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Abstract

Adverse selection is an important problem in many markets. Governments respond
to it with complex regulations: mandates, community rating, subsidies, risk adjustment,
and regulation of contract characteristics. This paper proposes a perfectly competitive
model of a market with adverse selection. Prices are determined by zero-profit con-
ditions, and the set of traded contracts is determined by free entry. Crucially for ap-
plications, contract characteristics are endogenously determined, consumers may have
multiple dimensions of private information, and an equilibrium always exists. Equilib-
rium corresponds to the limit of a differentiated products Bertrand game.

We apply the model to show that mandates can increase efficiency but have unin-
tended consequences. With adverse selection, an insurance mandate lowers the price
of low-coverage policies, which increases adverse selection on the intensive margin and
causes some consumers to purchase less coverage. Optimal regulation addresses ad-
verse selection both on the extensive and the intensive margins, can be described by a
sufficient statistics formula, and includes elements that are commonly used in practice.
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1 Introduction

Policy makers and market participants consider adverse selection a first-order concern in
many markets. These markets are often heavily regulated, if not subject to outright govern-
ment provision, as in social programs like unemployment insurance and Medicare. Govern-
ment interventions are typically complex, involving the regulation of contract characteristics,
personalized subsidies, community rating, risk adjustment, and mandates.1 However, most
models of competition take contract characteristics as given, limiting the scope of normative
and even positive analyses of these policies.

Standard models face three limitations. The first limitation arises in the Akerlof (1970)
model, which, following Einav et al. (2010a), is used by most of the recent applied work.2

The Akerlof lemons model considers a market for a single contract with exogenous character-
istics, making it impossible to consider the effect of policies that affect contract terms.3 In
contrast, the Spence (1973) and Rothschild and Stiglitz (1976) models do allow for endoge-
nous contract characteristics. However, they restrict consumers to be heterogeneous along
a single dimension,4 despite evidence on the importance of multiple dimensions of private

1Van de Ven and Ellis (1999) survey health insurance markets across eleven countries with a focus on risk
adjustment (cross-subsidies from insurers who enroll cheaper consumers to those who enroll more expensive
ones). Their survey gives a glimpse of common regulations. There is risk adjustment in seventeen out of
the eighteen markets. Eleven of them have community rating, which forbids price discrimination on some
observable characteristics, such as age or preexisting conditions. Private sponsors also use risk adjustment and
limit price discrimination. For example, large corporations in the United States typically offer a restricted
number of insurance plans to their employees. Benefits consulting firms often advise companies to risk-
adjust contributions due to concerns about adverse selection. This is in contrast to setting uniform employer
contributions, what is known as a “fixed-dollar” or “flat rate” model (Pauly et al., 2007; Cutler and Reber,
1998).

2Recent papers using this framework include Handel et al. (2015), Hackmann et al. (2015), Mahoney and
Weyl (2014), and Scheuer and Smetters (2014).

3Many authors highlight the importance of taking the determination of contract characteristics into ac-
count and the lack of a theoretical framework to deal with this. Einav and Finkelstein (2011) say that
“abstracting from this potential consequence of selection may miss a substantial component of its welfare
implications [...]. Allowing the contract space to be determined endogenously in a selection market raises
challenges on both the theoretical and empirical front. On the theoretical front, we currently lack clear
characterizations of the equilibrium in a market in which firms compete over contract dimensions as well as
price, and in which consumers may have multiple dimensions of private information.” According to Einav et
al. (2009), “analyzing price competition over a fixed set of coverage offerings [...] appears to be a relatively
manageable problem, characterizing equilibria for a general model of competition in which consumers have
multiple dimensions of private information is another matter. Here it is likely that empirical work would be
aided by more theoretical progress.”

4Chiappori et al. (2006) highlight this shortcoming: “Theoretical models of asymmetric information typi-
cally use oversimplified frameworks, which can hardly be directly transposed to real-life situations. Rothschild
and Stiglitz’s model assumes that accident probabilities are exogenous (which rules out moral hazard), that
only one level of loss is possible, and more strikingly that agents have identical preferences which are moreover
perfectly known to the insurer. The theoretical justification of these restrictions is straightforward: analyz-
ing a model of “pure,” one-dimensional adverse selection is an indispensable first step. But their empirical
relevance is dubious, to say the least.”



