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Abstract. ABC is a public-domain system for logic synthesis and formal verification 

of binary logic circuits appearing in synchronous hardware designs. ABC combines 

scalable logic transformations based on And-Inverter Graphs (AIGs), with a variety 

of innovative algorithms. A focus on the synergy of sequential synthesis and 

sequential verification leads to improvements in both domains. This paper introduces 

ABC, motivates its development, and illustrates its use in formal verification. 
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1 Introduction 
Progress in both academic research and industrial products critically depends on the 

availability of cutting-edge open-source tools in the given domain of EDA. Such tools can be 

used for benchmarking, comparison, and education. They provide a shared platform for 

experiments and can help simplify the development of new algorithms. Equally important for 

progress is access to real industrial-sized benchmarks. 

For many years, the common base for research in logic synthesis has been SIS, a synthesis 

system developed by our research group at UC Berkeley in 1987-1991. Both SIS [35] and its 

predecessor MIS [8], pioneered multi-level combinational logic synthesis and became trend-

setting prototypes for a large number of synthesis tools developed by industry. 

In the domain of formal verification, a similar public system has been VIS [9], started at 

UC Berkeley around 1995 and continued at the University of Colorado, Boulder, and University 

of Texas, Austin. In particular, VIS features the latest algorithms for implicit state enumeration 

[15] with BDDs [11] using the CUDD package [36].  

While SIS reached a plateau in its development in the middle 90’s, logic representation and 

manipulation methods continued to be improved. In the early 2000s, And-Inverter Graphs (AIGs) 

emerged as a new efficient representation for problems arising in formal verification [22], largely 

due to the published work of A. Kuehlmann and his colleagues at IBM.  

In that same period, our research group worked on a multi-valued logic synthesis system, 

MVSIS [13]. Aiming to find better ways to manipulate multi-valued relations, we experimented 

with new logic representations, such as AIGs, and found that, in addition to their use in formal 

verification, they can replace more-traditional representations in logic synthesis. As a result of 

our experiments with MVSIS, we developed a methodology for tackling problems, which are 

traditionally solved with SOPs [35] and BDDs [37], using a combination of random/guided 

simulation of AIGs and Boolean satisfiability (SAT) [25].  



Based on AIGs as a new efficient representation for large logic cones, and SAT as a new way 

of solving Boolean problems, in the summer 2005, we switched from multi-valued methods in 

MVSIS to binary AIG-based synthesis methods. The resulting CAD system, ABC, incorporates 

the best algorithmic features of MVSIS, while supplementing them with new findings.  

One such finding is a novel method for AIG-based logic synthesis that replaced the traditional 

SIS logic synthesis flow, which was based on iterating elimination, substitution, kerneling, don’t-

care-based simplification, as exemplified by SIS scripts, script.algebraic and script.rugged. Our 

work on AIGs was motivated by fast compression of Boolean networks in formal verification [5]. 

We extended this method to work in synthesis, by making it delay-aware and replacing two-level 

structural matching of AIG subgraphs with functional matching of the subgraphs based on 

enumeration of 4-input cuts [26].  

It turned out that the fast AIG-based optimizations could be made even more efficient by 

applying them to the network many times. Doing so with different parameter settings led to 

results in synthesis comparable or better than those of SIS, while requiring much less memory 

and runtime. Also this method is conceptually simpler than the SIS optimization flow, saving 

months of human-effort in code development and tuning. The savings in runtime/memory led to 

the increased scalability of ABC, compared to SIS. As a result, ABC can work on designs with 

millions of nodes, while SIS does not finish on these designs after many hours, and even if it 

finishes, the results are often inferior to those obtained by the fast iterative computations in ABC. 

The next step in developing ABC was to add an equivalence checker for verifying the results of 

synthesis, both combinational and sequential [29]. Successful equivalence checking motivated 

experiments with model checking, because both types of verification work on a miter circuit and 

have the common goal of reducing it to the constant 0. To test this out, we submitted an 

equivalence checker in ABC to the hardware model checking competition at CAV 2008, winning 

in two out of three categories. 

Working on both sequential synthesis and verification has allowed us to leverage the latest 

results in both domains and observe their growing synergy. For example, the ability to synthesize 

large problems and show impressive gains spurs development of equally scalable equivalence 

checking methods, while the ability to scalably verify sequential equivalence problems spurs the 

development, use, and acceptance of aggressive sequential synthesis. In ABC, similar concepts 

are used in both synthesis and verification: AIGs, rewriting, SAT, sequential SAT sweeping, 

retiming, interpolation, etc.  

