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ABSTRACT

This paper investigates tests for serial correlation and heteroscedasticity which can be applied to VARs
and simultaneous equations models.

An F-type test for vector error autocorrelation is considered. Thetest is conceptually simple and re-
duces to the familiar single equation test in a one-equation model. A wide range of Monte Carlo experi-
mentsis set up to investigate size and power, and compare the test to the standard chi-sgquared and mul-
tivariate portmanteau tests. The non-centrality of the chi-squared test gives asymptotic power similar to
that found in the simulations.

Next, it is shown that under simplifying assumptions, Kelgjian’stest for heteroscedasticity reducesto a
multivariate extension of White'stest, which consists of amultivariate regression of theresidual variances
and correlations on the squares and cross-products of the original regressors. Variousforms of the test are
considered in simulation experiments.
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SUMMARY

An F-typetest for vector error autocorrelation isconsidered. Thetest isconceptually simple and reducesto the famil-
iar single equation test in aone-equation model. A widerange of Monte Carlo experimentsis set up toinvestigate size
and power, and compare the test to the standard chi-squared and multivariate portmanteau tests. The non-centrality
of the chi-squared test gives asymptotic power similar to that found in the simulations.

Next, it isshown that under simplifying assumptions, Kelgjian'stest for heteroscedasticity reducesto amultivari-
ate extension of White's test, which consists of a multivariate regression of the residual variances and correlations
on the sguares and cross-products of the original regressors. Various forms of the test are considered in simulation
experiments.
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1 INTRODUCTION

Following the example of earlier versions of PcGive, most computer packages now have a range of di-
agnostic tests preprogrammed. As a consequence, it is noe a routine operation to subject single equation
regression equationsto a battery of tests, e.g. for autocorrelation, heteroscedasticity, normality and para-
meter constancy. The current popularity of multivariate methods, such as vector autoregressions, requires
a corresponding range of diagnostic test procedures. The subject of this paper is to investigate two such
vector tests, namely for error autocorrelation and heteroscedasticity (testing normality is considered in
a separate paper, see Doornik and Hansen, 1994). To facilitate applied research, we require acceptable
small sample behaviour, but also aim to have conceptually simple tests, which reduce to their univariate
counterpartsin a single equation setting.

The single equation Lagrange multiplier (LM) test for autocorrelation developed by Breusch (1978)
and Godfrey (1978) (reviewedin Godfrey, 1988), has becomeastandard tool in applied econometrics. The
pervasiveness of thistest procedure derivesfrom its simplicity, wide applicability (unlike e.g. the Durbin-
Watson statistic which needs to be adjusted for dynamic models) and flexibility (it can be used to check
for any order of autocorrelation), also see Breusch and Godfrey (1981, §2.2). Finally, the F-form of the
test performswell in small samples.

The test is performed through an auxiliary regression of the residuals on their lags and the original
regressors. Then the significance of all regressorsistested. Two forms are generally computed:

(1) TR?, where T is the sample size, and R? the coefficient of multiple correlation in the auxiliary
regression. This statistic has an asymptotic x?(s) distribution under the null of no serial correlation
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when s lagged residuals are used.
(2) the F-test on the lagged residualsin the auxiliary regression:
R? T—k-—s

1— R? s

~ F(s,T =k —s), 1)

where k is the number of regressorsin the original regression. This modified LM procedure was
first suggested by Durbin (1970) (also see Osborn, 1981).

In both cases it is convenient to set missing observations for the lagged residuals to zero, so that no
observationsarelost. Identical statistics can be obtained when using the original dependent variable asthe
dependent variablein theauxiliary regression; then R? should be defined rel ative to the original regressors:
R? = (RSS)) 1 (RSSy — RSS), where RSS, and RSS are the residual sums of squares of the original and
the auxiliary regression respectively.

Kiviet (1986) compared alarge number of tests for autocorrelationin a Monte Carlo study. He found
that the F-version is better behaved in small samples and retains a correct size in an overspecified model
(where T'R? overrejects). Mizon and Hendry (1980) compared the LM form with the Wald and likelihood
ratio (LR) version in amodel with first order autocorrelation (satisfying common factor restrictions) and
found evidence favouring the LM statistic. Godfrey (1981) also finds that the LM test is effective relative
totheLR test.

For testing heteroscedasticity we focuson White' stest, see White (1980), primarily becauseit does not
require explicit formulation of the form of heteroscedasticity. In asingle equation setting the test amounts
to adding the squares and cross-productsof the original regressorsto an auxiliary regression of the squared
residualson aconstant term and testing the significance of these added terms. Under the null hypothesis of
homoscedasticity (normality is not required, the assumptionisthat the errorsare 11D(0, %) with constant
kurtosisand thefirst eight moments exist), the squaresand cross-products of the original regressorshave a
coefficient of zero. Ingeneral, it will be necessary to remove redundant variables. Let s denotethe number
of added terms; when there are k regressorsin the original equation, including the constant term, and no
other redundancies. s = %k(k — 1). Thetest can be computed as T'R? from the auxiliary regression
and will have an asymptotic x () distribution under the null. Aswith the LM test for autocorrelation, an
F-form may be considered which could potentially achieve better small sample behaviour.

