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ABSTRACT

This paper investigates tests for serial correlation and heteroscedasticity which can be applied to VARs
and simultaneous equations models.

An F -type test for vector error autocorrelation is considered. The test is conceptually simple and re-
duces to the familiar single equation test in a one-equation model. A wide range of Monte Carlo experi-
ments is set up to investigate size and power, and compare the test to the standard chi-squared and mul-
tivariate portmanteau tests. The non-centrality of the chi-squared test gives asymptotic power similar to
that found in the simulations.

Next, it is shown that under simplifying assumptions, Kelejian’s test for heteroscedasticity reduces to a
multivariate extension of White’s test, which consists of a multivariate regression of the residual variances
and correlations on the squares and cross-products of the original regressors. Various forms of the test are
considered in simulation experiments.
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1 INTRODUCTION

Following the example of earlier versions of PcGive, most computer packages now have a range of di-
agnostic tests preprogrammed. As a consequence, it is noe a routine operation to subject single equation
regression equations to a battery of tests, e.g. for autocorrelation, heteroscedasticity, normality and para-
meter constancy. The current popularity of multivariate methods, such as vector autoregressions, requires
a corresponding range of diagnostic test procedures. The subject of this paper is to investigate two such
vector tests, namely for error autocorrelation and heteroscedasticity (testing normality is considered in
a separate paper, see Doornik and Hansen, 1994). To facilitate applied research, we require acceptable
small sample behaviour, but also aim to have conceptually simple tests, which reduce to their univariate
counterparts in a single equation setting.

The single equation Lagrange multiplier (LM) test for autocorrelation developed by Breusch (1978)
and Godfrey (1978) (reviewed in Godfrey, 1988), has become a standard tool in applied econometrics. The
pervasiveness of this test procedure derives from its simplicity, wide applicability (unlike e.g. the Durbin-
Watson statistic which needs to be adjusted for dynamic models) and flexibility (it can be used to check
for any order of autocorrelation), also see Breusch and Godfrey (1981, x2.2). Finally, the F -form of the
test performs well in small samples.

The test is performed through an auxiliary regression of the residuals on their lags and the original
regressors. Then the significance of all regressors is tested. Two forms are generally computed:

(1) TR2, where T is the sample size, and R2 the coefficient of multiple correlation in the auxiliary
regression. This statistic has an asymptotic �2(s) distribution under the null of no serial correlation

1
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when s lagged residuals are used.
(2) the F -test on the lagged residuals in the auxiliary regression:

R2

1�R2

T � k � s

s
� F (s; T � k � s); (1)

where k is the number of regressors in the original regression. This modified LM procedure was
first suggested by Durbin (1970) (also see Osborn, 1981).

In both cases it is convenient to set missing observations for the lagged residuals to zero, so that no
observations are lost. Identical statistics can be obtained when using the original dependent variable as the
dependent variable in the auxiliary regression; thenR2 should be defined relative to the original regressors:
R2 = (RSS0)�1(RSS0�RSS), where RSS0 and RSS are the residual sums of squares of the original and
the auxiliary regression respectively.

Kiviet (1986) compared a large number of tests for autocorrelation in a Monte Carlo study. He found
that the F -version is better behaved in small samples and retains a correct size in an overspecified model
(where TR2 overrejects). Mizon and Hendry (1980) compared the LM form with the Wald and likelihood
ratio (LR) version in a model with first order autocorrelation (satisfying common factor restrictions) and
found evidence favouring the LM statistic. Godfrey (1981) also finds that the LM test is effective relative
to the LR test.

For testing heteroscedasticity we focus on White’s test, see White (1980), primarily because it does not
require explicit formulation of the form of heteroscedasticity. In a single equation setting the test amounts
to adding the squares and cross-products of the original regressors to an auxiliary regression of the squared
residuals on a constant term and testing the significance of these added terms. Under the null hypothesis of
homoscedasticity (normality is not required, the assumption is that the errors are IID(0; �2) with constant
kurtosis and the first eight moments exist), the squares and cross-products of the original regressors have a
coefficient of zero. In general, it will be necessary to remove redundant variables. Let s denote the number
of added terms; when there are k regressors in the original equation, including the constant term, and no
other redundancies: s = 1

2
k(k � 1). The test can be computed as TR2 from the auxiliary regression

and will have an asymptotic �2(s) distribution under the null. As with the LM test for autocorrelation, an
F -form may be considered which could potentially achieve better small sample behaviour.

White’s test is just one from a whole spectrum of tests proposed in the literature. A comparative study
of Ali and Giaccotto (1984) shows that the size of White’s test is robust against some non-normal error
distributions and is among the best tests in terms of power. Godfrey and Orme (1994) on the other hand
find significant deviations from the nominal size when the errors are generated from a log-normal or�2(2).
test. They also show that White’s heteroscedasticity test does not have power against omitted variables, and
criticise PcGive (Doornik and Hendry, 1994b) for calling this a test for functional form. (PcGive reports
two forms of the test: one involving cross-products and squares, one using squares only.)