This paper provides an overview of ABC, lists some of the ways in which verification ideas 

have enriched synthesis methods, shows how verification is helped by constraining or 

augmenting sequential synthesis, and details how various algorithms have been put together to 

create a fairly powerful model checking engine that can rival some commercial offerings. We 

give an example of the verification flow applied to an industrial model checking problem. 

The rest of the paper is organized as follows. Section 2 introduces the basic terminology used 

in logic synthesis and verification. Section 3 describes combinational and sequential AIGs and 

their advantages over traditional representations. Section 4 discusses the duality of synthesis and 

verification. Section 5 gives a case study of an efficient AIG implementation, complete with 

experimental results. Section 6 describes both the synthesis and verification flows in ABC and 

provides an example of the verification flow applied to an industrial model checking problem. 

Section 7 concludes the paper and sketches some on-going research. 



2 Background  

2.1 Boolean network  

A Boolean network is a directed acyclic graph (DAG) with nodes corresponding to logic gates 

and directed edges corresponding to wires connecting the gates. The terms Boolean network, 

netlist, and circuit are used interchangeably in this paper. If the network is sequential, the 

memory elements are assumed to be D flip-flops with initial states.  

A node n has zero or more fanins, i.e. nodes driving n, and zero or more fanouts, i.e. nodes 

driven by n. The primary inputs (PIs) are nodes without fanins in the current network. The 

primary outputs (POs) are a subset of nodes of the network. A fanin (fanout) cone of node n is a 

subset of all nodes of the network, reachable through the fanin (fanout) edges of the node. 

2.2 Logic synthesis  

Logic synthesis transforms a Boolean network to satisfy some criteria, for example, reduce the 

number of nodes, logic levels, switching activity. Technology mapping deals with representing 

the logic in terms of a given set of primitives, such as standard cells or lookup tables.  

Combinational logic synthesis involves changing the combinational logic of the circuit with no 

knowledge of its reachable states.  As a result, the Boolean functions of the POs and register 

inputs are preserved for any state of the registers.  In contrast, sequential logic synthesis 

preserves behavior on the reachable states and allows arbitrary changes on the unreachable states.  

Thus, after sequential synthesis, the combinational functions of the POs and register inputs may 

have changed, but the resulting circuit is sequentially-equivalent to the original.   

2.3 Formal verification  

Formal verification tries to prove that the design is correct in some sense.  

The two most common forms of formal verification are model checking and equivalence 

checking. Model checking of safety properties considers the design along with one or more 

properties and checks if the properties hold on all reachable states. Equivalence checking checks 

if  the design after synthesis is equal to its initial version, called the golden model.  

In modern verification flows, the circuit to be model-checked is transformed into a circuit 

called a model checking miter by supplementing the logic of the design with a monitor logic, 

which checks the correctness of the property. Similarly, in equivalence checking, the two circuits 

to be verified are transformed into an equivalence checking miter [7] derived by combining the 

pairs of inputs with the same names and feeding the pairs of outputs with the same names into 

EXOR gates, which are ORed to produce the single output of the miter.  

In both property and equivalence checking, the miter is a circuit with the inputs of the original 

circuit and an output that produces value 0, if and only if the original circuit satisfies the property 

or if the two circuits produce identical output values under any input assignment (or, in 

sequential verification, under any sequence of input assignments, starting from the initial state).  

The task of formal verification is to prove that the constructed miter always produces value 0. 

If synthesis alone does not solve the miter, the output can be asserted to be constant 1 and a SAT 

solver can be run on the resulting problem. If the solver returns “unsatisfiable”, the miter is 

proved constant 0 and the property holds, or the original circuits are equivalent. If the solver 

returns “satisfiable”, an assignment of the PIs leading to 1 at the output of the miter, called a 

counter-example, is produced, which is useful for debugging the circuit. 



2.4 Verifiable synthesis  

An ultimate goal of a synthesis system is to produce good results in terms of area, power, 

speed, capability for physical implementation etc, while allowing an unbiased (independent) 

verification tool to prove that functionality is preserved. Developing verifiable synthesis methods 

is difficult because of the inherent complexity of the sequential verification problem [20].  

One verifiable sequential synthesis is described in [29]. This is based on identifying pairs of 

sequentially-equivalent nodes/registers, that is groups of signals having the same or opposite 

values in all reachable states. Such equivalent nodes/registers can be merged without changing 

the sequential behavior of the circuit, often leading to substantial reductions, e.g. some parts of 

the logic can be discarded because they no longer affect the POs. This sequential synthesis 

technique is used extensively in ABC to reduce both designs and sequential miters. 