White'stest isjust one from awhol e spectrum of tests proposed in the literature. A comparative study
of Ali and Giaccotto (1984) shows that the size of White's test is robust against some non-normal error
distributions and is among the best tests in terms of power. Godfrey and Orme (1994) on the other hand
find significant deviationsfrom the nominal sizewhenthe errorsare generated from alog-normal or y2(2).
test. They also show that White' sheteroscedasticity test doesnot have power agai nst omitted variables, and
criticise PcGive (Doornik and Hendry, 1994b) for calling this a test for functional form. (PcGive reports
two forms of the test: one involving cross-products and squares, one using squares only.)

The rest of the paper is organised as follows. | first briefly review specification tests in multivariate
systems to introduce notation. Section 3 then discusses the vector version of the LM test, and introduces
an approximate F-version, corresponding to the modified LM test for the single equation model. The
subsequent two sections consider the vector portmanteau test, and testing in the simultaneous equations
model. Then the small sample properties of these two tests areinvestigated in a set of Monte Carlo exper-
iments, and compared to the multivariate portmanteau test. Finally, the non-centrality of two of the power
simulationsis computed.
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2 SYSTEM SPECIFICATION TESTS
Consider the n-dimensional multivariate linear regression mode!:
y = Hwy + v, E[v]=0 E[wnv]=10.

In matrix form:
Y =0OW'+ V', 2

inwhich Y'isn x T, W'isk x T and IT isn x k. W’ may include lagged dependent variables; |
assumeit includes a constant term. The multivariate least squares (ML S) estimates of the coefficientsand
residual covariance are:

O=(WWwW) " WYad2=VV/(T-k),

wherethe residual s are defined by:
V=Y-WII.

When v, ~ N (0, £2), the maximum likelihood estimates are IT’ asbefore,and 2 =T 1 V' V.
Tests whether columns of IT are zero can be based on the Wald, LM and LR principle. Partitioning
the coefficientsas IT = (I, : II,), and W = (W, : W,) accordingly, we may write thistest as:

Ho : II, = OversusH; : I, 750,

with the maintained hypothesis given in (2). The matrices IT; aren x k;, sothat k = ki + ko. The
likelihood ratiois:

X L LN\T/2

A:OWVHW%‘) :

where V; are the residuals from regressing Y on W, (that is, under H,), whereas V results from the
unrestricted system (2). Minus twice the logarithm of ) is asymptotically y2(nks) distributed under the
null hypothesis. Anderson gives small-sample correction factors for the y2 test; Anderson (1984, §8.4)
and Rao (1973, §8b.2) derivethe exact distribution of A%/7 for fixed W, whichiscalled the U-test." The
corresponding LM-test is:

=] (Vv - v'9) (%)),

which is also asymptotically y?(nk-) distributed under the null hypothesis.
Based on these, it is convenient to define two R2-type measures of goodness of fit:

Bo= - |||,
R = 1—%tr{(V’V)(VdVO>_1}.

Inaone-equationsystem (n. = 1), orwhen V isdiagonal, thesetwo measuresareidentical. Inthefirst case
they correspond to the traditional R2 if the constant term isthe only variable excluded in the specification
test.

‘71

LGuilkey (1974) and Deschamps (1994) consider this form of the vector error autocorrelation test, but only in models excluding
lagged dependent variables.
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3 VECTOR ERROR AUTOCORRELATION TESTS

Consider the augmented system with vector autoregressive errors:

Y =nOW'+ U where U'=> R U+ V' 3)

=1
We wish to test the null hypothesis:
H01R1:"':R5:O. (4)

Godfrey (1981) showed that thistest can beimplemented by testing the significance of thelagged residuals
(obtained under the null hypothesis) in the auxiliary system:

Y =OW +R U, +-- +R.U + V' (5)

Thisis most easily implemented by partialling out lagged residuals from the original regressors, and re-
estimating the original system using the new regressors. Again we set missing observationsto zero. God-
frey also showed that testing for vector MA(s) residualsislocally equivalent and | eads to the same proce-
dure.

When V denotesthe residualsfrom the auxiliary regression, and V, = U theresidualsof the system
under the null, both B2, and R? of the previous section can be computed. The 2 form of the LM test is
given by:

LM = TnR?,, (6)

with an asymptotic y2(sn?) distribution.
Using an F-approximation to the likelihood-ratio form of the LM test which is due to Rao (see Rao,
1973, §8c.5, or Anderson, 1984, 8.5.4):

1/r

1-(1=R)Y" Nr—
LMF — ( ;) e (7)
(-m)r
with: y
n2p2—4 2 1 1
=<m> q=gwp— L, N=T—k-p-3(n-p+1)
and:

k number of regressorsin original system,

n  dimension of system,

T number of observations,

p number of regressors added in auxiliary system (= ns).

LMF has an approximate F'(np, Ns — ¢) distribution (the F-approximation is exact for fixed regressors
whenp < 2orn < 2).

A larger number of transformationsof theLM and LR statisticsfor testing the significance of thelagged
residualsis considered by Edgerton and Shukur (1995).

