuleName="slaveTsITopC"
firstState="sendDummySig"
secondState="stop"
umiSignalNo="8"/>
<transitionCost min="4636" max="4636" med="66/>
</transitionEntry>

</eventType3>
<eventType5>
<actorEntry>
<actor name="application" index="0" />
<count value="2" />
</actorEntry>

</eventType5>
<eventType6>
<actorEntry>
<actor name="readReadyCR1" index="0" />
<count value="1" />
</actorEntry>

</eventType6>
<eventType7>
<actorEntry>
<actor name="application" index="1" />
<count value="2" />
</actorEntry>

74

Appendix E: Log Files

</eventType7>
<eventTypelO>
<internalQueue>
<peakSizeEvent pri="4" peak="1"/>

</internalQueue>
<externalQueue>
<peakSizeEvent pri="2" peak="1"/>

</externalQueue>
</eventTypel0>
<eventTypell>
<oseSignalCount value="0"/>
<umlExternalSignalCount value="2"/>
<umlinternalSignalCount value="0"/>
</eventTypell>
</rtController>
<rtController type="ClientPT">

</rtController>

</block2>
</roseRtProfilerData>

75

Appendix E: Log Files

D.5 Log File Formats

This section shows a few example printouts of tfferént log file formats.

Time: 2001-11-23 15:01:42 -5
User: ed
Warning:
This is an error message
for the log file
Time: 2001-11-23 15:02:31 -5
User: ed
Warning:
A slightly different error
message.
Date: 2001-11-23 15:03:17 -5
User: ed
Fatal:
Unknown variable "bar"
Stack:
- file: TopClass.py
line: 23
code: |
X = MoreObject("345\n")
- file: MoreClass.py
line: 58
code: |-
foo = bar

Figure47: YAML log structure

<block2>
<collectTime seconds="53" hanoSeconds="552430000"/ >
<rtController type="Main">
<eventTypel>
<transitionEntry>
<transition capsuleName="slaveTsITopC"
firstState="sendDummySig"
secondState="stop"
umliSignalNo="8"/>
<transitionCost min="130" max="130" med="130"/>
</transitionEntry>
<transitionEntry>
<transition capsuleName="slaveTsITopC"
firstState="initial"
secondState="sendDummySig"
umliSignalNo="6"/>
<transitionCost min="1211" max="1211" med="1211 ">
</transitionEntry>
</eventTypel>
</eventType3>

Figure 48: Log file structure showing TSL Block 2, Event Type 1

[Block 2] ***PROFILER Data for each controller** Fkk
Profiler (Controller = main)
Profile Collect Time Seconds: 53 nanoSeconds : 552430000
Event type 1 (transition cost)
Key: slaveTsITopC: sendDummySig_stop_8 Val ue: min: 130 max: 130
med: 130
Key: slaveTsITopC: initial_sendDummySig_6 Value: min: 1211

max: 1211 med: 1211

Figure 49: Text log file structure showing TSL Block 2, Event Type 1

76

