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Hook length formulas for partitions and trees

Summary:

• Some well-known examples

• How to discover new hook formulas ?

• The Main Theorem

• Specializations

• Number Theory

• Hook formulas for binary trees
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Some well-known examples: Hook length multi-set

Partition
λ = (6, 3, 3, 2)

v

Hook length of v
hv(λ) = 4

2 1
4 3 1
5 4 2
9 8 6 3 2 1

Hook lengths

H(λ)

The hook length multi-set of λ is

H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1}
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Some well-known examples: permutations

fλ : the number of standard Young tableaux of shape λ

Frame, Robinson and Thrall, 1954

fλ =
n!

∏

h∈H(λ) h
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Some well-known examples: permutations

fλ : the number of standard Young tableaux of shape λ

Frame, Robinson and Thrall, 1954

fλ =
n!

∏

h∈H(λ) h

Robinson-Schensted correspondence:
∑

λ⊢n

f2
λ = n!

∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h2
= ex
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Some well-known examples: involutions

Robinson-Schensted correspondence: The number of standard
Young tableaux of {1, 2, . . . , } is equal to the number of invo-

lutions of order n.

∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h
= ex+x2/2
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Some well-known examples: partitions

Euler: Generating function for partitions:

∑

λ∈P

x|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1− xk
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Some well-known examples: binary trees

hook length for unlabeled binary trees
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T

Hv(T ) = 5 H(T ) = {1, 1, 1, 3, 5, 6}
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Some well-known examples: binary trees

fT : the number of increasing labeled binary trees

fT =
n!

∏

h∈H(T ) h
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Some well-known examples: binary trees

Each labeled binary tree with n vertices is in bijection with a
permutation of order n

∑

T∈B(n)

n!
∏

v∈T

1

hv
= n!
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Some well-known examples: binary trees

Each labeled binary tree with n vertices is in bijection with a
permutation of order n

∑

T∈B(n)

n!
∏

v∈T

1

hv
= n!

Generating function form:

∑

T∈B

x|T |
∏

h∈H(T )

1

h
=

1

1− x
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Some well-known examples: binary trees, Catalan

The number of binary trees with n vertices is equal to the n-th
Catalan number

∑

T∈B(n)

1 =
1

n + 1

(

2n

n

)

Generating function form:

∑

T∈B

x|T |
∏

h∈H(T )

1 =
1−
√

1− 4x

2x
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Some well-known examples: binary trees, Postnikov

Postnikov identity (2004)

∑

T∈B(n)

∏

v∈T

(

1 +
1

hv

)

=
2n

n!
(n + 1)n−1
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Some well-known examples: binary trees, Postnikov

Postnikov identity (2004)

∑

T∈B(n)

∏

v∈T

(

1 +
1

hv

)

=
2n

n!
(n + 1)n−1

Lascoux, Du, Liu (2008)

∑

T∈B(n)

∏

v∈T

(

x +
1

hv

)

=
1

(n + 1)!

n−1
∏

k=0

((n + 1 + k)x + n + 1− k)
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Some well-known examples: tangent numbers

The tangent number counts the alternating permutations (André,
1881), which are in bijection with the labeled complete binary
trees.
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Some well-known examples: tangent numbers

The tangent number counts the alternating permutations (André,
1881), which are in bijection with the labeled complete binary
trees.

∑

T∈C

x|T |
∏

h∈H(T )

1

h
= tan(x) + sec(x)

C : complete binary trees
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Discover new hook formulas

Partitions Trees

Discovering

Proving
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Discover new hook formulas

Partitions Trees

Discovering Hard

Proving
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Discover new hook formulas

Partitions Trees

Discovering Hard Hard

Proving
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Discover new hook formulas

Partitions Trees

Discovering Hard Hard

Proving Hard
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Discover new hook formulas

Partitions Trees

Discovering Hard Hard

Proving Hard Easy

21



Discover new hook formulas

We now introduce an efficient technique for discovering new
hook length formulas:
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Discover new hook formulas

We now introduce an efficient technique for discovering new
hook length formulas:

hook length expansion
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Discover new hook formulas: expansion

ρ(h): weight function
f(x): formal power series
They are connected by the relation:

∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x)
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Discover new hook formulas: expansion

ρ(h): weight function
f(x): formal power series
They are connected by the relation:

∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x)

• generating function : ρ −→ f
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Discover new hook formulas: expansion

ρ(h): weight function
f(x): formal power series
They are connected by the relation:

∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x)

• generating function : ρ −→ f

• hook length expansion : ρ←− f
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Discover new hook formulas: expansion

ρ(h): weight function
f(x): formal power series
They are connected by the relation:

∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x)

• generating function : ρ −→ f

• hook length expansion : ρ←− f

• hook length formula : when both ρ and f have “nice” forms
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Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.
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Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan-
sion ? Yes.
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Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan-
sion ? Yes.