3 And-Inverter Graphs  

3.1 Combinational AIGs  

A combinational And-Invertor Graph (AIG) is a Boolean network composed of two-input 

ANDs and inverters. To derive an AIG, the SOPs of the nodes in a logic network are factored, the 

AND and OR gates of the factored forms are converted into two-input ANDs and inverters using 

DeMorgan’s rule, and these nodes are added to the AIG manager in a topological order. The size 

(area) of an AIG is the number of its nodes; the depth (delay) is the number of nodes on the 

longest path from the PIs to the POs. The goal of optimization by local transformations of an AIG 

is to reduce both area and delay.   

Structural hashing of AIGs ensures that all constants are propagated and, for each pair of 

nodes, there is at most one AND node having them as fanins (up to a permutation). Structural 

hashing is performed by hash-table lookups when AND nodes are created and added to an AIG 

manager. Structural hashing was originally introduced for netlists of arbitrary gates in early IBM 

CAD tools [15] and was extensively used in formal verification [22]. Structural hashing can be 

applied on-the-fly during AIG construction, which reduces the AIG size. To reduce the number 

of AIG levels, the AIG is often balanced by applying the associative transform, a(bc) = (ab)c. 

Both structural hashing and balancing are performed in one topological traversal from the PIs and 

have linear complexity in the number of AIG nodes.  

A cut C of a node n is a set of nodes of the network, called leaves of the cut, such that each 

path from a PI to n passes through at least one leaf. Node n is called the root of cut C. The cut 

size is the number of its leaves. A trivial cut of a node is the cut composed of the node itself. A 

cut is K-feasible if the number of nodes in the cut does not exceed K. A cut is dominated if there 

is another cut of the same node, which is contained, set-theoretically, in the given cut. 

A local function of an AIG node n, denoted fn(x), is a Boolean function of the logic cone rooted 

in n and expressed in terms of the leaves, x, of a cut of n. The global function of an AIG node is 

its function in terms of the PIs of the network. 

3.2 Sequential AIGs  

Sequential AIGs extend combinational AIGs with technology-independent D-flip-flops with 

one input and one output, controlled by the same clock, omitted in the AIG representations.   

We represent flip-flops in the AIG explicitly as additional PI/POs pairs. The PIs and register 

outputs are called combinational inputs (CIs) and the POs and register inputs are called 



combinational outputs (COs). The additional pairs of CI/CO nodes follow the regular PIs/POs, 

and are in one to one correspondence with each other. This representation of sequential AIGs 

differs from that used in [1] where latches are represented as attributes on AIG edges, similar to 

the work of Leiserson and Saxe [23].  

The chosen representation of sequential AIGs allows us to work with the AIG manager as if it 

was a combinational AIG, and only utilize its sequential properties when sequential 

transformations are applied. For example, combinational AIG rewriting works uniformly on 

combinational and sequential AIGs, while sequential cleanup, which removes structurally 

equivalent flip-flops, exploits the fact that they are represented as additional PIs and POs. 

Sequential transformation, such as retiming, can add and remove latches as needed. 

3.3 Distinctive features of AIGs  

Representing logic using networks containing two-input nodes is not new. In SIS, there is a 

command tech_decomp [35] generating a two-input AND/OR decomposition of the network. 

However, there are several important differences that make two-input node representation in the 

form of AIGs much more efficient that its predecessors in SIS: 

• Structural hashing ensures that AIGs do not contain structurally identical nodes. For 

example, node a∧b can only exist in one copy. When a new node is being created, the 

hash table is checked, and if such node already exists, the old node is returned. The on-

the-fly structural hashing is very important in synthesis applications because, by giving a 

global view of the AIG, it finds, in constant time, simple logic sharing across the network. 

• Representing inverters as edge attributes. This feature is borrowed from the efficient 

implementation of BDDs using complemented edges [36]. As a result, single-input nodes 

representing invertors and buffers do not have to be created. This saves memory and 

allows for applying DeMorgan’s rule on-the-fly, which increases logic sharing. 

• The AIG representation is uniform and fine-grain, resulting in a small, fixed amount of 

memory per node. The nodes are stored in one memory array in a topological order, 

resulting in fast, CPU-cache-friendly traversals. To further save memory, our AIG 

packages compute fanout information on demand, resulting in 50% memory reduction in 

most applications. Similar to the AIG itself, fanout information for arbitrary AIG 

structures can be represented efficiently using a constant amount of memory per node. 