The rest of the paper is organised as follows. I first briefly review specification tests in multivariate
systems to introduce notation. Section 3 then discusses the vector version of the LM test, and introduces
an approximate F -version, corresponding to the modified LM test for the single equation model. The
subsequent two sections consider the vector portmanteau test, and testing in the simultaneous equations
model. Then the small sample properties of these two tests are investigated in a set of Monte Carlo exper-
iments, and compared to the multivariate portmanteau test. Finally, the non-centrality of two of the power
simulations is computed.
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2 SYSTEM SPECIFICATION TESTS

Consider the n-dimensional multivariate linear regression model:

yt = �w t + vt; E [vt] = 0; E [vtv
0

t ] = 
 :

In matrix form:
Y 0 = �W 0 +V 0; (2)

in which Y 0 is n � T , W 0 is k � T and � is n � k. W 0 may include lagged dependent variables; I
assume it includes a constant term. The multivariate least squares (MLS) estimates of the coefficients and
residual covariance are:

�̂ 0 = (W 0W )
�1
W 0Y and ~
 = V̂ 0V̂ = (T � k) ;

where the residuals are defined by:
V̂ = Y �W�̂

0

:

When vt � N (0;
), the maximum likelihood estimates are �̂ 0 as before, and 
̂ = T�1V̂ 0V̂ .
Tests whether columns of � are zero can be based on the Wald, LM and LR principle. Partitioning

the coefficients as � = (�1 : �2), andW = (W1 :W2) accordingly, we may write this test as:

H0 : �2 = 0 versus H1 : �2 6= 0;

with the maintained hypothesis given in (2). The matrices �i are n � ki, so that k = k1 + k2. The
likelihood ratio is:

�̂ =

����V̂ 0V̂

��� ���V̂ 0

0
V̂0

����1�T=2 ;
where V̂0 are the residuals from regressing Y on W1 (that is, under H0), whereas V̂ results from the
unrestricted system (2). Minus twice the logarithm of �̂ is asymptotically �2(nk2) distributed under the
null hypothesis. Anderson gives small-sample correction factors for the �2 test; Anderson (1984, x8.4)
and Rao (1973, x8b.2) derive the exact distribution of �2=T for fixedW , which is called the U -test.1 The
corresponding LM-test is:

�̂ = T tr

��
V̂ 0

0V̂0 � V̂ 0V̂
��
V̂ 0

0V̂0

�
�1
�
;

which is also asymptotically �2(nk2) distributed under the null hypothesis.
Based on these, it is convenient to define two R2-type measures of goodness of fit:

R2

r = 1�
���V̂ 0V̂

��� ���V̂ 0

0
V̂0

����1
R2

m = 1� 1
n tr

��
V̂ 0V̂

��
V̂ 0

0
V̂0

�
�1
�
:

In a one-equation system (n = 1), or whenV is diagonal, these two measures are identical. In the first case
they correspond to the traditionalR2 if the constant term is the only variable excluded in the specification
test.

1Guilkey (1974) and Deschamps (1994) consider this form of the vector error autocorrelation test, but only in models excluding
lagged dependent variables.
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3 VECTOR ERROR AUTOCORRELATION TESTS

Consider the augmented system with vector autoregressive errors:

Y 0 = �W 0 +U 0 where U 0 =

sX
i=1

RiU
0

�i +V
0: (3)

We wish to test the null hypothesis:

H0 : R1 = � � � = Rs = 0: (4)

Godfrey (1981) showed that this test can be implemented by testing the significance of the lagged residuals
(obtained under the null hypothesis) in the auxiliary system:

Y 0 = �W 0 +R1Û
0

�1
+ � � �+RsÛ

0

�s +V
0: (5)

This is most easily implemented by partialling out lagged residuals from the original regressors, and re-
estimating the original system using the new regressors. Again we set missing observations to zero. God-
frey also showed that testing for vector MA(s) residuals is locally equivalent and leads to the same proce-
dure.

When V̂ denotes the residuals from the auxiliary regression, and V̂0 = Û the residuals of the system
under the null, both R2

m and R2

r of the previous section can be computed. The �2 form of the LM test is
given by:

LM = TnR2

m; (6)

with an asymptotic �2(sn2) distribution.
Using an F -approximation to the likelihood-ratio form of the LM test which is due to Rao (see Rao,

1973, x8c.5, or Anderson, 1984, x8.5.4):

LMF =
1� �1�R2

r

�1=r
(1�R2

r)
1=r

:
Nr � q

np
; (7)

with:

r =

�
n2p2 � 4

n2 + p2 � 5

�1/2
; q = 1

2
np� 1; N = T � k � p� 1

2
(n� p+ 1)

and:
k number of regressors in original system,
n dimension of system,
T number of observations,
p number of regressors added in auxiliary system (= ns):

LMF has an approximate F (np;Ns � q) distribution (the F -approximation is exact for fixed regressors
when p � 2 or n � 2).

A larger number of transformations of the LM and LR statistics for testing the significance of the lagged
residuals is considered by Edgerton and Shukur (1995).

Both LM and LMF have the attractive property of reducing to the single equation LM and modified LM
tests: n = 1 in (7) results in p = s, r = 1, q = 1

2
s� 1, N = T � k� 1

2
s� 1 so thatNr� q = T � k� s

and (7) reduces to (1). As in the univariate case we may use an auxiliary regression with Û replacingY
as regressand.
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Testing in the simultaneous equations model (SEM) proceeds similarly. Under the null hypothesis the
model is:

BY 0 +CW 0 = H 0; (8)

with

H 0 =
sX

i=1

RiH
0

�i +E
0: and H0 : R1 = � � � = Rs = 0;

where the n� n matrix B is non-singular and has unity on the diagonal. Assume the model is estimated
by full information maximum likelihood (FIML), and the FIML residuals Ĥ have been obtained, together
with the restricted reduced form (RRF) residuals V̂ 0

0
= B̂�1Ĥ 0. Next, to test for vector error autocorre-

lation of order s, estimate the auxiliary model

BY 0 +CW 0 �R1Ĥ
0

�1
� � � � �RsĤ

0

�s = E 0 (9)

by FIML,2 giving structural residuals Ê , and reduced form residuals V̂ 0 = B̂�1Ê 0. The V̂ 0

0
and V̂ 0 thus

created can now be used to computeR2

m andR2

r , and from that the �2 and F forms of the LM test for the
hypothesis R1 = � � � = Rs = 0. When modelling starts with the URF, testing for autocorrelation will
also start there.