1
2
3
4

1
2
4 1

2 1
3 2

1
4 2 1 4 3 2 1
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Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan-
sion ? Yes.

1
2
3
4

1
2
4 1

2 1
3 2

1
4 2 1 4 3 2 1

ρ4ρ3ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ3ρ2ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ4ρ3ρ2ρ1 = f4
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Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan-
sion ? Yes.

1
2
3
4

1
2
4 1

2 1
3 2

1
4 2 1 4 3 2 1

ρ4ρ3ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ3ρ2ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ4ρ3ρ2ρ1 = f4

We can solve ρ4 when knowing ρ1, ρ2, ρ3, f4, because there
is at most one “4” in each partition (linear equation with one
variable)
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Discover new hook formulas: maple package

Maple package for the hook length expansion

HookExp

Two procedures

hookgen: ρ −→ f

hookexp: ρ←− f
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Discover new hook formulas: permutation

Example : permutations

> read("HookExp.mpl"):

> hookexp(exp(x), 8);

[

1,
1

4
,
1

9
,

1

16
,

1

25
,

1

36
,

1

49
,

1

64

]

∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h2
= ex
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Discover new hook formulas: involution

Example: involutions

> hookexp(exp(x+x^2/2), 8);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8

]

∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h
= ex+x2/2
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Discover new hook formulas: interpolation

permutations :
∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h2
= ex

involutions :
∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h
= ex+x2/2

♥♥♥ What about the interpolation

ex+zx2/2 ?
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Discover new hook formulas: interpolation

Try

> hookexp(exp(x+z*x^2/2), 8);

[

1,
1 + z

4
,

3z + 1

9 + 3z
,

z2 + 6z + 1

16 + 16z
,

5z2 + 10z + 1

5z2 + 50z + 25
,

z3 + 15z2 + 15z + 1

120z + 36z2 + 36
,

7z3 + 35z2 + 21z + 1

7z3 + 147z2 + 245z + 49

]

Many binomial coefficients, so that ...
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Discover new hook formulas: interpolation

Interpolation between permutations and involutions:

First Conjecture (H., 2008)

∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z;h) = ex+zx2/2

where

ρ(z;n) =

⌊n/2⌋
∑

k=0

(

n

2k

)

zk

n

⌊(n−1)/2⌋
∑

k=0

(

n

2k + 1

)

zk

38



Latest news on the subject

The First Conjecture has been proved by:

Kevin Carde, Joe Loubert, Aaron Potechin, Adrian Sanborn

under the guidance of Dennis Stanton and Vic Reiner

(the Minnesota school)
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Discover new hook formulas: partition

Another example. Euler: generating function for partitions

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

∑

λ∈P

x|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1− xk
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Discover new hook formulas: partition

Another example. Euler: generating function for partitions

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

∑

λ∈P

x|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1− xk

♥♥♥ What about
∏

k(1− xk) ?
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Discover new hook formulas: partition

Another example. Euler: generating function for partitions

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

∑

λ∈P

x|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1− xk

♥♥♥ What about
∏

k(1− xk) ?

♥♥♥ or more generally
∏

k(1− xk)z ?
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Discover new hook formulas: partition

Try it by using HookExp
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Discover new hook formulas: partition

Try it by using HookExp

> hookexp(product((1-x^k)^z, k=1..7), 7);

[

−z,
3− z

4
,
8− z

9
,
15− z

16
,
24− z

25
,
35− z

36
,
48− z

49

]
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Discover new hook formulas: partition

Try it by using HookExp

> hookexp(product((1-x^k)^z, k=1..7), 7);

[

−z,
3− z

4
,
8− z

9
,
15− z

16
,
24− z

25
,
35− z

36
,
48− z

49

]

We see that the ρ has a very simple expression:

ρ(h) =
h2 − 1− z

h2
= 1− z + 1

h2
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Discover new hook formulas: partition

The previous hook length expansion suggests:

Theorem

∑

λ∈P

∏

h∈H(λ)

(

1− z + 1

h2

)

x =
∏

k≥1

(

1− xk
)z

46



Discover new hook formulas: proofs

The Russian-Physics Proof

Nekrasov, Okounkov (2003): arXiv: hep-th/0306238, 90 pages

(The last formula is deeply hidden in N-O’s paper. See
formula (6.12) on page 55)
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Discover new hook formulas: proofs

The Russian-Physics Proof

Nekrasov, Okounkov (2003): arXiv: hep-th/0306238, 90 pages

(The last formula is deeply hidden in N-O’s paper. See
formula (6.12) on page 55)

The “Elementary” Proof

H. (2008): arXiv:0805.1398 [math.CO]
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Discover new hook formulas: proof

Dedekind η-function η(x) = x1/24
∏

m≥1(1− xm).