3

information.5 Moreover, the Spence model suffers from rampant multiplicity of equilibria,
while the Rothschild and Stiglitz model often has no equilibrium.6

In this paper, we develop a competitive model of adverse selection. The model incorpo-
rates three key features, motivated by the central role of contract characteristics in policy
and by recent empirical findings. First, the set of traded contracts is endogenous, allowing us
to study policies that affect contract characteristics.7 Second, consumers may have several
dimensions of private information, engage in moral hazard, and exhibit deviations from ra-
tional behavior such as inertia and overconfidence.8 Third, equilibria always exist and yield
sharp predictions. Equilibria are inefficient, and even simple interventions can raise welfare.
Nevertheless, standard regulations have important unintended consequences once we take
firm responses into account.

The key idea is to consistently apply the price-taking logic of the standard Akerlof (1970)
and Einav et al. (2010a) models to the case of endogenous contract characteristics. Prices
of traded contracts are set so that every contract makes zero profits. Moreover, whether a
contract is offered depends on whether the market for that contract unravels, exactly as in
the Akerlof single-contract model. For example, take an insurance market with a candidate
equilibrium in which a policy is not traded at a price of $1,100. Suppose that consumers
would start buying the policy were its price to fall below $1,000. Consider what happens
as the price of the policy falls from $1,100 to $900 and buyers flock in. One case is that
buyers are bad risks, with an average cost of, say, $1,500. In this case, it is reasonable for the
policy not to be traded because there is an adverse selection death spiral in the market for
the policy. Another case is that buyers are good risks, with an expected cost of, say, $500.
In that case, the fact that the policy is not traded is inconsistent with free entry because any
firm who entered the market for this policy would earn positive profits.

We formalize this idea as follows. The model takes as given a set of potential contracts
and a distribution of consumer preferences and costs. A contract specifies all relevant char-
acteristics, except for a price. Equilibrium determines both prices and the contracts that
are traded. A weak equilibrium is a set of prices and an allocation such that all consumers
optimize and prices equal the average cost of supplying each contract. There are many weak
equilibria because this notion imposes little discipline on which contracts are traded. For

5See Finkelstein and McGarry (2006), Cohen and Einav (2007), and Fang et al. (2008).
6According to Chiappori et al. (2006), “As is well known, the mere definition of a competitive equilibrium

under asymmetric information is a difficult task, on which it is fair to say that no general agreement has
been reached.” See also Myerson (1995).

7We clarify that we study endogenous contract characteristics in the narrow sense of determining, from a
set of potential contracts, the ones that are traded and the ones that unravel as in Akerlof (1970). Unraveling
is a central concern in the adverse selection literature. However, contract and product characteristics depend
on many other factors, even when there is no adverse selection. This is a broader issue that we do not explore.

8See Spinnewijn (2015) on overconfidence, Handel (2013) and Polyakova (2014) on inertia, and Kunreuther
and Pauly (2006) and Baicker et al. (2012) for discussions of behavioral biases in insurance markets.
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example, there are always weak equilibria where no contracts are bought because prices are
high, and prices are high because the expected cost of a non-traded contract is arbitrary.

We make an additional requirement that formalizes the idea that entry into non-traded
contracts is unprofitable. We require equilibria to be robust to a small perturbation of
fundamentals. Namely, equilibria must survive in economies with a set of contracts that
is similar to the original, but with a finite number of contracts, and with a small mass of
consumers who demand all contracts and have low costs. The definition avoids pathologies
related to conditional expectation over measure zero sets because all contracts are traded in a
perturbation, much like the notion of a proper equilibrium in game theory (Myerson, 1978).
The second part of our refinement is similar to the one used by Dubey and Geanakoplos
(2002) in a model of competitive pools.

Competitive equilibria always exist and make sharp predictions in a wide range of ap-
plied models that are particular cases of our framework. The equilibrium matches standard
predictions in the models of Akerlof (1970), Einav et al. (2010a), and Rothschild and Stiglitz
(1976) (when their equilibrium exists). Besides the price-taking motivation, we give strategic
foundations for the equilibrium, showing that it is the limit of a game-theoretic model of
firm competition, which is similar to the models commonly used in the empirical industrial
organization literature. We discuss in detail the relationship between our equilibrium and
standard solution concepts below.