Fig. 1 shows a Boolean function and two of its structurally-different AIGs. The nodes in the 

graphs denote AND-gates, while the bubbles stand for complemented edges. The figure shows 

that the same completely-specified Boolean function can be represented by two structurally 

different AIGs, one with smaller size and larger depth, the other vice versa. 

3.4 Comparing logic synthesis in SIS and in ABC  

In terms of logic representation, the main difference between SIS and ABC, is that SIS works 

on a logic network whose nodes are represented using SOPs, while ABC works on an AIG whose 

nodes are two-input AND gates. A SIS network can be converted into an AIG by decomposing 

each node into two-input AND gates. For a deterministic decomposition algorithm, the resulting 

AIG is unique.  However, the reverse transformation is not unique, because many logic networks 

can be derived from the same AIG by grouping AND gates in different ways. This constitutes the 

main difference between SIS and ABC. 

SIS works on one copy of a logic network, defined by the current boundaries of its logic nodes, 

while ABC works on an AIG. A cut computed for an AND node in the AIG can be seen as a logic 



node. Since there are many cuts per logic node, the AIG can be seen as an implicit representation 

of many logic networks. When AIG rewriting is performed in ABC, a minimal representation is 

found among all decompositions of all structural cuts in the AIG, while global logic sharing is 

captured using a structural hashing table. Thus, ABC is more likely to find a smaller 

representation in terms of AIG nodes than SIS, which works on one copy of the logic network 

and performs only those transformations that are allowed by this network. 

SIS and ABC use different heuristics for logic manipulation, so it is still possible that, for a 

particular network, SIS finds a better solution than ABC. 
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Fig. 1. Two different AIGs for a Boolean function.   

3.5 Advantages of AIGs summarized  

The following properties of AIGs fascilitate development of robust applications in synthesis, 

mapping, and formal verification:  

• AIGs unify the synthesis/mapping/verification by representing logic compactly and 

uniformly. The results of technology-independent synthesis are naturally expressed as an 

AIG. During technology mapping, the AIG is used as a subject graph annotated with cuts 

that are matched with LUTs or gates. At any time, verification can be performed by 

contructing a miter of the two synthesis snapshots represented as one AIG, handled by a 

complex AIG-based verification flow.  

• Although AIG transformations are local, they are performed with a global view afforded 

by the structural hashing table. Because these computations are memory/runtime 

efficient, they can be iterated, leading to superior results, unmatched by a single 

application of a more global transform.  

• An AIG can be efficiently duplicated, stored, and passed between calling applications as 

a memory buffer or compactly stored on disk in the AIGER format [4].  



4 Synthesis-verification duality  

Recent advances in formal verification and logic synthesis have made these fields increasingly 

interdependent, especially in the sequential domain [10].  

In addition to algorithm migration (for example, AIG rewriting, SAT solving, interpolation 

came to synthesis from verification), hard verification problems challenge synthesis methods that 

are used to simplify them, while robust verification solutions enable more aggressive synthesis. 

For example, bold moves can be made in sequential synthesis by assuming something that seems 

likely to hold but cannot be proved easily. If the result can be verified (provided that sequential 

verification is powerful enough), synthesis is over. Otherwise, different types of synthesis can be 

tried, for example, traditional or other risk-free synthesis. Preliminary experiments show 

potentially large gains in synthesis for industrial problems. 

4.1 Known synergies 

In this section, we outline several aspects of combinational and sequential verification that 

benefit from synthesis.  

Combinational equivalence checking (CEC) proves equivalence of primary outputs and 

register inputs after combinational synthesis. To this end, a combinational miter is constructed 

and solved using a set of integrated methods, including simulation, SAT solving, and BDD or 

SAT sweeping [22]. Running combinational synthesis on a miter during verification substantially 

improves the CEC runtime [27]. This is because synthesis quickly merges shallow equivalences 

and reduces the size of the miter, allowing difficult SAT calls go through faster.  

A similar observation can be made about retiming [23]. If retiming has been applied during 

sequential synthesis, it is advantageous to apply most-forward retiming as one of the 

preprocessing steps during sequential verification. It can be shown that if during sequential 

synthesis only retiming was applied without changing the logic structure, then most forward 

retiming followed by an inductive register correspondence computation is guaranteed to prove 

sequential equivalence [21]. This observation is used in our verification tool, which allows the 

user to enable retiming as an intermediate step during sequential verification [29]. 