Theorem (Macdonald, 1972)

Let t = 2t′ + 1 be an odd integer. We have

η(x)t2−1 = c0

∑

(v0,...,vt−1)

∏

i<j

(vi − vj)x
(v2

0
+v2

1
+···+v2

t−1
)/(2t),

where the sum ranges over all V -codings (v0, v1, . . . , vt−1) and c0 is
a numerical constant.

Affine root systems and Dedekind’s η-function (type An)
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Discover new hook formulas: proof

Theorem

Let t = 2t′ + 1 be an odd positive integer. There is a bijection φV :
λ 7→ (v0, v1, . . . , vt−1) which maps each t-core onto a V -coding such
that

|λ| = 1

2t
(v2

0 + v2
1 + · · ·+ v2

t−1)−
t2 − 1

24

and

∏

v∈λ

(

1− t2

h2
v

)

=
(−1)t′

1! · 2! · 3! · · · (t− 1)!

∏

0≤i<j≤t−1

(vi − vj).

Variation of Garvan-Kim-Stanton’s bijection (1990): Cranks

and t-cores
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Discover new hook formulas: proof

∑

λ

∏

h∈H(λ)

(

1− z

h2

)

x =
∑

n

Cn(z)xn

∏

k≥1

(

1− xk
)z−1

=
∑

n

Dn(z)xn

The coefficients Cn(z) and Dn(z) are both polynomials in z
of degree n. For proving Cn(z) = Dn(z), it suffices to find
n+1 explicit numerical values z0, z1, . . . , zn such that Cn(zi) =
Dn(zi) for 0 ≤ i ≤ n.

True for every z = t2 with odd integer t, since

∏

v∈λ

(

1− t2

h2
v

)

= 0

for every partition λ which is not a t-core.
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Main Theorem: 1 + xk

Partition with distinct parts - shift Young tableaux

∏

k

(1 + xk)

Thrall, 1952

The number of standard shifted Young tableaux is
given by

n!
∏

h∈H(λ) h
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Main Theorem: 1 + xk

> hooktype := "PAD";

> hookexp(product( 1+x^k, k=1..9), 9);

[1,
1

2
,
2

3
,
3

8
,
18

29
,

52

113
,
43539

71974
,

50712791

136184240
,
224560049745548

376968863190753
]

No formula !
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Main Theorem: 1 + xk

> hooktype := "PAD";

> hookexp(product( 1+x^k, k=1..9), 9);

[1,
1

2
,
2

3
,
3

8
,
18

29
,

52

113
,
43539

71974
,

50712791

136184240
,
224560049745548

376968863190753
]

No formula !

> hooktype := "PA";

> hookexp(product( 1+x^k, k=1..14),14);

[

1,
1

2
, 1,

7

8
, 1,

17

18
, 1,

31

32
, 1,

49

50
, 1,

71

72
, 1,

97

98

]

54



Main Theorem: 1 + xk

We have

∑

λ∈P

x|λ|
∏

h∈H(λ),h even

(

1− 2

h2

)

=
∏

k≥1

(1 + xk).
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Main Theorem: 1 + xk

We have

∑

λ∈P

x|λ|
∏

h∈H(λ),h even

(

1− 2

h2

)

=
∏

k≥1

(1 + xk).

Compare with (z = 1 in N-O formula):

∑

λ∈P

x|λ|
∏

h∈H(λ)

(

1− 2

h2

)

=
∏

k≥1

(1− xk).
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Main Theorem: 1 + xk

• How to prove ? It seems very hard. Need a generalization.
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Main Theorem: 1 + xk

• How to prove ? It seems very hard. Need a generalization.

• Can it be generalized ?
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Main Theorem: 1 + xk

• How to prove ? It seems very hard. Need a generalization.

• Can it be generalized ?

- No, with the right-hand side by hookexp(←−), because no
“nice” expansion for

∏ 1

1 + xk
or

∏

(1 + xk)z.

59



Main Theorem: 1 + xk

• How to prove ? It seems very hard. Need a generalization.

• Can it be generalized ?

- No, with the right-hand side by hookexp(←−), because no
“nice” expansion for

∏ 1

1 + xk
or

∏

(1 + xk)z.