To understand the importance of contract characteristics and different dimensions of
heterogeneity, we apply our model to study policy interventions. To ensure that the effects
are quantitatively plausible, we calibrate a parametric health insurance model based on Einav
et al. (2013). Consumers have four dimensions of private information, giving a glimpse of
equilibrium behavior beyond standard one-dimensional models. There is moral hazard, so
that welfare-maximizing regulation is more nuanced than simply mandating full insurance.
We calculate the competitive equilibrium with firms offering contracts covering from 0% to
100% of expenditures. There is considerable adverse selection in equilibrium, creating scope
for regulation.

We calculate the equilibrium under a mandate that requires purchase of insurance with
actuarial value of at least 60%. Figure 1 depicts the mandate’s impact on coverage choices.
A model that does not take firm responses into account would simply predict that consumers
who originally bought less than 60% coverage would migrate to the least generous policy. In
equilibrium, however, the influx of cheaper consumers into the 60% policy reduces its price,
which in turn leads some of the consumers who were purchasing more comprehensive plans
to reduce their coverage. Taking equilibrium effects into account, the mandate has important
unintended consequences. The mandate forces some consumers to increase their purchases to
the minimum quality standard but also increases adverse selection on the intensive margin.
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Figure 1: Equilibrium effects of a mandate.

Notes: The figure depicts the distribution of coverage choices in the numerical example from Section 5. In
this health insurance model, consumers choose contracts that cover from 0% to 100% of expenses. The dark
red bars represent the distribution of coverage in an unregulated equilibrium. The light gray bars represent
coverage in equilibrium with a mandate forcing consumers to purchase at least 60% coverage. In the latter
case, about 85% of consumers purchase the minimum coverage, and the bar at 60% is censored.

These findings are supported by more general, nonparametric theoretical results. We show
that increasing the minimum coverage of a mandate lowers the price of low-quality coverage by
an amount approximately equal to a measure of adverse selection in the original equilibrium,
due to the inflow of cheap consumers. Moreover, the mandate’s direct effect on prices implies
that the mandate necessarily has knock-on effects, consistent with our calibrations.

Despite these unintended consequences, mandates may increase social welfare. Under our
benchmark parameters, the increase in welfare (measured as total consumer and producer
surplus) from the mandate equals $140 per consumer. We compute the welfare-maximizing
regulation and find that it involves subsidies to address adverse selection on the intensive
margin and increases welfare by $279 relative to the unregulated market.

These results are consistent with the view that there is scope for government intervention
in markets with adverse selection. Moreover, interventions that do not take into account their
effect on contract characteristics may miss much of the potential welfare gains. To understand
this point, besides varying calibration parameters, we theoretically analyze the sources of
inefficiency. We focus on a bare-bones case, ignoring redistribution, the ability to price
discriminate on some observables, and assuming simple substitution patterns. Markets with
adverse selection are inefficient because the incremental price of coverage is the same for all
consumers and, therefore, differs from the incremental cost of coverage. Welfare-maximizing
regulation is summarized by a sufficient statistics formula. Moreover, the optimal regulation
formula is closely related to policies that are commonly employed in insurance markets. While
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this suggests that interventions in the intensive margin are important, we caution that finer
points of the optimal regulation formula have to be modified in richer settings and leave a
comprehensive analysis to future work (Azevedo and Gottlieb, in preparation).

2 Model

2.1 The Model

We consider competitive markets with a large number of consumers and free entry of identical
firms operating at an efficient scale that is small relative to the market. To model the gamut
of behavior relevant to policy discussions in a simple way, we take as given a set of potential
contracts, preferences, and costs of supplying contracts.9 We restrict attention to a group
of consumers who are indistinguishable with respect to characteristics over which firms can
price discriminate.

Formally, firms offer contracts (or products) x in X. Each consumer wishes to purchase
a single contract. Consumer types are denoted θ in Θ. Consumer type θ derives utility
U(x, p, θ) from buying contract x at a price p, and it costs a firm c(x, θ) ≥ 0 measured in
units of a numeraire to supply it. Utility is strictly decreasing in price. There is a positive
mass of consumers, and the distribution of types is a measure µ.10 An economy is defined
as E = [Θ, X, µ].

2.2 Clarifying Examples

The following examples clarify the definitions, limitations of the model, and the goal of de-
riving robust predictions in a wide range of selection markets. Parametric assumptions in the
examples are of little consequence to the general analysis, so some readers may prefer to skim
over details. We begin with the classic Akerlof (1970) model, which is the dominant frame-
work in applied work. It is simple enough that the literature mostly agrees on equilibrium
predictions.