4 VECTOR PORTMANTEAU TEST

In the Monte Carlo comparisons we also consider two forms of the multivariate portmanteau statistic, as in-
troduced by Hosking (1980). This statistic serves as a goodness-of-fit test in multivariate stationary ARMA
processes, and is an extension to the tests of Box and Pierce (1970) and Ljung and Box (1978).

Define:

Ĉrs =
1

T
Û 0

�rÛ�s;

with Û�i the T�n residual matrix i periods lagged, where missing values are set to zero. Then Ĉ00 = 
̂ .
The vector portmanteau statistic is:

Q(s) = T

sX
j=1

tr
�
Ĉ 0

0jĈ
�1

00
Ĉ0jĈ

�1

00

�
:

Hosking argues that, as in the univariate case, a modified form might be better behaved in small samples:

Q�(s) = T 2

sX
j=1

1

T � j
tr
�
Ĉ 0

0jĈ
�1

00
Ĉ0jĈ

�1

00

�
:

For an n-dimensional VAR with lag lengthm, both statistics are asymptotically�2(n2(s�m)) distributed
under the assumptions of the test (one of them being that s is large: s = O(T 1=2)). Ahn (1988) showed
that the test statistic is also valid in a stationary VAR with parameter restrictions (in that case n2m should
be replaced by the appropriate number of estimated coefficients). However, as Breusch and Pagan (1980)
argue, the portmanteau statistic is invalid in a model including both non-modelled and lagged endogenous
variables. Monte Carlo evidence in Kiviet (1986) supports this.

2As pointed out by Godfrey (1988), since the lagged residuals enter unrestrictedly, Y 0 andW 0 can be replaced by the residuals
from regression on the lagged residuals, resulting in the same model structure as the restricted model.
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5 VECTOR HETEROSCEDASTICITY TEST

The objective here is to test the residuals of the system (2) for heteroscedasticity:

H0 : E [vtv
0

t ] = 
 :

Kelejian (1982) extended White’s test to the simultaneous equations framework. However, the test has
not found widespread application, probably because it was considered rather cumbersome (see e.g. the
footnote on p.187 in Godfrey, 1988).

In a two-equation system Kelejian’s procedure would amount to applying GLS to the following regres-
sion equation:0BBBBBBBBBBBBBB@

v̂2
11

...
v̂2T1
v̂2
12

...
v̂2T2
v̂11v̂12

...
v̂T1v̂T2

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBB@

1 0 0
...

1 0 0
0 1 0

...
0 1 0
0 0 1

...
0 0 1

1CCCCCCCCCCCCCA

 
!2
1

!2
2

!12

!
+

 
P1 0 0
0 P2 0
0 0 P3

! 
�1

�2

�3

!
+ �: (10)

In this expression, the notation becomes more compact as we move from left to right,Pi is (3T � pi),�i

is (pi � 1) and � is (3T � 1). Each Pi could consist of different functions of the regressors wt. Taking
deviations from means (10) may be written as

vec
�
�	 0
�
= �P��+ � (11)

in which
�	 0 =

�
� 1 � � � � T

�
; � t =  t � � t;  t = vech
t:

Writing g = 1

2
n (n+ 1) and p� =

P
pi, vec

�
�	 0
�

is of dimension (gT � 1) and � is (p� � 1). Under
the null hypothesis of homoscedasticity:

E [�] = 0; V [�] = V [ t]
 IT :
Kelejian suggested to test for �̂ = 0 in (11) using:

\V [ t] =
1

T
�	 0 �	 : (12)

Using a common set of regressors: �Pi = �P , it is easy to show that the test procedures simplifies to a
multivariate regression of �	 on �P . Writing �P� = Ir 
 �P , �P is (T � h) we find:

�̂ =

��
Ir 
 �P

�0 �
\V [ t]
 IT

�
�1 �

Ir 
 �P
���1 �

Ir 
 �P
�0 �
\V [ t]
 IT

�
�1

vec
�
�	 0
�
;

and

�̂0
�
�P�0dV [�]�P�

�
�̂ = vec

�
�	 0
�0�
\V [ t]

�1


 �P
�
�P 0�P

��1 �P 0� vec
�
�	 0
�

= tr

�
\V [ t]

�1

�	 0�P
�
�P 0�P

��1 �P 0 �	�

= T tr
n�
�	 0 �	

��1 �	 0�P
�
�P 0�P

�
�1 �P 0 �	

o
:

(13)
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The last line uses (12). The test statistic is asymptotically �2 (gh) distributed.
So, writing (11) in system form, under the assumption (12):

�	 0 = ��P
0

+E 0 (14)

with vec(�0) = �, shows that (13) is an LM test for vec(�0) = 0 in this system. This test may be written
asLM = TgR2

m. If pt (row t ofP) consists of the originalwit’s and their squares and cross-products, this
test is the system analogue of White (1980)’s test for heteroscedasticity. For numerical accuracy reasons,
it might be advisable to estimate the system (14) as it stands: first partial out the constant term, and then
estimate the system (or better, use a QR-based method).

Analogous to the vector autocorrelation test, we use the F-approximation (7):

LMF =
1� �1�R2

r

�1=r�
1�R2

r

�1=r :
Nr � q

gh
gapp F (gh;Ns� q); (15)

with k, n, p in (7) replaced by k1, g, h:

k1 degrees of freedom in restricted auxiliary system, see Table 1
g dimension of auxiliary system,
h number of regressors tested for exclusion.