- Yes, with the left-hand side by hookgen(−→).
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Main Theorem: 1 + xk variation

We have just seen:

ρ =
[

1,
1

2
, 1,

7

8
, 1,

17

18
, 1,

31

32
, 1,

49

50
, 1,

71

72
, 1,

97

98

]

−→
∏

k≥1

(1+xk).

Try the following variations of ρ with hookgen:

[

1, 1− z

2
, 1, 1− z

8
, 1, 1− z

18
, 1, 1− z

32
, 1, 1− z

50
, 1

]

[1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1]

[1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z]
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Main Theorem: 1 + xk variation

> ...

[

1, 1− z

2
, 1, 1− z

8
, 1, 1− z

18
, 1, 1− z

32
, 1, 1− z

50
, 1

]

> hookgen(%): etamake(%, x, 10): simplify(%);

∏

k≥1

(1− x2k)z

1− xk

When z = 1

∏

k≥1

(1− x2k)z

1− xk
=

∏

k≥1

1− x2k

1− xk
=

∏

k≥1

(1 + xk)
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Main Theorem: 1 + xk variation

> r:=n-> if n mod 3=0 then -1 else 1 fi:

> [seq(r(i), i=1..17)];

[1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1]

> hookgen(%): etamake(%, x, 17): simplify(%);

∏

k≥1

(1− x12k)3(1− x3k)6

(1− x6k)9(1− xk)
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Main Theorem

The previous and many other experimentations suggest:

Main Theorem (H. 2008)

∑

λ∈P

x|λ|
∏

h∈Ht(λ)

(

y − tyz

h2

)

=
∏

k≥1

(1− xtk)t

(1− (yxt)k)t−z(1− xk)

Ht(λ) = {h | h ∈ H(λ), h ≡ 0(mod t)}.
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Main Theorem: fields of interest

This work has some links with the following fields:

• General Mathematical Community: Euler, Jacobi, Gauss

• High Energy Physics Theory: Nekrasov, Okounkov

• Lie Algebra and Representation Theory: Macdonald, Dyson,
Kostant, Milne, Schlosser, Bessenrodt

• Modular Forms and Number Theory: Ramanujan, Lehmer,
Ono

• q-Series, Combinatorics: Andrews, Stanton, Stanley

• Symmetric Functions: Cauchy, Schur, Lascoux

• Algorithm, Computer Algebra: RSK, Krattenthaler (rate),
Garvan (qseries), Rubey, Sloane

• Plane Trees: Viennot, Foata, Schützenberger, Strehl, Gessel,
Postnikov
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Main Theorem: Proof

Proof.

Let t be a positive integer. The Littlewood decomposition maps
a partition λ to (µ;λ0, λ1, . . . , λt−1) such that

(P1) µ is a t-core and λ0, λ1, . . . , λt−1 are partitions;

(P2) |λ| = |µ|+ t(|λ0|+ |λ1|+ · · ·+ |λt−1|);
(P3) {h/t | h ∈ Ht(λ)} = H(λ0) ∪H(λ1) ∪ · · · ∪ H(λt−1).

The vector (λ0, λ1, . . . , λt−1) is usually called the t-quotient of
the partition λ.

66



Main Theorem: Specializations

The Main Theorem has so many specializations:

• the Jacobi triple product identity →
• the Gauss identity →
• the Nekrasov-Okounkov formula

• the generating function for partitions

• the Macdonald identity for A
(a)
ℓ

• the classical hook length formula

• the marked hook formula →
• the generating function for t-cores

• the t-core analogues of the hook formula

• the t-core analogues of the marked hook formula

• ...
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Main Theorem: Specializations

Why it has so many specializations?

• It contains 3 variables t, y, z

• We can give special values to t, y, z

• Compare the coefficients of the minimal terms

• Compare the coefficients of the maximal terms
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Specializations, Jacobi + Gauss

∑

λ∈P

x|λ|
∏

h∈Ht(λ)

(

y − tyz

h2

)

=
∏

k≥1

(1− xtk)t

(1− (yxt)k)t−z(1− xk)

t = 1, y = 1, z = 4:

∑

λ∈P

x|λ|
∏

h∈H1(λ)

(

1− 4

h2

)

=
∏

k≥1

(1− xk)3

t = 2, y = 1, z = 2:

∑

λ∈P

x|λ|
∏

h∈H2(λ)

(

1− 4

h2

)

=
∏

k≥1

(1− x2k)2

1− xk
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Specializations, Jacobi + Gauss

Simplify

J :=
∏

h∈H1(λ)

(

1− 4

h2

)

and G :=
∏

h∈H2(λ)

(

1− 4

h2

)

• If a partition λ contains one box v whose hook length is
hv = 2, then

J = G = 0.