Yet another synthesis/verification synergy holds when induction is used to detect and merge 

sequentially equivalent nodes. The following result was obtained in [29]: if a circuit was 

synthesized using only k-step induction to find equivalent signals, then equivalence between the 

original and final circuits is guaranteed provable using k-step induction with the same k.  

These results lead to the following rule of thumb which is used in our verification flow: if a 

transformation is applied during synthesis, it is often helpful (and necessary) to apply the same or 

more powerful transformations during verification. 

5 Case study: Developing a fast sequential simulator for AIGs 

Several applications suffer from the prohibitive runtime of a sequential gate-level simulator. 

For example, in formal verification, the simulator is used to quickly detect easy-to-disprove 

properties or as a way to compute simulation signatures of internal nodes proving their 

equivalence. The same sequential simulator is useful to estimate switching activity of registers 

and internal nodes. The pre-computed switching activity can direct transformations that reduce 

dynamic power dissipation in low-power synthesis. In this case study, based on [19], we discuss 

how to develop a fast sequential simulator using AIGs.  



5.1 Problem formulation  

The design is sequentially simulated for a fixed number of time-frames. A sequential simulator 

applies, at each time step, a set of values to the PIs. In the simplest case, random PI patterns are 

generated to have a 0.5 probability of the node changing its value (fixed toggle rate). In other 

scenarios, the probability of an input transitions is given by the user, or produced by another tool. 

For example, if an input trace is known, it may be used for simulating the design. It is assumed 

that the initial state is known and initializes the sequential elements at the first time-frame. In 

subsequent time frames, the state derived at the previous iteration is used. 

The runtime of sequential simulation can be reduced by minimizing the memory footprint. This 

is because most CPUs have a local cache ranging in size from 2Mb to 16Mb. If an application 

requires more memory than this, repeated cache misses cause the runtime to degrade. Therefore, 

the challenge is to design a simulator that uses a minimalistic data-structure without 

compromising the computation speed.  

We found three orthogonal ways of reducing the memory requirements of the simulator, which 

in concert greatly improve its performance. 

 Compacting logic representation. Sequential designs are represented as AIGs. A typical AIG 

package uses 32 or more bytes to represent each AIG object (an internal AND node, an PI/PO, or 

a flop outputs/inputs). However, a minimalistic AIG package requires only 8 bytes per object. For 

an internal node, two integer fields, four bytes each, are used to store the fanin IDs. Other data 

structures may be temporarily allocated, for example, a hash-table for structural hashing may be 

used during AIG construction and deallocated before simulation begins. 

Recycling simulation memory. When simulation is applied to a large sequential design, storing 

simulated values for all nodes in each timeframe requires a lot of memory. One way of avoid this, 

is to use the simulation information as soon as it is computed and to recycle the memory when it 

is not needed. For example, to estimate switching activity, we are only interested in counting the 

number of transitions seen at each node. For this, an integer counter can be used, thereby adding 

four bytes per object to the AIG package memory requirements, while the simulation information 

does not have to be stored.  

Additionally, there is no need to allocate simulation memory for each object in the AIG. At any 

time during simulation, we only need to store simulation values for each combinational 

input/output and the nodes on the simulation frontier. These are all the nodes whose fanins are 

already simulated but at least one fanout is not yet simulated. For industrial designs, the number 

of internal nodes where simulation information should be stored is typically very small. For 

example, large industrial designs tend to have simulation frontier that is less than 1% of the total 

number of AIG nodes. The notion of a simulation frontier has also been useful to reduce memory 

requirements for the representation of priority cuts [28]. 

Bit-parallel simulation of two time-frames at the same time. A naïve approach to estimate the 

transition probability for each AIG node would be to store simulation patterns in two consecutive 

timeframes. Then, this information is compared (using bitwise XOR), and the number of ones in 

the bitwise representation is accumulated while simulating the timeframes. However, saving 

simulation information at each node for two consecutive timeframes leads to a large memory 

footprint. For example, an AIG with 1M objects requires 80Mb to store the simulation 

information for two timeframes, assuming 10 machine words (40 bytes) per object.  

This increase in memory can be avoided by simultaneously simulating data belonging to two 

consecutive timeframes. In this case, comparison across the timeframes is made immediately, 

without memorizing previously computed results. This leads to duplicating the computation 



effort by simulating every pattern twice, one with the previous state value and the other with the 

current state value. However, the speedup due to not having to traverse the additional memory 

(causing excessive cash misses) outweighs the disadvantage of the re-computation. 