Assuming that wt includes a column of ones for the intercept, and none of the wit’s are redundant
when squared, we have h = 2(k�1) for the heteroscedasticity test, and h = 1

2
k(k�1)+2(k�1) for the

form involving all cross-products. Since n is the dimensionality of the original system: g = 1

2
n(n+ 1).

We may wish to consider a variant of this test. Under the null hypothesis of multivariate normal-
ity, we can transform the residuals to independent normal. Write 
 = TT 0 and vt � N (0;
) then
ut = T�1vt � N (0; I ). So the tests could be based on the transformed residuals ut, omitting the cross-
products, and hence reducing the dimensionality of the test. For T we use a symmetric square root as in
Doornik and Hansen (1994); the resulting tests are labelled ZLM and ZLMF.

In all, we consider 10 forms of the heteroscedasticity test, listed in Table 1. The last two entries in the
table also subtract the degrees of freedom of the system which is tested for heteroscedasticity. This is the
procedure used in PcGive.

Table 1. Forms of the heteroscedasticity test.

form g k1 h

HET LM
1

2
n (n+ 1) 1 2 (k � 1)

HETX LM
1

2
n (n+ 1) 1 1

2
k (k � 1) + 2 (k � 1)

ZHET ZLM n 1 2 (k � 1)

ZHETX ZLM n 1 1

2
k (k � 1) + 2 (k � 1)

HET-F LMF
1

2
n (n+ 1) 1 2 (k � 1)

HETX-F LMF
1

2
n (n+ 1) 1 1

2
k (k � 1) + 2 (k � 1)

ZHET-F ZLMF n 1 2 (k � 1)

ZHETX-F ZLMF n 1 1

2
k (k � 1) + 2 (k � 1)

GIV-F LMF
1

2
n (n+ 1) 1 + k 2 (k � 1)

GIVX-F LMF
1

2
n (n+ 1) 1 + k 1

2
k (k � 1) + 2 (k � 1)
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6 MONTE CARLO DESIGN

The Monte Carlo design is based on the n-variate version of the PcNaive data generation process (DGP),
see Hendry, Neale and Ericsson (1991):

yt = A0yt +A1yt�1 +A2zt + ut;

ut = B0ut�1 + et +B1et�1;

zt = C0zt�1 + c1 + c2t+ vt:

(16)

The vectors yt;ut; et aren�1, so that the coefficient matricesA0;A1;B0 are n�n. I �A0 corresponds
toB in (8). The zt vector is q�1. The zs are always fixed for each experiment, and 20 initial observations
of the DGP are discarded (19 or 18 when one or two lags of y are used in the model).

All experiments have a DGP with n = q = 3, and always have A0 = 0;C0 = �1; c1 = c2 = 0 and
vt � N(0; I ), et � N(0;�1). The on coefficient matrices �i are:

�0 =

0@ 0:3 0:1 0:1
0:1 0:3 0:1
0:1 0:1 0:3

1A ; �1 =

0@ 0:5 0:1 0
0:1 0:5 0
0 0 0:3

1A ; �2 =

0@ 0:5 0:3 0
0:3 0:7 0
0 0 0:7

1A :

Table 2 summarizes the DGPs and models used in the Monte Carlo experiments for the autocorrelation
tests. The DGPs in Table 2 are stationary: all the eigenvalues of the companion matrix are inside the unit
circle.

Table 2. Design of experiments for the autocorrelation test.

case DGP Model description
(a) A1 = A2 = B0 = B1 = 0 1 ytwhite noise
(b) A1 = 0;A2 = I ;B0 = B1 = 0 1; zt no dynamics
(c) A1 = �0;A2 = B0 = B1 = 0 1;yt�1 VAR(1)
(d) as (c) 1;yt�1;yt�2 overspecified dynamics
(e) A1 = �0;A2 = I ;B0 = B1 = 0 1;yt�1; zt VARX(1)
(f) as (e) 1;yt�1;yt�2; zt overspecified dynamics
(g) A1 = �0;A2 = 0;B0 = �1;B1 = 0 1;yt�1 power: autocorrelation
(h) A1 = �0;A2 = 0;B0 = �2;B1 = 0 1;yt�1 power: autocorrelation
(i) A1 = �0;A2 = 0;B0 = 0;B1 = �1 1;yt�1 power: moving average

The heteroscedasticity experiments use cases (b) and (e) from Table 2 for size. The power experiments
are based on case (h), and on case (e) but with ARCH or heteroscedastic errors:

(e1) et � N(0;�1 + �1et�1e 0t�1�
0

1) ARCH,
(e2) et � N(0;�1 + �2et�1e 0t�1�

0

2
) ARCH,

(e3) et � N(0;�1 + �1yt�1y 0t�1�
0

1) heteroscedasticity.

In the second set of experiments (autocorrelation tests only), we use the DGP on which the tutorials
for PcFiml are based (see Doornik and Hendry, 1994a, pp. 132–133). In terms of (16) this corresponds
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for the y -equation to:

A0 =

0BB@
0 0 0 0
0:1 0 0:5 0
0 0 0 �0:3
0 0 0 0

1CCA ; A1 =

0BB@
0:9 0 0 0:1
0 0:75 �0:25 0
0 0:2 0:8 0
0 0 0 1

1CCA ; A2 = I ;

and for the z -equation:

C0 = 0; c0
1
= (0:01; 0:02; 0:02; 0:01) ; c0

2
= (�0; 0; 0; 0) ;

with error distributions:

B0 =

0BB@
0 0 0 0
0 �1 0 0
0 0 �2 0
0 0 0 0

1CCA ;B1 = 0; et � N

26640;

0BB@
0:06 0 0 0
0 0:015 0:057 0
0 0:057 0:05 0
0 0 0 0:15

1CCA
3775 ; vt = 0:

Table 3 specifies the values chosen for �i in the DGP, and formulates the specifications used to model
the DGP. M1 is the unrestricted reduced form, which can be estimated by multivariate least squares. M2

is a simultaneous equations model which has M1 as its URF, and will be estimated by FIML. The DGPs
in Table 3 have two roots on the unit circle.