Both LM and LMF havethe attractive property of reducing to the single equation LM and modified LM
testss n = 1in(7) resultsinp =s,r=1,¢ = %s—l,N=T—k—%s—1sothatNr—q=T—k—s
and (7) reducesto (1). Asin the univariate case we may use an auxiliary regression with U replacing Y
as regressand.
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Testing in the simultaneous equations model (SEM) proceedssimilarly. Under the null hypothesisthe

model is:
BY' + CW' = H', (8)
with .
H' = RH ,+F.and Hy: Ry =---=R; =0,
=1

wherethen x n matrix B isnon-singular and has unity on the diagonal. Assume the model is estimated
by full information maximum likelihood (FIML), and the FIML residuals H have been obtained, together
with the restricted reduced form (RRF) residuals V] = B~' H'. Next, to test for vector error autocorre-
lation of order s, estimate the auxiliary model

BY' +CW' -RH ,— - —RH ,=F (9)

by FIML,? giving structural residuals E, and reduced formresiduals V' = B~' E’. The V] and V" thus
created can now be used to compute R2, and k2, and from that the x? and F' formsof the LM test for the
hypothesis R, = --- = R, = 0. When modelling starts with the URF, testing for autocorrelation will
also start there.

4 \VECTOR PORTMANTEAU TEST

Inthe Monte Carlo comparisonswe also consider two formsof the multivariate portmanteau statistic, asin-
troduced by Hosking (1980). Thisstatistic servesasagoodness-of-fittest in multivariate stationary ARMA
processes, and is an extension to the tests of Box and Pierce (1970) and Ljung and Box (1978).

Define: )
é’rs = T UA.I UA;S

T -r Y

with U_, the T x n residual matrix ; periods|agged, where missing valuesare set to zero. Then Cyo = £2.
The vector portmanteau statistic is:

Q(S) = TZtI‘ (é(;] 0061 éoj 6'0_01> .
j=1

Hosking arguesthat, asin the univariate case, amodified form might be better behaved in small samples:

. 1 AL A1 A A
Q*(s) = T2Z T—; tr (Coj Cpo' Co; Cool) -
j=1

For an n-dimensional VAR with lag length m, both statistics are asymptotically x2 (n2(s —m)) distributed
under the assumptions of the test (one of them being that s islarge: s = O(T"'/?)). Ahn (1988) showed
that the test statistic isalso valid in astationary VAR with parameter restrictions (in that case n?m should
be replaced by the appropriate number of estimated coefficients). However, as Breusch and Pagan (1980)
argue, the portmanteau statistic isinvalid in amodel including both non-modelled and |agged endogenous
variables. Monte Carlo evidencein Kiviet (1986) supportsthis.

2As pointed out by Godfrey (1988), since the lagged residuals enter unrestrictedly, ¥’ and W' can be replaced by the residuals
from regression on the lagged residuals, resulting in the same model structure as the restricted model.
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5 VECTOR HETEROSCEDASTICITY TEST

The objective hereisto test the residual s of the system (2) for heteroscedasticity:
Ho : E[wv)] = 0.

Kelgiian (1982) extended White's test to the simultaneous equations framework. However, the test has
not found widespread application, probably because it was considered rather cumbersome (see e.g. the
footnote on p.187 in Godfrey, 1988).

In atwo-equation system Kelgjian’s procedure would amount to applying GL Sto thefollowing regres-
sion equation:

3 1 00

%, 10 0

V1o 0 10 w? P, 0 O ay

: = : ws |+ O Py O as | +e (10)
03, 0 1 0 | \we 0 0 B o3

V11012 0 01

D107 0 01

In this expression, the notation becomes more compact aswe move from left toright, P; is (3T x p;), o;
is(p; x 1)and e is (3T x 1). Each P; could consist of different functions of the regressors w;. Taking
deviations from means (10) may be written as

veo(#) = Prate 1y
in which
¥ = (7/;1""/;T)a = 1 — Py, Py = vechs2,.

t
writing g = In(n+ 1) and p* = 3 p;, vec(¥’) isof dimension (¢7 x 1) and e is (p* x 1). Under
the null hypothesis of homoscedasticity:

Ele] =0, V]e] =V [y @ Ip.
Kelgiian suggested to test for @ = 0 in (11) using:

Vi = 2 &' 0. (12)

N

Using acommon set of regressors. P; = P, it is easy to show that the test procedures simplifiesto a
multivariate regression of ¥ on P. Writing P* = I, ® P, P is(T x h) wefind:

e

a= {(Ir o P) (Vi ®IT>_1 (L ® 1-")}_1 (L P) (V] ®IT)_1vec(¢') ,

and
& (PP )6 = vec(@’)'{\//[zb\,g]_l@P(P’P) 1P’}vec(¢’)
- tr{mlw(pfp)lpf@} (13

I
=3
—
S
e

|
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Thelast line uses (12). Thetest statistic is asymptotically x2 (gh) distributed.
So, writing (11) in system form, under the assumption (12):

¥ =3P + E' (14)

with vec(8') = «, showsthat (13) isan LM test for vec(3’) = 0 in this system. Thistest may be written
asLM = TgR2,. If p, (rowt of P) consistsof theoriginal w;;’sand their squaresand cross-products, this
test is the system anal ogue of White (1980)’stest for heteroscedasticity. For numerical accuracy reasons,
it might be advisable to estimate the system (14) as it stands: first partial out the constant term, and then
estimate the system (or better, use a QR-based method).