5.2 Experimental results  

This section summarizes two experiments performed to evaluate the new simulator.  

The first experiment, was designed to show that the new sequential simulator, called 

SimSwitch, has affordable runtimes for large designs.  Four industrial designs ranging from 304K 

to 1.3M AIG nodes were simulated with different numbers of simulation patterns, ranging from 

2,560 to 20,480. The input toggle rate was assumed to be 0.5. The results are shown in Table 1. 

Columns “AIG” and “FF” show the numbers of AIG nodes and registers. The runtimes for 

different amounts of input patterns are shown in the last columns. Note that the runtimes are 

quite affordable even for the design with 1.3M AIG nodes. In all four cases, the 2,560 patterns 

were sufficient for node switching activity rates to converge to a steady state.  

Table 1. Runtime of SimSwitch. 

Runtime for inputs patterns (seconds) 
Design AIG FF 

2560 5120 10240 20480 

C1 304K 1585 0.1 0.2 0.2 0.4 

C2 362K 27514 2.7 2.9 4.1 6.6 

C3 842K 58322 7.4 7.6 10.2 18.2 

C4 1306K 87157 12.1 15.4 15.7 24.2 

 

In the second experiment, we compare the runtime of SimSwitch vs. ACE-2.0 on 14 industry 

designs and 12 large academic benchmarks. The input toggle rate is assumed to be 0.5 for both 

tools. The number of input patterns is assumed to be 5,000 for both runs. All circuits are 

decomposed into AIG netlists before performing the switching estimation. The table of results 

can be found in [19]. The summary of results are as follows:  

• For industry designs, SimSwitch is 149+ times faster than ACE-2.0.   

• For academic benchmarks, SimSwitch is 85+ times faster than ACE-2.0.  

• SimSwitch finished all testcases while ACE-2.0 times out on four industrial designs. 

 

6 Optimization and verification flows   

This section describes integrated sequences of transformations applied in ABC.  

6.1 Integration of synthesis 

The optimization algorithms of ABC are integrated into a system called Magic [31] and 

interfaced with a design database developed to store realistic industrial designs. For instance, 

Magic handles multiple clock domains, flip-flops with complex controls, and special objects such 

as adder chains, RAMs, DSP modules, etc. Magic was developed to work with hierarchical 

designs whose sequential logic cones, when represented as a monolithic AIG, contain more than 

1M nodes. The algorithms are described in the following publications: 

 

 



Synthesis 
Scalable sequential synthesis [29] and retiming [34]. 

Combinational synthesis using AIG rewriting [26]. 

Combinational restructuring for delay optimization [30]. 

 

Mapping 
Mapping with structural choices [14]. 

Mapping with global view and priority cuts [28]. 

Mapping to optimize application-specific metrics [18][19]. 

 

Verification 
Fast sequential simulation [19] 

Improved combinational equivalence checking [27]. 

Improved sequential equivalence checking [29][33]. 

 

The integration of components inside Magic is shown in Fig. 2. The design database is the 

central component interfacing the application packages. The design entry into Magic is 

performed through a file or via programmable APIs.  

 

                   
Fig. 2. Interaction of application packages in Magic. 

Shown on the right of Fig. 2, is sequential synthesis based on detecting, proving, and merging 

sequentially equivalent nodes. This transformation can be applied at the beginning of the flow, 

before combinational synthesis and mapping. Another optional transform is retiming that reduces 

the total number of logic levels in the AIG or in the mapped network. Reducing the number of 

logic levels correlates with but does not always lead to an improvement in the clock frequency 

after place-and-route. The sequential transforms can be verified by sequential simulation and 

sequential equivalence checking. 

Shown on the left of Fig. 2, is the combinational synthesis flow, which includes AIG rewriting, 
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structural choices can be skipped if fast low-effort synthesis is desired. The result of mapping is 

Design 

database 

Sequential 

synthesis 

AIG 

rewriting 

File / Code 

interface 

Computing 

choices 

LUT 

mapping 

Retiming 

Structuring 

for delay 

Post-place 

optimization 

Verification  



returned to the design database or passed on to restructuring for delay optimization.  After 

combinational synthesis, the design can be verified using combinational equivalence checking. 

Finally, the box in the bottom right corner represents post-placement resynthesis, which 

includes incremental restructuring and retiming with wire-delay information.  