Table 3. DGPs and models (M1;M2) for the second group of experiments.

case DGP Model description
(j) �0 = 0:004; �1 = �2 = 0 M1 size
(k) as (i) M2 size
(l) �0 = 0:004; �1 = 0:5; �2 = 0:4 M1 power
(m) as (k) M2 power
(n) �0 = 0:004; �1 = 0:25; �2 = 0:2 M1 power
(o) as (m) M2 power

(M1) yt = �1yt�1 + �+ �t+ ut

(M2)

0BB@
1 0 0 0


1 1 
2 0

0 0 1 
3
0 0 0 1

1CCAyt =
0BB@

4 0 0 
5
0 
6 
7 0

0 
8 
9 0

0 0 0 
10

1CCAyt�1 +�+

0BB@

11
0

0

0

1CCA t+ ut

7 MONTE CARLO RESULTS FOR THE VECTOR AUTOCORRELATION TESTS

The Monte Carlo results are all based on M = 1000 replications and only presented graphically3. The
reported simulations were done in Ox version 0.50 (see Doornik, 1996), using the internal random number
generator.

3In an attempt to circumvent a drawback of many presentations of Monte Carlo results, described by Mizon and Hendry (1980)
as ‘tabulation strains the memory without producing much insight’.
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The first case considered is that of regressing a white noise vector on a constant term, labelled case
(a). The results are in Figs. 1 and 2, showing the empirical rejection frequencies for the LM and LMF
tests at sample sizes T = 25; 50; 100. The approximate Monte Carlo standard error, defined as

pfp(1�
p)=Mg, where p is the tail probability of interest, is in this case (0:013; 0:009; 0:007; 0:003) for p =

(0:2; 0:1; 0:05; 0:01). The tests involved are for first up to fifth order vector error autocorrelation (Fig. 1)
and both forms of the portmanteau statistic (Fig. 2). We see that the size of the LMF test remains some-
what more constant as we increase the AR-order. Also note that the size of the small sample correctedQ�

test behaves much better for increasing lag length. This is all the more important because these tests are
usually performed with long lag lengths.

In cases (b)–(f), the LM and LMF tests behave in a similar fashion across cases. As a typical example
we present in Fig. 3 the results of case (e), a first order VAR with 3 exogenous variables. The size of the
F -type LMF-test remains constant and remarkably close to the nominal size. In contrast, the size of the
�2 form has a tendency to ‘walk away’, while already starting above the nominal size. The same happens
somewhat less pronounced in (b)–(d), but more severely in (e). There, at a sample sizes ofT = 25; 50; 100,
the LM(1) test rejects 41%; 16%; 9% at a nominal size of 5%. Fortunately, as so often the case for such
�2 tests, the empirical size tends to be closest to the nominal size in the neighbourhood of 5%. The port-
manteau test is valid in cases (b) and (c), and the results are similar to (a), Figure 4 only shows T = 50.
In (d) both Q statistics start at a higher level, but drop down to their nominal size. The test is not valid in
the presence of exogenous variables, and this is borne out by the third column in Fig. 4. This mimics the
well known result about the single equation Box-Pierce and Ljung-Box statistics, referred to in x4.

Figure 5 presents the power at nominal rejection frequencies for cases (g), (h) and (i). Here all tests
behave in a similar way, but note the nominal critical values for LM were overrejecting. The good small
sample properties of LMF are not at the expense of power.

Even though the DGP for cases (j)–(o) are in I(1) space, the size of the tests is largely unaffected:
the innovation process ut is isomorphic under transformation to equilibrium correction form, both in the
original and the auxiliary regression. LM is still overrejecting, see Fig. 6. LMF is clearly preferable in size
terms, and power is only presented for the latter in Fig. 6.

8 NON-CENTRALITY AND THE EFFECT OF DIMENSION

Mizon and Hendry (1980) showed that a useful complement to Monte Carlo experiments for tests of dy-
namic specification is provided by computing the asymptotic power function of the tests. This approach
was also used by Godfrey (1981). It is achieved by computing the non-centrality of the �2–distribution.
We consider the LM test of the hypothesis (4) in the system (3) with first order autocorrelation (s = 1).

Write � = vec(R01) and �p for the population value of �. The LM test will have a �2
�
n2
�

distribution
under H0 : �p = 0. When H0 is false, �p 6= 0, under a sequence of local alternatives around 0, LM will
have a non-central �2–distribution, see e.g. Hendry (1995, x13.2–13.3):

LM
e

�2
�
n2; T �

�
:

The asymptotic formula for the non-centrality is derived in the Appendix for the Monte Carlo experiments
(g) and (h), which are used for power simulations. The obtained values are:

(g) � = 0:080;

(h) � = 0:212:

The rejection frequencies at 5% from the non-central�2 distribution are graphed in Fig. 7 as Pas. In com-
parison, the empirical rejection frequencies from the Monte Carlo are given as lines Pmc. The lines are
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close together, and the theoretical results correspond to the obtained Monte Carlo results. The small dis-
crepancy, which decreases as T gets larger, is due to the fact that nominal critical values are used in the
Monte Carlo experiment.