Analogous to the vector autocorrel ation test, we use the F-approximation (7):

1-(1-R)"" Nr—gq

LMF = .
(1—m)

app F(ghaNS_Q)a (15)

with k&, n, pin (7) replaced by kq, g, h:

ky degreesof freedom in restricted auxiliary system, see Table 1
g dimension of auxiliary system,
h number of regressorstested for exclusion.

Assuming that w; includes a column of ones for the intercept, and none of the w,;’s are redundant
when squared, we have i = 2(k — 1) for the heteroscedasticity test, and i = $k(k — 1)+ 2(k — 1) for the
forminvolving all cross-products. Since n isthe dimensionality of the original system: g = %n(n +1).

We may wish to consider a variant of this test. Under the null hypothesis of multivariate normal-
ity, we can transform the residuals to independent normal. Write 2 = TT' and v; ~ N (0, £2) then
uw, = T~ v, ~ N (0, I). Sothetests could be based on the transformed residuals «;, omitting the cross-
products, and hence reducing the dimensionality of the test. For T we use a symmetric squareroot asin
Doornik and Hansen (1994); the resulting tests are labelled ZLM and ZLMF-.

Inall, we consider 10 forms of the heteroscedasticity test, listed in Table 1. The last two entriesin the
table also subtract the degrees of freedom of the system which istested for heteroscedasticity. Thisisthe
procedure used in PcGive.

Table 1. Forms of the heteroscedasticity test.

form g kq h
HET LM mn+1) 1 2(k—1)
HETX LM nn+1) 1 ik(k—-1)+2(k-1)
ZHET ZLM n 1 2(k—1)
ZHETX ZLM n 1 tk(k-1)+2(k-1)
HET-F LMF in(n+1) 1 2(k—1)
HETX-F LMF in(n+1) 1 1k(k—-1)+2(k-1)
ZHET-F ZLMF n 1 2(k—1)
ZHETX-F  ZLMF n 1 ik(k—-1)+2(k-1)
GIV-F LMF in(n+1) 14k 2(k—1)
GIVX-F LMF in(n+1) 1+k 1k(k—1)+2(k—1)
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6 MONTE CARLO DESIGN

The Monte Carlo design is based on the n-variate version of the PcNaive data generation process (DGP),
see Hendry, Neale and Ericsson (1991):

Y = Ay + Ay + Aoz + wy,
w, = Bou_i+ e+ Bie_q, (16)
zz = Coz_1+ ¢+ et + vy

Thevectorsy;, u;, e, aren x 1, so that the coefficient matrices Ay, A1, By aren xn. I — A, corresponds
to B in(8). The z; vectorisq x 1. The zsare alwaysfixed for each experiment, and 20 initial observations
of the DGP are discarded (19 or 18 when one or two lags of y are used in the model).

All experimentshavea DGP withn = ¢ = 3, and dwayshave Ay =0, Cy = I't, ¢; = ¢ = Oand
v ~ N(O, I), e; ~ N(0, I't). The on coefficient matrices I'; are:

0.3 01 01 05 01 O 05 03 O
Iy,=1 01 03 01 |, I=( 01 05 O , I's=1 03 07 0
0.1 01 03 0 0 03 0 0 0.7

Table 2 summarizesthe DGPs and model s used in the Monte Carlo experimentsfor the autocorrelation
tests. The DGPsin Table 2 are stationary: al the eigenval ues of the companion matrix are inside the unit
circle.

Table 2. Design of experimentsfor the autocorrelation test.

case DGP Model description

(a) Ay =A=By;=B; =0 1 y;white noise

(b) A1 =0,A,=1I,By=B; =0 1z no dynamics

(C) A1 = F(), A.2 = B() = Bl =0 1, Yi—1 VAR(].)

(d) as(c) Ly 1,9 2 overspecified dynamics
(6) A1 = Fo, A2 = I7 BO = B1 =0 :I.7 Yt—1, 2t VARX(].)

(f) as(e) L yi—1,yi—2,2z overspecified dynamics
(9 A1 =Ty,A>2=0,By=TI1,Bi=0 1y, power: autocorrelation
(h) A1 =I,,A2=0,By=I5,B;=0 1y, power: autocorrelation
(i) A =Iy,A2=0,By=0,B,=I1 1y, power: moving average

The heteroscedasticity experimentsuse cases (b) and (€) from Table 2 for size. The power experiments
are based on case (h), and on case (€) but with ARCH or heteroscedastic errors:

(el) e ~N(O, I+ Te 1e/ | TY) ARCH,
(e2) e ~N(O, It + I'er_1e] | T3) ARCH,
(e3) e ~N(O, I + INyi—1y;_, I'|) heteroscedasticity.