  

6.2 Integration of verification 

Similar to IBM’s tool SixthSense [2], the verification subsystem of ABC is an integrated set of 

applications, divided into several categories: miter simplifiers (i.e. sequential synthesis), bug-

hunters (i.e. bounded model checking), and provers (i.e. interpolation). The high-level interface 

coded in Python orchestrates the applications and determines the resource limits used. An 

embedded Python interpreter allows for defining new procedures in addition to those included. 

An AIG file is read in, and the objective is to prove each output unsatisfiable or find a counter-

example. The top-level functions are prove and prove_g_pos. The former works for single-output 

properties, while the latter applies the former to each output of a multi-output miter, or to several 

outputs grouped together based on the group’s support. The main flow is 

pre_simp → quick_verify → abstract → quick_verify → speculate → final_verify, 

with each function passing the resulting AIG to the next function. At each stage, a set of 

resources is selected to spend on an algorithm. These resources are: total time, limit on the 

number of conflicts in SAT, maximum number of timeframes to unroll, maximum number of 

BDD nodes, etc. The allocation of resources is guided by the state of verification and the AIG 

parameters (the number of PIs, POs, FFs, AIG nodes, BMC depth reached, etc), which vary when 

the AIG is simplified and abstracted.   

A global parameter x_factor can be used to increase the resources. If the problem is proved 

UNSAT by one of the application packages, the computation stops and the result is returned. . 

If the problem is found SAT and no abstraction has been done, the counter-example is returned. 

The function pre_simp tries to reduce the AIG by applying several simplification algorithms: 

• Phase abstraction, trying to identify clock-like periodic behaviors and deciding to unfold the 

design several frames depending on the clocks found and the amount of simplification this 

may allow [6]. 

• Trimming, which eliminates PIs that have no fanouts. 

• Constraint extraction, which looks for implicit constraints inductively, uses these to simplify 

the design, and folds them back in with a structure such that if ever a constraint is not 

satisfied, the output is forced to be 0 from then on [12]. 

• Forward retiming and sequential FF correspondence, which finds correspondences between 

FFs and reduces the FF count, especially in SEC examples [29]. 

• Strong simplification script simplify, which iterates AIG rewriting, retiming for minimum FF 

(flip-flop) count, k-step sequential signal correspondence with k selected based on problem 

size. Also, the effort spent in signal correspondence can be adjusted by using a dedicated 

circuit-based SAT solver. 

If simplify has already been applied to an AIG, then repeating it is usually fast, so the verification 

flow iterates it several times when other reductions have been done. 

The function quick_verify, performed after each significant AIG reduction, is a low resource 

version of final_verify. These functions try to prove the problem by running interpolation or, if 

the problem seems small enough, by attempting BDD reachability. 



The algorithm abstract is a combination of counter-example abstraction and proof-based 

abstraction implemented in a single SAT instance [17]. It returns an abstracted version of the 

AIG (a set of registers removed and replaced by PIs) and the frame count it was able to explore. 

To double check that a valid abstraction is derived, BMC (or, if the problem is small enough, 

BDD reachability) is applied to the resulting abstraction using additional resources. If a counter-

example is found, abstract is restarted with additional resources from the frame where the 

counter-example was found.  

The algorithm speculate applies speculative reduction [32][33]. This algorithm finds candidate 

sequential equivalences in the AIG, and creates a speculative reduced model, by transferring the 

fanouts of each equivalence class to a single representative, while creating new outputs, which 

become additional proof obligations. This model is refined as counter-examples are produced, 

finally arriving at a model that has no counterexamples up to some depth explored by BMC. 

Then, attempts are made to prove the outputs of the speculatively reduced model. If all outputs 

are successfully proved, the initial verification problem is solved. If at least one of the outputs 

failed, the candidate equivalences have to be filtered and speculative reduction repeated. 

6.3 Example of running the verification flow 

Below is an example of a printout produced by ABC during verification of an industrial design. 

Comments follow the printout. 

 

abc> Read_file  example1.aig 
PIs = 532, POs = 1, FF = 2389, ANDs = 12049 
abc> prove 

 

Simplifying 
Number of constraints found = 3 
Forward retiming, quick_simp, scorr_comp, trm: PIs = 532, POs = 1, FF = 2342, ANDs = 11054 
Simplify:    PIs = 532, POs = 1, FF = 2335, ANDs = 10607 
Phase abstraction:    PIs = 283, POs = 2, FF = 1460, ANDs = 8911 
 