• Otherwise λ must be a staircase partition

1

3 1

5 3 1

7 5 3 1
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Specializations, Jacobi + Gauss

−3

5
9 −3

21
25

5
9 −3

45
49

21
25

5
9 −3

J

1

1 1

1 1 1

1 1 1 1

G

J =
( (2m− 1)2 − 4

(2m− 1)2

)1

· · ·
(5

9

)m−1(−3

1

)m

= (−1)m(2m+1)

G = 1
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Specializations, Jacobi + Gauss

The Main Theorem unifies Jacobi and Gauss identities.

t = 1, y = 1, z = 4:

Jacobi
∏

m≥1

(1− xm)3 =
∑

m≥0

(−1)m(2m + 1)xm(m+1)/2

t = 2, y = 1, z = 2:

Gauss

∏

m≥1

(1− x2m)2

1− xm
=

∑

m≥0

xm(m+1)/2
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Specializations, t-cores

Let {z = t or y = 0}, we get the well known formula:

∑

λ: t-cores

x|λ| =
∏

k≥1

(1− xtk)t

1− xk

73



Specializations, t-cores

Let {z = t or y = 0}, we get the well known formula:

∑

λ: t-cores

x|λ| =
∏

k≥1

(1− xtk)t

1− xk

♥♥♥ What about

∏

k≥1

(1 + xtk)t

1− xk
?
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Specializations, t-cores

Let {z = t or y = 0}, we get the well known formula:

∑

λ: t-cores

x|λ| =
∏

k≥1

(1− xtk)t

1− xk

♥♥♥ What about

∏

k≥1

(1 + xtk)t

1− xk
?

♥♥♥ How to generalize it ?
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Specializations, t-cores

First, try hookexp (←−):

> hookexp( product( (1+x^k)/(1-x^k), k=1..9), 9);

[2, 1, 1, 1, 1, 1, 1, 1, 1]
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Specializations, t-cores

First, try hookexp (←−):

> hookexp( product( (1+x^k)/(1-x^k), k=1..9), 9);

[2, 1, 1, 1, 1, 1, 1, 1, 1]

We have

∑

λ∈P

x|λ|2#{h∈H(λ),h=t} =
∏

k≥1

(1 + xtk)t

1− xk
.
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Specializations, t-cores

First, try hookexp (←−):

∑

λ∈P

x|λ|2#{h∈H(λ),h=t} =
∏

k≥1

(1 + xtk)t

1− xk
.
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Specializations, t-cores

First, try hookexp (←−):

∑

λ∈P

x|λ|2#{h∈H(λ),h=t} =
∏

k≥1

(1 + xtk)t

1− xk
.

Then, try hookgen (−→):

Theorem (H. 2008)

∑

λ∈P

x|λ|y#{h∈H(λ),h=t} =
∏

k≥1

(1 + (y − 1)xtk)t

1− xk

Special cases: y = 0, 1, 2
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Latest news on the subject

A. Velingker, E. Clader, Y. Kemper, M. Wage, D. Collins, S. Wolfe

were working on these new hook length formulas and found
interesting applications on Modular Forms and Number Theory

under the guidance of Ken Ono

(the Wisconsin school)
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Specializations, marked hook formula

• {z = −b/y, y → 0} in Main Theorem:

∑

λ∈P

x|λ|
∏

h∈Ht(λ)

tb

h2
= ebxt

∏

k≥1

(1− xtk)t

1− xk

• Compare the coefficients of bnxtn:

∑

λ⊢tn,#Ht(λ)=n

∏

h∈Ht(λ)

1

h2
=

1

tnn!

• t = 1:
∑

λ⊢n

f2
λ = n!
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Specializations, marked hook formula

• Compare the coefficients of (−z)n−1xntyn

∑

λ⊢nt,#Ht(λ)=n

∏

h∈Ht(λ)

1

h2

∑

h∈Ht(λ)

h2 =
3n− 3 + 2t

2(n− 1)!

• t = 1:

Marked hook formula

∑

λ⊢n

f2
λ

∑

h∈H(λ)

h2 =
n(3n− 1)

2
n!
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Specializations, marked hook formula

• Direct marked-RSK proof ? Not yet

• Generalizations ? Yes

83



Specializations, marked hook formula

• Direct marked-RSK proof ? Not yet

• Generalizations ? Yes
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Specializations, marked hook formula

∑

λ⊢n

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h2 =
3n− 1

2(n− 1)!