In the second set of experiments (autocorrelation tests only), we use the DGP on which the tutorials
for PcFiml are based (see Doornik and Hendry, 1994a, pp. 132-133). In terms of (16) this corresponds
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for the y-equation to:

0 0 0 0 09 0 0 0.1
01 0 05 0 0 075 —-025 0

Ao = 0 0 0 -o03 | A= 0 02 08 0 , Ax=1,
0 0 0 0 0 0 0 1

and for the z-equation:
Cy =0, ¢ =(0.01,0.02,0.02,0.01), ¢, =(0,0,0,0),

with error distributions:

00 00 006 0 0 0
_lop 0o 3 0 0.0150.057 0 3
Bo=1|o0 0| B=0 e~N01 o 6057 005 o0 » u=0

00 00 0O 0 0 015

Table 3 specifies the values chosen for 3; in the DGP, and formul ates the specifications used to model
the DGP. M isthe unrestricted reduced form, which can be estimated by multivariate least squares. M-
is a simultaneous equations model which has M; asits URF, and will be estimated by FIML. The DGPs
in Table 3 have two roots on the unit circle.

Table 3. DGPs and models (M, M>) for the second group of experiments.

case DGP Model  description
(7)  Bo=0.004,3; =2 =0 M, size

(k) as(i) M, size

(l) ﬁo = 0004, ﬂl = 05, /62 =04 Ml power

(m) as(k) M,  power

('I"L) Bo = 0.004,51 = 0.25,52 =0.2 M power

(o) as(m) M,  power

(M) yy=Ihy 1+ + Bt + w

100 0 74 0 0 7 Y11
71l 0 0 v% v O 0
M- = _ t
(M2) 001 7 | ¥ 0 5 0 |UITET| g |tt™
000 1 0 0 0 o 0

7 MONTE CARLO RESULTS FOR THE VECTOR AUTOCORRELATION TESTS

The Monte Carlo results are all based on A/ = 1000 replications and only presented graphically®. The
reported simulationswere donein Ox version 0.50 (see Doornik, 1996), using theinternal random number
generator.

31n an attempt to circumvent a drawback of many presentations of Monte Carlo results, described by Mizon and Hendry (1980)
as ‘tabulation strains the memory without producing much insight’.
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The first case considered is that of regressing a white noise vector on a constant term, labelled case
(a). Theresults arein Figs. 1 and 2, showing the empirical rejection frequencies for the LM and LMF
tests at sample sizesT' = 25, 50, 100. The approximate Monte Carlo standard error, defined as /{p(1 —
p)/M}, where p is the tail probability of interest, is in this case (0.013,0.009,0.007,0.003) for p =
(0.2,0.1,0.05,0.01). Thetests involved are for first up to fifth order vector error autocorrelation (Fig. 1)
and both forms of the portmanteau statistic (Fig. 2). We see that the size of the LMF test remains some-
what more constant as we increase the AR-order. Also notethat the size of the small sample corrected Q*
test behaves much better for increasing lag length. Thisis all the more important because these tests are
usually performed with long lag lengths.

In cases (b)—(f), the LM and LMF tests behave in a similar fashion across cases. Asatypical example
we present in Fig. 3 the results of case (€), afirst order VAR with 3 exogenous variables. The size of the
F'-type LMF-test remains constant and remarkably close to the nominal size. In contrast, the size of the
x? form has atendency to ‘walk away’, while already starting above the nominal size. The same happens
somewhat less pronouncedin (b)—(d), but moreseverelyin (€). There, at asamplesizesof T = 25, 50, 100,
the LM (1) test rejects 41%, 16%, 9% at anomina size of 5%. Fortunately, as so often the case for such
x? tests, the empirical size tends to be closest to the nominal size in the neighbourhood of 5%. The port-
manteau test is valid in cases (b) and (c), and the results are similar to (&), Figure 4 only showsT' = 50.
In (d) both @ statistics start at a higher level, but drop down to their nominal size. Thetest isnot valid in
the presence of exogenous variables, and thisis borne out by the third column in Fig. 4. Thismimicsthe
well known result about the single equation Box-Pierce and Ljung-Box statistics, referred to in §4.

Figure 5 presents the power at nominal rejection frequencies for cases (g), (h) and (i). Here all tests
behavein a similar way, but note the nominal critical valuesfor LM were overrejecting. The good small
sample properties of LMF are not at the expense of power.

Even though the DGP for cases (j)—(0) are in 1(1) space, the size of the tests is largely unaffected:
the innovation process w, isisomorphic under transformation to equilibrium correction form, both in the
original and the auxiliary regression. LM isstill overrgjecting, see Fig. 6. LMF isclearly preferablein size
terms, and power is only presented for the latter in Fig. 6.

8 NON-CENTRALITY AND THE EFFECT OF DIMENSION

Mizon and Hendry (1980) showed that a useful complement to Monte Carlo experimentsfor tests of dy-
namic specification is provided by computing the asymptotic power function of the tests. This approach
was also used by Godfrey (1981). It is achieved by computing the non-centrality of the y2—distribution.
We consider the LM test of the hypothesis (4) in the system (3) with first order autocorrelation (s = 1).

Write @ = vec( R} ) and 6, for the population value of 8. The LM test will haveax? (rn?) distribution
under Hy : 6, = 0. When Hy isfalse, 8, # O, under a sequence of local alternatives around 0, LM will
have a non-central y2—distribution, see e.g. Hendry (1995, §13.2-13.3):

LM - x* (n*,T6) .