Example 1. (Akerlof) Consumers choose whether to buy a single insurance product, so that
X = {0, 1}. Utility is quasilinear,

U(x, p, θ) = u(x, θ)− p, (1)

and the contract x = 0 generates no cost or utility, u(0, θ) ≡ c(0, θ) ≡ 0. Thus, it has a price
of 0 in equilibrium. All that matters is the joint distribution of willingness to pay u(1, θ) and

9This is similar to Veiga and Weyl (2014a,b) and Einav et al. (2009, 2010a).
10The relevant σ-algebra and detailed assumptions are described below.
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Figure 2: Weak equilibria in the (a) Akerlof and (b) Rothschild and Stiglitz models.

Notes: Panel (a) depicts demand D(p) and average cost AC(p) curves in the Akerlof model, with quantity on
the horizontal axis, and prices on the vertical axis. The equilibrium price of contract x = 1 is denoted by p∗.
Panel (b) depicts two weak equilibria of the Rothschild and Stiglitz model, with contracts on the horizontal
axis and prices on the vertical axis. ICL and ICH are indifference curves of type L and H consumers. The
dashed lines depict the contracts that give zero profits for each type. L and H denote the contract-price
pairs chosen by each type in these weak equilibria, which are the same as in Rothschild and Stiglitz (1976)
when their equilibrium exists. The bold curves p(x) (black) and p̃(x) (gray) depict two weak equilibrium
price schedules. p(x) is an equilibrium price, but p̃(x) is not.

costs c(1, θ), which is given by the measure µ.
A competitive equilibrium in the Akerlof model has a compelling definition and is amenable

to an insightful graphical analysis. Following Einav et al. (2010a), let the demand curve D(p)

be the mass of consumers with willingness to pay higher than p, and let AC(q) be the aver-
age cost of the q consumers with highest willingness to pay.11 An equilibrium in the Akerlof
(1970) and Einav et al. (2010a) sense is given by the intersection between the demand and
average cost curves, depicted in Figure 2a. At this price and quantity, consumers behave
optimally and the price of insurance equals the expected cost of providing coverage. If the
average cost curve is always above demand, then the market unravels and equilibrium involves
no transactions.

This model is restrictive in two important ways. First, contract terms are exogenous.
This is important because market participants and regulators often see distortions in contract
terms as crucial. In fact, many of the interventions in markets with adverse selection regulate
contract dimensions directly, aim to affect them indirectly, or try to shift demand from some
type of contract to another. It is impossible to consider the effect of these policies in the

11Under appropriate assumptions, the definitions are

D(p) = µ({θ : u(1, θ) ≥ p})
AC(q) = E[c(1, θ)|µ, u(1, θ) ≥ D−1(q)].
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Akerlof model. Second, there is a single non-null contract. This is also restrictive. For
example, Handel et al. (2015) approximate health insurance exchanges by assuming that
they offer only two types of plans (corresponding to x = 0 and x = 1), and that consumers
are forced to choose one of them.12 Likewise, Hackmann et al. (2015) and Scheuer and
Smetters (2014) lump the choice of buying any health insurance as x = 1.

The next example, the Rothschild and Stiglitz (1976) model, endogenously determines
contract characteristics. However, preferences are stylized. Still, this model already exhibits
problems with existence of equilibrium, and there is no consensus about equilibrium predic-
tions.

Example 2. (Rothschild and Stiglitz) Each consumer may buy an insurance contract in
X = [0, 1], which insures her for a fraction x of a possible loss of l. Consumers differ only in
the probability θ of a loss. Their utility is

U(x, p, θ) = θ · v(W − p− (1− x)l) + (1− θ) · v(W − p),

where v(·) is a Bernoulli utility function and W is wealth, both of which are constant in the
population. The cost of insuring individual θ with policy x is c(x, θ) = θ · x · l. The set of
types is Θ = {L,H}, with 0 < L < H ≤ 1. The definition of an equilibrium in this model is
a matter of considerable debate, which we address in the next section.

We now illustrate more realistic multidimensional heterogeneity with an empirical model
of preferences for health insurance used by Einav et al. (2013).

Example 3. (Einav et al.) Consumers are subject to a stochastic health shock l and,
after the shock, decide the amount e they wish to spend on health services. Consumers
are heterogeneous in their distribution of health shocks Fθ, risk aversion parameter Aθ, and
moral hazard parameter Hθ.