∑

λ⊢n

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h4 =
40n2 − 75n + 41

6(n− 1)!

∑

λ⊢n

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h6 =
1050n3 − 4060n2 + 5586n− 2552

24(n− 1)!

Second Conjecture (H. 2008)

Pk(n) = (n− 1)!
∑

λ⊢n

(

∏

v∈λ

1

h2
v

)(

∑

u∈λ

h2k
u

)

is a polynomial in n of degree k.
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Latest news on the subject

The Second Conjecture has been proved by
Richard Stanley and Greta Panova

Tewodros Amdeberhan slightly simplified Stanley’s proof

(the MIT school)
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Latest news on the subject: Okada

• Stanley proved:

1

n!

∑

λ⊢n

f2
λ F (h2 : h ∈ H(λ))

is a polynomial in n, where F is any symmetric function.

• Okada Conjecture:

1

n!

∑

λ⊢n

f2
λ

∑

h∈H(λ)

r
∏

i=1

(h2−i2) =
1

2(r + 1)2

(

2r

r

)(

2r + 2

r + 1

) r
∏

j=0

(n−j)
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Latest news on the subject: Okada

• Okada Conjecture implies:

1

n!

∑

λ⊢n

f2
λ

∑

h∈H(λ)

h2k

=
k

∑

i=0

T (k + 1, i + 1)
1

2(i + 1)2

(

2i

i

)(

2i + 2

i + 1

) i
∏

j=0

(n− j)

where T (k, i) are the central factorial numbers.

• Panova has proved the Okada Conjecture.
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Specializations, Power sum

• {y = 1; compare the coefficients of z} in Main Theorem

∑

λ∈P

x|λ|
∑

h∈Ht(λ)

1

h2
=

1

t

∏

m≥1

1

1− xm

∑

k≥1

xtk

k(1− xtk)
.

• t = 1:

∑

λ∈P

x|λ|
∑

h∈H(λ)

1

h2
=

∏

m≥1

1

1− xm

∑

k≥1

xk

k(1− xk)
.
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Specializations, Power sum

Direct proof. By using an elegant result on multi-sets of hook
lengths and multi-sets of partition parts.

It is amusing to see that this result is rediscovered periodically:

• Stanley (1972, partial)

• Kirdar, Skyrme (1982, partial)

• Elder (1984, partial)

• Hoare (1986, partial)

• Bessenrodt (1998)

• Bacher, Manivel (2002)

• H., Bessenrodt (2009)

• Shin, Zeng (2009)
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Specializations, Power sum

Each hook length h can be split into h = a + l + 1, where a is
the arm length and l the leg length. The ordered pair (a, l) is
called a hook type.

Theorem (Bessenrodt 1998; Bacher-Manivel 2002)

Let n ≥ k ≥ 1 be two integers. Then, for every
positive j < k, the total number of occurrences of
the part k among all partitions of n is equal to the
number of boxes, whose hook type is (j, k − j − 1).
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Specializations, Power sum

Example:

1
2
3
4

1
2
4 1

2 1
3 2

1
4 2 1 4 3 2 1

hook lengths hv

1
1
1
1

1
1
2 2

2 2
2 2

1
3 3 3 4 4 4 4

part lengths pv
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Specializations, Power sum

Let mk(λ) denote the number of parts in λ equal to k.

Corollary
∑

λ⊢n

∑

h∈H(λ)

hβ =
∑

λ⊢n

∑

k≥1

kβ+1mk(λ).
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Specializations, Power sum

∑

n≥1

qn
∑

λ⊢n

∑

k≥1

kβmk(λ) =
∏

m≥1

1

1− qm
×

∑

k≥1

kβ qk

1− qk
.
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Specializations, Power sum

Finally we obtain:

Theorem

∑

λ∈P

q|λ|
∑

h∈H(λ)

hβ =
∏

m≥1

1

1− qm
×

∑

k≥1

kβ+1 qk

1− qk
.

(Specialization: β = −2)
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From equidistribution to symmetry distribution

∑

λ⊢n

∑

v∈λ

xhv =
∑

λ⊢n

∑

v∈λ

xpv

7x + 6x2 + 3x3 + 4x4

.