The asymptotic formulafor the non-centrality is derived in the Appendix for the Monte Carlo experiments
(g) and (h), which are used for power simulations. The obtained values are:

(@) & =0.080,
(h) §=0.212.

Therejection frequenciesat 5% from the non-central x2 distribution are graphedin Fig. 7 asP, . In com-
parison, the empirical rejection frequencies from the Monte Carlo are given aslinesP,,,.. Thelines are

10
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close together, and the theoretical results correspond to the obtained Monte Carlo results. The small dis-
crepancy, which decreases as T' gets larger, is due to the fact that nominal critical values are used in the
Monte Carlo experiment.

Another issueisthe effect of dimension on the asymptotic power. Here, both 7" and » are varied. Fig-
ure 8 showsthe asymptotic power, for n = 3(1)7 whenT = 50 and for n = 3(1)10 whenT = 100, using
aDGP similar to that in cases (g) and (h):

(h1) A, =02I+0.1E, A, =0,By=0.6I+0.1E,B; =0
(h2) A, =0.3I,A>=0,By=05I+02E, B, =0

(h3) A, =03I,A,=0By=07I,B, =0

(h4) A, =02I+0.1E, Ay =0,By=05I,B, =0

whereE isamatrix of ones. Thevarianceof e; isset totheidentity matrix (notethat the power isunaffected
by the value of the variance). Figure 8 showsthat when the equations are independent, asin case (h3) and
lesssoin (h2), power islargely uneffected as the number of equationsincreases.* Whereasthe solid lines
in the figure are arrived from the derived non-central x? distribution, the dashed lines are empirical sizes
at 5% fromaMonte Carlo experiment with A/ = 1000. Thesereport the size of case (h1) when By iszero
(i.e. inaVAR(1)). Weseethat the F-formiswell behaved, whereasthe y 2 statisticincreasingly overreject.
Mudholkar and Trivedi (1980) report that L M F' can @l so overreject, namely increasingly so in caseswhen
the number of equations (n), or number of added regressorstested for significance (p) getslarger and total
the number of included regressorsis large relative to the sample size (the degrees of freedom of error are
small). Thisbehaviour isnot evident in Fig. 8. However, repeating this with additional regressors(Cy =
I,,) will give rejection frequencies of LMF up to 10%. Further evidence of such behaviour is given in
Edgerton and Shukur (1995). A potential solution could be to adopt the normal approximation suggested
in Mudholkar and Trivedi (1980).

9 MONTE CARLO RESULTS FOR THE VECTOR HETEROSCEDASTICITY TESTS

The simulations were donein Ox, using M = 1000 replications and sample sizesT' = 50, 100, 200. The
results are presented in Table 4. At T = 50 all the y2-tests are somewhat undersized, especially in case
(e) when the cross-products are included. The GIV forms of the F-tests are seriously undersized in case
(), in contrast to HET-F and HETX-F, which overrgject. Results for the normality test E,, (see Doornik
and Hansen, 1994) are presented for comparison.

The large number of tests makes graphical presentation less convenient. Table 5 has the outcomes
regarding power, with the rejection frequency based on the nomina critical values (which, as Table 4
showed, are still somewhat out for some tests at a sample size of 100). Not surprisingly, none of the het-
eroscedasticity tests have power against autocorrelation. The heteroscedasticity in case (€3) is picked up
very well because y; isone of the regressorsin the auxiliary system. Thereisless power against ARCH
for all tests; the F-tests have more power, but most of that can be ascribed to higher nominal rejection
frequencies. The forms using cross-products do better than when using squares and levels only.

10 CONCLUSION

We have studied an F'-version of the test for vector residual autocorrelation which has been available for
some time to practitionars (in the computer program PcFiml). Initially, the tests rejected several models
which were developed using single equation methods and tests. A concern was that the test might have

4The gaps in the lines correspond to cases where numerical instability prevented computation of the non-centrality.
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wrong size, thus serioudly distorting inference. However, the Monte Carlo simulations showed that the
test has excellent size even in small samples, and good power properties. It isclearly to be preferred to the
portmanteau type statistics, and to the asymptotic (y?) form, unlessinlarger samplesthan those considered
here. Analytic results regarding the non-centrality confirmed that both tests have good asymptotic power.

The results for the vector heteroscedasticity test are less clear cut than for the vector error autocorre-
lation test. The F-forms correct lesswell, and even over-correct in some cases. When using the F-form, |
would have adight preferencefor not subtracting the degrees of freedom lost in the original system (thus
preferring HET-F and HETX-F to GIV-F and GIVX-F). The ZHET forms, which first transform the resid-
ualsto approximate normality provide a viable alternative.
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APPENDIX

This section givesthe derivations underpinning the analytical results of this chapter. The system with first
order autocorrelationis:
Y'=OW'+U', U =RU',+E,
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Q=EE, E =Y -IOW'-RY',+RIOIW",.

The concentrated log-likelihood function of this model is:
T
(. (II,R) = —5log|ﬂ|.

The partial derivatives of the concentrated log-likelihood are:

gc 11,R — ! ! — !
gl(-HaR):av(T U,)) (2@ W]vecE— [R'2 '@ W/, vecE,
(. (I, R _ , ,
91T, R) = 8v(ec(R’; (2 e (Y., — OW._,)]vecE.