For simplicity, we assume that insurance contracts specify the fraction x ∈ X = [0, 1] of
health expenditures that are reimbursed. Utility after the shock equals

CE(e, l;x, p, θ) = [(e− l)− 1

2Hθ

(e− l)2] + [W − p− (1− x)e],

where W is the consumer’s initial wealth. The privately optimal health expenditure is e =

l +Hθ · x, so, in equilibrium,

CE∗(l;x, p, θ) = W − p− l + l · x+
Hθ

2
· x2.

12In accordance with the Affordable Care Act, health exchanges offer bronze, gold, silver and platinum
plans, with approximate actuarial values ranging from 60% to 90%. Within each category, plans still vary in
important dimensions such as the quality of their hospital networks. Silver is the most popular option, and
over 10% of adults were uninsured in 2014.
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Einav et al. (2013) assume constant absolute risk aversion (CARA) utility before the health
shock, so that ex-ante utility equals

U(x, p, θ) = E[− exp{−Aθ · CE∗(l;x, p, θ)}|l ∼ Fθ].

For our numerical examples below, losses are normally distributed with mean Mθ and
variance S2

θ , which leaves four dimensions of heterogeneity.13 Calculations show that the
model can be described with quasilinear preferences as in equation (1), with willingness to
pay and cost functions

u(x, θ) = x ·Mθ +
x2

2
·Hθ +

1

2
x(2− x) · S2

θAθ, and (2)

c(x, θ) = x ·Mθ + x2 ·Hθ.

The formula decomposes willingness to pay into three terms: average covered expenses
xMθ, utility from overconsumption of health services x2Hθ/2, and risk-sharing x(2 − x) ·
S2
θAθ/2. Since firms are responsible for covered expenses, the first term also enters firm

costs. Overconsuming health services, which is caused by moral hazard, costs firms twice as
much as consumers are willing to pay for it. Moreover, the risk-sharing value of the policy is
increasing in coverage, in the consumer’s risk aversion, and in the variance of health shocks.
However, because firms are risk neutral, the risk-sharing term does not enter firm costs.

The example illustrates that the framework can fit multidimensional heterogeneity in a
realistic empirical model. Moreover, it can incorporate ex-post moral hazard through the def-
initions of the utility and cost functions. The model can fit other types of consumer behavior,
such as ex-ante moral hazard, non-expected utility, overconfidence, or inertia to abandon a
default choice. It can also incorporate administrative or other per-unit costs on the supply
side. Moreover, it is straightforward to consider more complex contract features, including
deductibles, copays, stop-losses, franchises, network quality, and managed restrictions on
expenses.

In the last example, and in other models with complex contract spaces and rich hetero-
geneity, there is no agreement on a reasonable equilibrium prediction. Unlike the Rothschild
and Stiglitz model, where there is controversy about what the correct prediction is, in this
case the literature offers almost no possibilities.

13Because of the normality assumption, losses and expenses may be negative in the numerical example. We
report this parametrization because the closed form solutions for utility and cost functions make the model
more transparent. Appendix F calibrates a model with log-normal loss distributions and nonlinear contracts
and finds similar qualitative results.
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2.3 Assumptions

The assumptions we make are mild enough to include all the examples above, so applied
readers may wish to skip this section. On a first read, it is useful to keep in mind the
particular case where X and Θ are compact subsets of Euclidean space, utility is quasilinear
as in equation (1), and u and c are continuously differentiable. These assumptions are
considerably stronger than what is needed, but they are weak enough to incorporate most
models in the literature. We begin with technical assumptions.

Assumption 1. (Technical Assumptions) X and Θ are compact and separable metric spaces.
Whenever referring to measurability we will consider the Borel σ-algebra over X and Θ, and
the product σ-algebra over the product space. In particular, we take µ to be defined over the
Borel σ-algebra.

Note that X and Θ can be infinite dimensional, and the distribution of types can admit
a density with infinite support, may be a sum of point masses, or a combination of the two.
We now consider a more substantive assumption. Let d (x, x′) denote the distance between
contracts x and x′.

Assumption 2. (Bounded Marginal Rates of Substitution) There exists a constant L with
the following property. Take any p ≤ p′ in the image of c, any x, x′ in X, and any θ ∈ Θ.
Assume that

U(x, p, θ) ≤ U(x′, p′, θ),

that is, that a consumer prefers to pay more to purchase contract x′ instead of x. Then, the
price difference is bounded by

p′ − p ≤ L · d(x, x′).