Another issue is the effect of dimension on the asymptotic power. Here, both T and n are varied. Fig-
ure 8 shows the asymptotic power, for n = 3(1)7 when T = 50 and for n = 3(1)10 when T = 100, using
a DGP similar to that in cases (g) and (h):

(h1) A1 = 0:2I + 0:1E ;A2 = 0;B0 = 0:6I + 0:1E ;B1 = 0
(h2) A1 = 0:3I ;A2 = 0;B0 = 0:5I + 0:2E ;B1 = 0
(h3) A1 = 0:3I ;A2 = 0;B0 = 0:7I ;B1 = 0
(h4) A1 = 0:2I + 0:1E ;A2 = 0;B0 = 0:5I ;B1 = 0

where E is a matrix of ones. The variance of et is set to the identity matrix (note that the power is unaffected
by the value of the variance). Figure 8 shows that when the equations are independent, as in case (h3) and
less so in (h2), power is largely uneffected as the number of equations increases.4 Whereas the solid lines
in the figure are arrived from the derived non-central �2 distribution, the dashed lines are empirical sizes
at 5% from a Monte Carlo experiment withM = 1000. These report the size of case (h1) whenB0 is zero
(i.e. in a VAR(1)). We see that theF -form is well behaved, whereas the�2 statistic increasingly overreject.
Mudholkar and Trivedi (1980) report thatLMF can also overreject, namely increasingly so in cases when
the number of equations (n), or number of added regressors tested for significance (p) gets larger and total
the number of included regressors is large relative to the sample size (the degrees of freedom of error are
small). This behaviour is not evident in Fig. 8. However, repeating this with additional regressors (C0 =

In) will give rejection frequencies of LMF up to 10%. Further evidence of such behaviour is given in
Edgerton and Shukur (1995). A potential solution could be to adopt the normal approximation suggested
in Mudholkar and Trivedi (1980).

9 MONTE CARLO RESULTS FOR THE VECTOR HETEROSCEDASTICITY TESTS

The simulations were done in Ox, using M = 1000 replications and sample sizes T = 50; 100; 200. The
results are presented in Table 4. At T = 50 all the �2-tests are somewhat undersized, especially in case
(e) when the cross-products are included. The GIV forms of the F-tests are seriously undersized in case
(e), in contrast to HET-F and HETX-F, which overreject. Results for the normality test Ep (see Doornik
and Hansen, 1994) are presented for comparison.

The large number of tests makes graphical presentation less convenient. Table 5 has the outcomes
regarding power, with the rejection frequency based on the nominal critical values (which, as Table 4
showed, are still somewhat out for some tests at a sample size of 100). Not surprisingly, none of the het-
eroscedasticity tests have power against autocorrelation. The heteroscedasticity in case (e3) is picked up
very well because y1 is one of the regressors in the auxiliary system. There is less power against ARCH
for all tests; the F-tests have more power, but most of that can be ascribed to higher nominal rejection
frequencies. The forms using cross-products do better than when using squares and levels only.

10 CONCLUSION

We have studied an F -version of the test for vector residual autocorrelation which has been available for
some time to practitionars (in the computer program PcFiml). Initially, the tests rejected several models
which were developed using single equation methods and tests. A concern was that the test might have

4The gaps in the lines correspond to cases where numerical instability prevented computation of the non-centrality.
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wrong size, thus seriously distorting inference. However, the Monte Carlo simulations showed that the
test has excellent size even in small samples, and good power properties. It is clearly to be preferred to the
portmanteau type statistics, and to the asymptotic (�2) form, unless in larger samples than those considered
here. Analytic results regarding the non-centrality confirmed that both tests have good asymptotic power.

The results for the vector heteroscedasticity test are less clear cut than for the vector error autocorre-
lation test. The F-forms correct less well, and even over-correct in some cases. When using the F-form, I
would have a slight preference for not subtracting the degrees of freedom lost in the original system (thus
preferring HET-F and HETX-F to GIV-F and GIVX-F). The ZHET forms, which first transform the resid-
uals to approximate normality provide a viable alternative.
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APPENDIX

This section gives the derivations underpinning the analytical results of this chapter. The system with first
order autocorrelation is:

Y 0 = �W 0 +U 0; U 0 = RU 0

�1 +E
0;
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so

 = E 0E ; E 0 = Y 0 ��W 0 �RY 0

�1
+R�W 0

�1
:

The concentrated log-likelihood function of this model is:

`c (� ;R) = �T
2
log j
 j :

The partial derivatives of the concentrated log-likelihood are:

g1(� ;R) =
`c (� ;R)
@ vec (� 0)

=
�

�1 
W 0

�
vecE � �R0
�1 
W 0

�1

�
vecE ;

g2(� ;R) =
`c (� ;R)
@ vec (R0)

=
�

�1 
 �Y 0

�1
��W 0

�1

��
vecE :

Treating
�1 as fixed:

G11(� ;R) =
`c (� ;R)

@ vec (� 0) @ (vec (� 0))
0

= �
�1 
W 0W +R0
�1 
W 0

�1
W

+
�1R 
W 0W�1 �R0
�1R 
W 0

�1
W�1;

G22(� ;R) =
`c (� ;R)

@ vec (R0) @ (vec (R0))
0

= �
�1 
 �Y 0

�1
Y�1 ��W 0

�1
Y�1

�
+
�1 
 �Y 0

�1
W�1�

0 ��W 0

�1
W�1�

0
�
;

G12(� ;R) =
`c (� ;R)