Treating 2! asfixed:

L. (H R) -1 ! ro-—1 /
G (IT,R) = ’ = —2T'OWW+RQ2 oW W
n(L,R) dvec (IT') D (vec (IT')) L
+27'Ro W' W_, —-R Q2 'Ro W' | W_,,
gc (H R) —1 ! !
Gao(IT,R) = ’ —2 e (Y, Y., - OW' | Y_
22( ) dvec(R')d (vec(R')) (Y2 Yo 1Y)
+2 e (Y W II' - OW' ,W_,II')
Gio(IT, R) = { (I, R) RO oW Y —~RQ oW W, I

dvec (IT') 9 (vec (R"))
+2 o W'Y, -2 'eo WW_IT'.

Evaluatingat R = 0,andwritingU = Y - WII', U , =Y - W_,II"

g2 = gz(H,O) = [.Q_l ® Uil] vec U,
Gy = Gll(H7O) = —n-! ® VV,VV7 (17)
Gy = Glg(H7O) = N 'ow U_q,
Goy = G22(H, O) = —n1 X ULl U_,.
Using partitioned inversion, My, = Ir — W (W' W) ' W'
G2 = (Gay — G G1'Gr) ' =—020 (U My U,) . (18)

The hypothesis to test is Hy: B = 0. Denoting the constrained estimates by IT and R, we have
II' = (W'W)" W'Y and R’ = 0. The unconstrained estimates are IT, R. The derivatives of the
unconstrained likelihood are ¢;, G4, etc., where §; = ¢,(IT,0), and j; = ¢ (II, R). In addition we
write ; = vec IT' and 63 = vec R’, so that the null hypothesis can be expressed as Hy: 8, = 0. The
LM test uses derivatives of the unrestricted likelihood evaluated at restricted parameter estimates:

Using (17) and (18) thisequals:

LM = Ttr{(v—f o) oo (0 me 0 o, 17} .

Godfrey (1981) showed in a more general setting that thisis identical to an LM test on the lagged
residualsin an auxiliary regression:

Y =OW' +RU_, + E,
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with U = My, Y. Inthe absence of W swefindin LM thefirst term of the vector portmanteau statistic:

A AN L N N -1 N A A N1 . N A a\—1
Ttr (U’ U) 0o, (UL1 U,l) U, 0~TtrU'0_, (U' U) 0,0 (U' U>
The non-centrality of the LM test with population parameter 6, is:
W =-0,(6G2)7"0,=T0, {2 T (U, MwU_,)}6,.

To find the relevant probability limits it is required to solve for the DGP, for which we closely follow
Hendry et al. (1991, Ch. 3). Inthe VARX(1) case with first-order error autocorrelation the DGP is spec-
ified as:

Dy, = Ajyi1+ Aoz + wy, D =1- A,,
Uy = Bou_1+ e, e; ~N(0, Ey),
z = Ciz1+e+et+v, v,~N(0E,),

The companion form of this DGP is (the first equation lagged is used to substitute out w;):
x=1Ix, 1 +a+pBt+v, v,~N(0X),

where z; isthe 2n + ¢ = m vector (y; : y,_, : z/)', v = (€}, : 0' : v/)’,and both IT and X are m x m;
in terms of the original matrices:

D~'(A, + B,D) —-D~'ByA;, D~'(A;C, — ByAy)

o = I, 0 0 ,
0 0 Co
D! (A2E2A12+E1)D71/ 0 D71A2E2
Y = ( 0 0 0 >
B, A,D" 0 B

Next, when o« = 3 = 0, and under stationarity:

Elzw,] =X, Elz_,v,]=0,

o that
Elma] = HE[m_ial]+ 5,
Efeurl_y] = ITE[mal],
E[zix/_,] = E[ma/].

The solution can be found by vectorizing
E[zz] = HE [zyx)] IT' + X

to give
vecE[mx]] = (Lp—IT®II) ' vecX,
vecE [mx/_] = (I,®I)vecE[zx/].
We can now work out the required probability limits under the assumptionsthat D = I,,, As = 0,
E, = I,. Dropping z atogether:

E [y:y] E [ytyt'q] ) < Moo  Mo1 )
E ! = —
o1 ( Elyi—1y/] E[w-19, 1] Mig My )7
E [ytyt,fl] E [ytyt172] > < Moi  Mp2 )
E ! = —
[o12i-.] ( Elyi—1y/_1] E[w—19/_s] Miyp Mg )7
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_ [ A+ By —ByA [ E 0
H‘( I, 0 ) 2‘<0 0)'

Weused Y_; asaregressor, so replacing W with Y_, yields for the probability limits:

phmT_}oo IAI = MOlell = 1107

plimp_  T10'T = Mo — Mo Il; = £,
plimp . T7'0' U, = My — MpII, — PM)y + PMoo IT],
plimp . T7'U',Y_;, = My —PM,,,

plimy_ T 10U, = Mg —MII, —PM,, +PMy, II].

For the non-centrality, with @ = vec (R'), first solve:

plim U, My, Uy = I (Moo — M{,Myy' Mi2) ITG,
phm Yv,My_1 U_1 = —MOQHO/ + M01M1_11M12H0,.