Theorem (H., Bessenrodt, 2009)

∑

λ⊢n

∑

v∈λ

xhvypv =
∑

λ⊢n

∑

v∈λ

xpvyhv
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From equidistribution to symmetry distribution

For example, the joint distribution of hv and pv for the partitions
of 4 is reproduced in the following tableau, which is symmetric.

p \ h 1 2 3 4
∑

1 3 2 1 1 7
2 2 2 1 1 6
3 1 1 0 1 3
4 1 1 1 1 4
∑

7 6 3 4 20
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From equidistribution to symmetry distribution

Proof. T -type is much easier to calculate than hook-type, since
T -type is unique in a given partition.

v

l

am

A

B

C

D

partition and its regions
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From equidistribution to symmetry distribution

A(q) = 1/(q; q)m;

B(q) =

[

l + a

a

]

q

;

C(q) =
1

(1− qm+a+1)(1− qm+a+2) · · · =
(q; q)m+a

(q; q)∞
;

D(q) = q(m+1)(l+1)+a.

A(q)B(q)C(q)D(q) =
(q; q)a

(q; q)∞

[

l + a

a

]

q

[

m + a

a

]

q

q(m+1)(l+1)+a
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Number Theory, Corollary

Corollary [y = 1]. We have

∑

λ∈P

x|λ|
∏

h∈Ht(λ)

(

1− tz

h2

)

=
∏

k≥1

(1− xtk)z

1− xk
.
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Number Theory, Discrete interpolation

Discrete interpolation :

∑

λ

x|λ|
∏

h∈H1(λ)

(

1− 36

h2

)

=
∏

k≥1

(1− xk)36

1− xk
;

∑

λ

x|λ|
∏

h∈H2(λ)

(

1− 36

h2

)

=
∏

k≥1

(1− x2k)18

1− xk
;

∑

λ

x|λ|
∏

h∈H3(λ)

(

1− 36

h2

)

=
∏

k≥1

(1− x3k)12

1− xk
;

∑

λ

x|λ|
∏

h∈H6(λ)

(

1− 36

h2

)

=
∏

k≥1

(1− x6k)6

1− xk
,

where each sum is over all 6-cores λ.
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Number Theory, Conjecture

Third Conjecture (H. 2008)

Let n, s, t be positive integers such that t 6= 4, 10 and s | t.
Then the coefficient of xn in

∏

k≥1

(1− xsk)t2/s

1− xk

is equal to zero, if and only if the coefficient of xn in

∏

k≥1

(1− xtk)t

1− xk

is also equal to zero.
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Number Theory, t = 2

t = 2: Third conjecture is true.

Jacobi

∏

m≥1

(1− xm)4

(1− xm)
=

∑

m≥0

(−1)m(2m + 1)xm(m+1)/2

Gauss

∏

m≥1

(1− x2m)2

1− xm
=

∑

m≥0

xm(m+1)/2
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Number Theory, Ramanujan and Lehmer

Ramanujan τ -function is defined by

x
∏

m≥1

(1− xm)24 =
∑

n≥1

τ(n)xn

=x− 24x2 + 252x3 − 1472x4 + 4830x5 − 6048x6 + · · ·

Conjecture (Lehmer)

For each n we have τ(n) 6= 0.
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Specializations, t = 5

t = 5: Third conjecture becomes

Third Conjecture (t = 5)

Then the coefficient of xn in

∏

k≥1

(1− xk)25

1− xk
=

∏

k≥1

(1− xk)24

is equal to zero, if and only if the coefficient of xn in

∏

k≥1

(1− x5k)5

1− xk

is also equal to zero.
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Specializations, t = 5

Granville and Ono (t = 5)

∏

k≥1

(1− x5k)5

1− xk
=

∑

n≥0

α(n)xn.

Then for each n we have α(n) 6= 0.
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Specializations, t = 5

t = 5: Third conjecture becomes Lehmer conjecture.
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Number Theory, t = 3

t = 3:

∏

m≥1

(1− xm)8 =
∑

n≥0

a(n)xn

= 1− 8x + 20x2 − 70x4 + 64x5 + 56x6 − 125x8+

· · · − 20482x220 + 24050x224 − 21624x225 + · · ·

∏

m≥1

(1− x3m)3

1− xm
=

∑

b≥0

b(n)xn

= 1 + x + 2x2 + 2x4 + x5 + 2x6 + x8+

· · ·+ 2x220 + 2x224 + 3x225 + · · ·
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Number Theory, t = 3, Theorem

t = 3: Third conjecture is true.

Theorem (H., Ono, 2008)

a(n) = 0 if and only if b(n) = 0

Modular form, arithmetic
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Binary trees: tangent numbers

The tangent number counts the alternating permutations (André,
1881), or the labeled complete binary trees.
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Binary trees: tangent numbers

The tangent number counts the alternating permutations (André,
1881), or the labeled complete binary trees.

> hooktype:="CBT": # Complete Binary Trees

> hookexp(tan(x)+sec(x), 9);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9

]
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Binary trees: tangent numbers

The tangent number counts the alternating permutations (André,
1881), or the labeled complete binary trees.