@ vec (� 0) @ (vec (R0))
0 = R0
�1 
W 0

�1
Y�1 �R0
�1 
W 0

�1
W�1�

0

+
�1 
W 0Y�1 �
�1 
W 0W�1�
0:

Evaluating at R = 0, and writingU = Y �W� 0, U�1 = Y�1 �W�1�
0:

g2 = g2(� ; 0) =
�

�1 
U 0

�1

�
vecU ;

G11 = G11(� ; 0) = �
�1 
W 0W ;

G12 = G12(� ; 0) = 
�1 
W 0U�1;

G22 = G22(� ; 0) = �
�1 
U 0

�1
U�1:

(17)

Using partitioned inversion,MW = IT �W (W 0W )
�1
W 0:

G22 =
�
G22 �G21G

�1

11
G12

��1
= �
 
 �U 0

�1
MWU�1

�
�1
: (18)

The hypothesis to test is H0: R = 0. Denoting the constrained estimates by �̂ and R̂, we have
�̂ 0 = (W 0W )

�1
W 0Y and R̂0 = 0. The unconstrained estimates are ~� , ~R. The derivatives of the

unconstrained likelihood are g1, G11 etc., where ĝ1 = g1(�̂ ; 0), and ~g1 = g1( ~� ; ~R). In addition we
write �1 = vec� 0 and �2 = vecR0, so that the null hypothesis can be expressed as H0: �2 = 0. The
LM test uses derivatives of the unrestricted likelihood evaluated at restricted parameter estimates:

LM = �ĝ0
2
Ĝ22ĝ2:

Using (17) and (18) this equals:

LM = T tr

��
Û 0Û

�
�1

Û 0Û�1

�
Û 0

�1MW Û�1

�
�1

Û 0

�1Û

�
:

Godfrey (1981) showed in a more general setting that this is identical to an LM test on the lagged
residuals in an auxiliary regression:

Y 0 = �W 0 +RÛ
0

�1
+E 0;
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with Û =MWY . In the absence ofW s we find in LM the first term of the vector portmanteau statistic:

T tr
�
Û 0Û

�
�1

Û 0Û�1

�
Û 0

�1Û�1

�
�1

Û 0

�1Û � T tr Û 0Û�1

�
Û 0Û

�
�1

Û 0

�1Û
�
Û 0Û

�
�1

The non-centrality of the LM test with population parameter �p is:

 2 = ��0p
�
G22

�
�1

�p = T�0p
�

�1 
 T�1

�
U 0

�1
MWU�1

�	
�p:

To find the relevant probability limits it is required to solve for the DGP, for which we closely follow
Hendry et al. (1991, Ch. 3). In the VARX(1) case with first-order error autocorrelation the DGP is spec-
ified as:

Dy t = A1yt�1 +A2zt + ut; D = I �A0;

ut = B0ut�1 + et; et � N (0;E1) ;

zt = C0zt�1 + c1 + c2t+ vt; vt � N (0;E2) ;

The companion form of this DGP is (the first equation lagged is used to substitute out ut):

xt = �x t�1 +�+ �t+ �t; �t � N (0;�) ;

where xt is the 2n+ q = m vector (y 0t : y
0

t�1 : z 0t )
0, �t = (�0t : 0

0 : v 0t)
0, and both� and� are m�m;

in terms of the original matrices:

� =

0@ D�1 (A1 +B0D) �D�1B0A1 D�1 (A2C0 �B0A2)

In 0 0
0 0 C0

1A ;

� =

0@ D�1 (A2E2A
0

2
+E1)D

�10 0 D�1A2E2

0 0 0
E2A

0

2D
�10 0 E2

1A :

Next, when � = � = 0, and under stationarity:

E [xt�
0

t] = � ; E [xt�1�
0

t] = 0;

so that
E [xtx

0

t ] = �E [xt�1x
0

t ] +� ;

E
�
xtx

0

t�1

�
= �E [xtx

0

t ] ;

E
�
xt�1x

0

t�1

�
= E [xtx

0

t ] :

The solution can be found by vectorizing

E [xtx
0

t ] =�E [xtx
0

t ]�
0 +�

to give
vecE [xtx

0

t ] = (Im2�� 
� )
�1

vec� ;

vecE
�
xtx

0

t�1

�
= (Im
� ) vecE [xtx

0

t ] :

We can now work out the required probability limits under the assumptions that D = In, A2 = 0,
E2 = Iq . Dropping zt altogether:

E [xtx
0

t ] =

�
E [yty

0

t ] E
�
yty

0

t�1

�
E [yt�1y

0

t ] E
�
yt�1y

0

t�1

� � =

�
M00 M01

M10 M11

�
;

E
�
xtx

0

t�1

�
=

�
E
�
yty

0

t�1

�
E
�
yty

0

t�2

�
E
�
yt�1y

0

t�1

�
E
�
yt�1y

0

t�2

� � =

�
M01 M02

M11 M12

�
;
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and

� =

�
A1 +B0 �B0A1

In 0

�
; � =

�
E1 0
0 0

�
:

We usedY�1 as a regressor, so replacingW with Y�1 yields for the probability limits:

plimT!1 �̂ = M01M
�1

11
= �0;

plimT!1 T�1Û 0Û = M00 �M01�
0

0
= 
0;

plimT!1 T�1Û 0

�1
Û�1 = M11 �M12�

0

0
� PM

0

12
+ PM00�

0

0
;

plimT!1 T�1Û 0

�1
Y�1 = M11 � PM

0

12
;

plimT!1 T�1Û 0Û�1 = M01 �M12�
0

0 � PM
0

11 + PM12�
0

0:

For the non-centrality, with � = vec (R0), first solve:

plim Û 0

�1
MY

�1
Û�1 = �0

�
M00 �M

0

12
M
�1

11
M12

�
� 0

0
;

plimY 0MY
�1
Û�1 = �M02�

0

0 +M01M
�1

11
M12�

0

0:

This allows us to find the plim of R̂. Remember that R̂ is the coefficient on Û�1 in a regression ofY on
Y�1 and Û�1, so that:

plim
T!1

R̂ = plimY 0MY
�1
Û�1

�
plim Û 0

�1
MY

�1
Û�1

�
�1

= R:

Under stationarity M11 = M00 and M12 = M01, so, writing r = vec(R0) we finally find for the non-
centrality:

 2 = T r0
�

�1

0

 ��0

�
M00 �M10M

�1

00
M01

�
� 0

0

�	
r:
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Figure 1. Rejection frequencies for LM,LMF, case (a): yt white noise.
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Figure 2. Rejection frequencies for Q,Q�: case (a).
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Figure 3. Rejection frequencies for LM,LMF, case (e): VARX(1).

Figure 4. Rejection frequencies for Q,Q�: cases (b),(c),(e).
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Figure 5. Rejection frequencies (power), cases (g)–(i), T = 100, p = 0:05.
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Figure 6. Rejection frequencies for LM,LMF, cases (j),(k), T = 100.
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Figure 7. Asymptotic power (Pas) and Monte Carlo power (Pmc) for LM test: cases (g), (h).
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Table 4. Empirical size of heteroscedasticity tests, cases (b) and (e).

case (b) case (e)

T test 20% 10% 5% 1% 20% 10% 5% 1%

50 HET 0:181 0:100 0:048 0:014 0:161 0:072 0:037 0:004

50 HETX 0:182 0:091 0:058 0:009 0:136 0:049 0:014 0:001

50 HET-F 0:187 0:119 0:074 0:030 0:172 0:108 0:070 0:028

50 HETX-F 0:201 0:120 0:079 0:036 0:221 0:138 0:093 0:029

50 ZHET 0:175 0:092 0:050 0:013 0:171 0:084 0:041 0:006

50 ZHETX 0:174 0:085 0:042 0:009 0:130 0:047 0:015 0:002

50 ZHET-F 0:176 0:105 0:064 0:025 0:178 0:103 0:066 0:025

50 ZHETX-F 0:178 0:102 0:067 0:020 0:201 0:113 0:066 0:023

50 GIV-F 0:119 0:064 0:039 0:014 0:035 0:021 0:007 0:003

50 GIVX-F 0:103 0:061 0:039 0:010 0:003 0:001 0:001 0:000

50 Ep 0:187 0:089 0:045 0:010 0:181 0:087 0:046 0:013

100 HET 0:180 0:092 0:051 0:015 0:165 0:088 0:047 0:015

100 HETX 0:183 0:100 0:056 0:021 0:162 0:086 0:053 0:017

100 HET-F 0:182 0:100 0:056 0:023 0:163 0:101 0:063 0:021

100 HETX-F 0:193 0:114 0:067 0:027 0:191 0:121 0:085 0:035

100 ZHET 0:182 0:090 0:046 0:013 0:170 0:085 0:050 0:012

100 ZHETX 0:166 0:097 0:051 0:017 0:157 0:080 0:043 0:012

100 ZHET-F 0:178 0:096 0:053 0:015 0:177 0:092 0:057 0:021

100 ZHETX-F 0:168 0:105 0:062 0:023 0:178 0:106 0:069 0:024

100 GIV-F 0:147 0:075 0:041 0:015 0:093 0:049 0:028 0:011

100 GIVX-F 0:138 0:082 0:048 0:021 0:083 0:048 0:026 0:011

100 Ep 0:157 0:079 0:045 0:013 0:187 0:100 0:057 0:015
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Table 5. Empirical power of heteroscedasticity tests, cases (h),(e1)–(e3), T = 100.

case (h) case (e3)

test 20% 10% 5% 1% 20% 10% 5% 1%

HET 0:226 0:100 0:063 0:018 0:977 0:951 0:909 0:795

HETX 0:259 0:139 0:079 0:022 0:976 0:956 0:936 0:864

HET-F 0:222 0:111 0:068 0:023 0:978 0:960 0:935 0:866

HETX-F 0:256 0:162 0:095 0:033 0:983 0:978 0:961 0:938

ZHET 0:203 0:100 0:047 0:014 0:965 0:931 0:894 0:779

ZHETX 0:213 0:113 0:065 0:020 0:967 0:932 0:891 0:762

ZHET-F 0:203 0:105 0:054 0:018 0:971 0:944 0:918 0:832

ZHETX-F 0:215 0:120 0:074 0:024 0:973 0:956 0:939 0:883

Ep 0:166 0:083 0:036 0:009 0:997 0:993 0:988 0:963

case (e1) case (e2)

HET 0:342 0:229 0:158 0:064 0:489 0:360 0:250 0:121

HETX 0:403 0:298 0:208 0:093 0:589 0:480 0:375 0:199

HET-F 0:354 0:245 0:183 0:094 0:500 0:387 0:286 0:166

HETX-F 0:450 0:354 0:286 0:174 0:638 0:557 0:488 0:349

ZHET 0:329 0:211 0:136 0:059 0:454 0:333 0:246 0:132

ZHETX 0:390 0:267 0:175 0:071 0:580 0:445 0:338 0:189

ZHET-F 0:338 0:226 0:155 0:071 0:458 0:348 0:275 0:167

ZHETX-F 0:408 0:308 0:243 0:138 0:613 0:523 0:428 0:309

Ep 0:357 0:256 0:188 0:103 0:721 0:643 0:567 0:447