Thisallows usto find the plim of R. Remember that R isthe coefficienton U_; in aregression of ¥ on
Y ;ad ﬁfl, S0 that:

“ “ “ “ —1
plim R = plim Y' My, U_, (plim U, My, U_l) —R.
T — o0
Under stationarity M1 = Mg and M5 = Mgy, so, writing r = vec(R') we finally find for the non-
centrality:
1/)2 = Tr' {90_1 ® [H() (Moo — MlOM(TolMOl) HOI] } r.
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Figure 1. Rejection frequenciesfor LM,LMF, case (8): y; white noise.
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Figure 2. Rejection frequenciesfor Q,Q*: case (a).
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Figure 3. Rejection frequenciesfor LM,LMF, case (€): VARX(1).
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Figure 5. Rejection frequencies (power), cases (9)—(i), T = 100, p = 0.05.
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Figure 7. Asymptotic power (P,s) and Monte Carlo power (P,,,.) for LM test: cases (g), (h).
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Table 4. Empirical size of heteroscedasticity tests, cases (b) and (e).

case (b) case (€)
T test 20% 10% 5% 1% 20% 10% 5% 1%
50 HET 0.181 0.100 0.048 0.014 0.161 0.072 0.037 0.004
50 HETX 0.182 0.091 0.058 0.009 0.136 0.049 0.014 0.001
50 HET-F 0.187 0.119 0.074 0.030 0.172 0.108 0.070 0.028
50 HETX-F 0.201 0.120 0.079 0.036 0.221 0.138 0.093 0.029
50 ZHET 0.175 0.092 0.050 0.013 0.171 0.084 0.041 0.006
50 ZHETX 0.174 0.085 0.042 0.009 0.130 0.047 0.015 0.002
50 ZHET-F  0.176 0.105 0.064 0.025 0.178 0.103 0.066 0.025
50 ZHETX-F 0.178 0.102 0.067 0.020 0.201 0.113 0.066 0.023
50 GIV-F 0.119 0.064 0.039 0.014 0.035 0.021 0.007 0.003
50 GIVX-F  0.103 0.061 0.039 0.010 0.003 0.001 0.001 0.000
50 E, 0.187 0.089 0.045 0.010 0.181 0.087 0.046 0.013
100 HET 0.180 0.092 0.051 0.015 0.165 0.088 0.047 0.015
100 HETX 0.183 0.100 0.056 0.021 0.162 0.086 0.053 0.017
100 HET-F 0.182 0.100 0.056 0.023 0.163 0.101 0.063 0.021
100 HETX-F 0.193 0.114 0.067 0.027 0.191 0.121 0.085 0.035
100 ZHET 0.182 0.090 0.046 0.013 0.170 0.085 0.050 0.012
100 ZHETX 0.166 0.097 0.051 0.017 0.157 0.080 0.043 0.012
100 ZHET-F  0.178 0.096 0.053 0.015 0.177 0.092 0.057 0.021
100 ZHETX-F 0.168 0.105 0.062 0.023 0.178 0.106 0.069 0.024
100 GIV-F 0.147 0.075 0.041 0.015 0.093 0.049 0.028 0.011
100 GIVX-F  0.138 0.082 0.048 0.021 0.083 0.048 0.026 0.011
100 E, 0.157 0.079 0.045 0.013 0.187 0.100 0.057 0.015
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Table 5. Empirical power of heteroscedasticity tests, cases (h),(el)—<€3), 7 = 100.
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test

HET
HETX
HET-F
HETX-F
ZHET
ZHETX
ZHET-F
ZHETX-F

HET
HETX
HET-F
HETX-F
ZHET
ZHETX
ZHET-F
ZHETX-F

20%
0.226
0.259
0.222
0.256
0.203
0.213
0.203
0.215
0.166

0.342
0.403
0.354
0.450
0.329
0.390
0.338
0.408
0.357

case ()

10%
0.100
0.139
0.111
0.162
0.100
0.113
0.105
0.120
0.083

5%
0.063
0.079
0.068
0.095
0.047
0.065
0.054
0.074
0.036

case (el)

0.229
0.298
0.245
0.354
0.211
0.267
0.226
0.308
0.256

0.158
0.208
0.183
0.286
0.136
0.175
0.155
0.243
0.188

1%
0.018
0.022
0.023
0.033
0.014
0.020
0.018
0.024
0.009

0.064
0.093
0.094
0.174
0.059
0.071
0.071
0.138
0.103

20%
0.977
0.976
0.978
0.983
0.965
0.967
0.971
0.973
0.997

0.489
0.589
0.500
0.638
0.454
0.580
0.458
0.613
0.721

case (e3)

10%
0.951
0.956
0.960
0.978
0.931
0.932
0.944
0.956
0.993

5%
0.909
0.936
0.935
0.961
0.894
0.891
0.918
0.939
0.988

case (e2)

0.360
0.480
0.387
0.557
0.333
0.445
0.348
0.523
0.643

0.250
0.375
0.286
0.488
0.246
0.338
0.275
0.428
0.567

1%
0.795
0.864
0.866
0.938
0.779
0.762
0.832
0.883
0.963

0.121
0.199
0.166
0.349
0.132
0.189
0.167
0.309
0.447
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