> hooktype:="CBT": # Complete Binary Trees

> hookexp(tan(x)+sec(x), 9);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9

]

∑

T∈C

x|T |
∏

h∈H(T )

1

h
= tan(x) + sec(x)

C : complete binary trees
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tangent numbers

> hooktype:="BT": # Binary Trees

> hookexp(tan(x)+sec(x), 8);

[

1,
1

4
,
1

6
,
1

8
,

1

10
,

1

12
,

1

14
,

1

16

]
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tangent numbers

> hooktype:="BT": # Binary Trees

> hookexp(tan(x)+sec(x), 8);

[

1,
1

4
,
1

6
,
1

8
,

1

10
,

1

12
,

1

14
,

1

16

]

∑

T∈B

x|T |
∏

h∈H(T ),h≥2

1

2h
= tan(x) + sec(x)
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tangent numbers

> hooktype:="BT": # Binary Trees

> hookexp(tan(x)+sec(x), 8);

[

1,
1

4
,
1

6
,
1

8
,

1

10
,

1

12
,

1

14
,

1

16

]

∑

T∈B

x|T |
∏

h∈H(T ),h≥2

1

2h
= tan(x) + sec(x)

The tangent number counts André permutations (Foata, Schü-
tzenberger, Strehl, 1973).
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Hook length formulas for plane trees, T1

Theorem T1 [a = 0, z = 1, all permutations]. We have

∑

T∈B

x|T |
∏

h∈H(T )

1

h
=

1

1− x
.
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Hook length formulas for plane trees, T2

Theorem T2 [a→∞, z = 1, Catalan number]. We have

∑

T∈B

x|T |
∏

h∈H(T )

1 =
1−
√

1− 4x

2x
.
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Hook length formulas for plane trees, T3

Theorem T3 [a = 1, z = 1, Postnikov]. We have

∑

T∈B

x|T |
∏

h∈H(T )

(

1 +
1

h

)

=
∑

n≥0

(n + 1)n−1 (2x)n

n!
.
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Hook length formulas for plane trees, T4

Theorem T4 [z = 1, left-hand side extension of Post-
nikov identity (Lascoux, Du-Lu)]. We have

∑

T∈B(n)

∏

v∈T

(

a+
1

hv

)

=
1

(n + 1)!

n−1
∏

k=0

((n+1+ k)a+n+1− k).
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Hook length formulas for plane trees, T5

Theorem T5 [a = 1, right-hand side extension of
Postnikov identity (Han, 2008)]. We have

∑

T∈B

x|T |
∏

v∈T

(z + h)h−1

h(2z + h− 1)h−2
=

∑

n≥0

z(z + n)n−1 (2x)n

n!
.
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Hook length formulas for plane trees

Theorem TX(H., 2008)

We have

∑

T∈B(n)

∏

h∈H(T )

∏h−1
i=1 (za + z + (2h− i)a + i)

2h
∏h−2

i=1 (2za + 2z + (2h− 2− i)a + i)

=
z(a + 1)

n!

n−1
∏

i=1

(za + z + (2n− i)a + i).
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Hook length formulas for plane trees

Theorem TX(H., 2008)

We have

∑

T∈B(n)

∏

h∈H(T )

∏h−1
i=1 (za + z + (2h− i)a + i)

2h
∏h−2

i=1 (2za + 2z + (2h− 2− i)a + i)

=
z(a + 1)

n!

n−1
∏

i=1

(za + z + (2n− i)a + i).

♥♥♥ Theorem TX unifies a lot of well known hook formu-
las by taking special values of a and z, including Theorems
T1,T2,T3,T4 and T5.
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Latest news on the subject

L. Yang, B. Sagan, W. Chen, O. Gao, P. Guo, N. Eriksen

have found generalizations and other proofs of certain
hook length formulas for plane trees
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Papers

• Discovering hook length formulas by an expansion technique

• New hook length formulas for binary trees

• Yet another generalization of Postnikov’s hook length formula for binary trees

• Some conjectures and open problems on partition hook lengths

• An explicit expansion formula for the powers of the Euler product in terms of partition

hook lengths (arXiv exclusive)

• The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension

and applications

• (with K. Ono) Hook lengths and 3-cores

• Hook lengths and shifted parts of partitions

• (with K. Ji) Combining hook length formulas and BG-ranks for partitions via the Little-

wood decomposition

• (with Ch. Bessenrodt) Symmetry distribution between hook length and part length for

partitions
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Merci !

www-irma.u-strasbg.fr/~guoniu/hook
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