Abstracting 
Initial abstraction:     PIs = 1624, POs = 2, FF = 119, ANDs = 1716, max depth = 39 
Testing with BMC 
bmc3 -C 100000 -T 50 -F 78:     No CEX found in 51 frames 
Latches reduced from 1460 to 119 
Simplify:     PIs = 1624, POs = 2, FF = 119, ANDs = 1687, max depth = 51 
Trimming:     PIs = 158, POs = 2, FF = 119, ANDs = 734, max depth = 51 
Simplify:     PIs = 158, POs = 2, FF = 119, ANDs = 731, max depth = 51 

 

Speculating 
Initial speculation:    PIs = 158, POs = 26, FF = 119, ANDs = 578, max depth = 51 
Fast interpolation:    reduced POs to 24 
Testing with BMC 
bmc3 -C 150000 -T 75:    No CEX found in 1999 frames 
PIs = 158, POs = 24, FF = 119, ANDs = 578, max depth = 1999 
Simplify:     PIs = 158, POs = 24, FF = 119, ANDs = 535, max depth = 1999 
Trimming:     PIs = 86, POs = 24, FF = 119, ANDs = 513, max depth = 1999 



 

Verifying  
Running reach -v -B 1000000 -F 10000 -T 75:    BDD reachability aborted 
RUNNING interpolation with 20000 conflicts, 50 sec, max 100 frames:  'UNSAT‘ 
 
Elapsed time: 457.87 seconds, total: 458.52 seconds 
 
NOTES: 

1. The file example1.aig is first read in and its statistics are reported: 532 primary 

inputs, 1 primary output, 2389 flip-flops, and 12049 AIG nodes. 

2. 3 implicit constraints were found, but they turned out to be only mildly useful in 

simplifying the problem. 

3. Phase abstraction found a cycle of length 2 and this was useful for simplifying the 

problem to 1460 FF from 2335 FF. Note that the number of outputs increased to 2 

because the problem was unrolled 2 time frames. 

4. Abstraction was successful in reducing the FF count to 119. This was proved valid 

out to 39 time frames.  

5. BMC verified that the abstraction produced is actually valid to 51 frames, which 

gives us good confidence that the abstraction is valid for all time. 

6. Trimming reduced the inputs relevant to the abstraction from 1624 to 158 and 

simplify reduced the number of AIG nodes to 731. 

7. Speculation produced a speculative reduced model (SRM) with 24 new outputs to be 

proved and low resource interpolation proved 2 of them. The SRM model is simpler 

and has only 578 AIG nodes. The SRM was tested with BMC and proved valid out to 

1999 frames. 

8. Subsequent trimming and simplification reduced the PIs to 86 and AIG size to 513. 

9. The final verification step first tried BDD reachability allowing it 75 sec. and to grow 

to up to 1M BDD nodes. It could not converge with these resources so it was aborted. 

Then interpolation has returned UNSAT, and hence all 24 outputs are proved.  

10. Although quick_verify was applied between simplification and abstraction, and 

between abstraction and speculation, it was not able to prove anything, so its output 

is not shown. 

11. The total time was 457 seconds on a Lenovo X301 laptop with 1.4Gb Intel Core2 

Duo CPU and 3Gb RAM. 
 

7 Conclusions and future work 
In this paper, we discussed the development of ABC and described its basic principles.  Started 

five years ago, ABC continues to grow and gain momentum as a public-domain tool for logic 

synthesis and verification. New implementations, improvements, bug fixes, and performance 

tunings are added frequently. Even the core computations continue to improve through better 

implementation and exploiting the synergy between synthesis and verification. Possibly another 

2-5x speedup can be obtained in these computations using the latest findings in the field. As 

always, a gain in runtime allows us to perform more iterations of synthesis with larger resource 

limits, resulting in stronger verification capabilities. 

Future work will continue in the following directions: 



• Improving core applications, such as AIG rewriting (by partitioning the problem and 

prioritizing rewriting moves) and technology mapping (by specializing the mapper to an 

architecture based on a given lookup-table size or a given programmable cell). 

• Developing new applications (for example, a fast incremental circuit-based SAT solver or 

a back-end prover based on an OR-decomposition of the property cone, targetting 

properties not provable by known methods). 

• Building industrial optimization/mapping/verification flows, such as Magic [31], targeting 

other implementation technologies (for example, the FPGA synthesis flow can be 

extended to work for standard cells). 

• Disseminating the innovative principles of building efficient AIG/SAT/simulation 

applications and the ways of exploiting the synergy of synthesis and verification. 

• Customizing ABC for users in such domains as software synthesis, cryptography, 

computational biology, etc. 
ABC is available for free from Berkeley Verification and Synthesis Research Center [3]. 
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