That is, the willingness to pay for an additional unit of any contract dimension is bounded.
The assumption is simpler to understand when utility is quasilinear and differentiable. In
this case it is equivalent to the absolute value of the derivative of u being uniformly bounded.

Assumption 3. (Continuity) The functions U and c are continuous in all arguments.

Continuity of the utility function is not very restrictive because of Berge’s Maximum
Theorem. Even with moral hazard, utility is continuous under standard assumptions. Con-
tinuity of the cost function is more restrictive. It implies that we can only consider models
with moral hazard where payoffs to the firm vary continuously with types and contracts. This
may fail if consumers change their actions discontinuously with small changes in a contract.
Nevertheless, it is possible to include some models with moral hazard in our framework. See
Kadan et al. (2014) Section 9 for a discussion of how to define a metric over a contract space,
starting from a description of actions and states.
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3 Competitive Equilibrium

3.1 Weak Equilibrium

We now define a minimalistic equilibrium notion, a weak equilibrium, requiring only that
firms make no profits and consumers optimize. A vector of prices is a measurable function
p : X → R, with p(x) denoting the price of contract x. An allocation is a measure α over
Θ×X such that the marginal distribution satisfies α|Θ = µ. That is, α({θ, x}) is the measure
of θ types purchasing contract x.14 We are often interested in the expected cost of supplying
a contract x and use the following shorthand notation for conditional moments:

Ex[c|α] = E[c(x̃, θ̃)|α, x̃ = x].

That is, Ex[c|α] is the expectation of c(x̃, θ̃) according to the measure α and conditional on
x̃ = x. Note that such expectations depend on the allocation α. When there is no risk of
confusion we omit α, writing simply Ex[c]. Similar notation is used for other moments.

Definition 1. The pair (p∗, α∗) is a weak equilibrium if

1. For each contract x, firms make no profits. Formally,

p∗(x) = Ex[c|α∗]

almost everywhere according to α∗.

2. Consumers select contracts optimally. Formally, for almost every (θ, x) with respect to
α∗, we have

U(x, p∗(x), θ) = sup
x′∈X

U(x′, p∗(x′), θ).

This is a price-taking definition, not a game-theoretic one. Consumers optimize taking
prices as given, as do firms, who also take the average costs of buyers as given. We do not
require that all consumers participate. This can be modeled by including a null contract that
costs nothing and provides zero utility.

A weak equilibrium requires firms to make zero profits on every contract. This is a
substantial economic restriction, as it rules out cross-subsidies between contracts. In fact,
there are competitive models, such as in Wilson (1977) and Miyazaki (1977), where firms
earn zero profits overall but can have profits or losses on some contracts. It is possible to
micro-found the requirement of zero profits on each contract with a strategic model with

14This formalization is slightly different than the traditional way of denoting an allocation as a map from
types to contracts. We take this approach because different consumers of the same type may buy different
contracts in equilibrium, as in Chiappori et al. (2010).
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differentiated products, as discussed in Section 4.2. Intuitively, in this kind of model, a firm
that tries to cross-subsidize contracts is undercut in contracts that it taxes and is left selling
the contracts that it subsidizes.

We only ask that prices equal expected costs almost everywhere.15 In particular, weak
equilibria place no restrictions on the prices of contracts that are not purchased. As demon-
strated in the examples below, this is a serious problem with this definition and the reason
why a stronger equilibrium notion is necessary.

3.2 Equilibrium Multiplicity and Free Entry

We now illustrate that weak equilibria are compatible with a wide variety of outcomes, most
of which are unreasonable in a competitive marketplace.

Example 2′. (Rothschild and Stiglitz - Multiplicity of Weak Equilibria) We first revisit
Rothschild and Stiglitz’s (1976) original equilibrium. They set up a Bertrand game with
identical firms and showed that, when a Nash equilibrium exists, it has allocations given
by the points L and H in Figure 2b. High-risk consumers buy full insurance xH = 1 at
actuarially fair rates pH = H · l. Low-risk types purchase partial insurance, with actuarially
fair prices reflecting their lower risk. The level of coverage xL is just low enough so that
high-risk consumers do not wish to purchase contract xL. That is, L and H are on the same
indifference curve ICH of high types.

Note that we can find weak equilibria with the same allocation. One example of weak
equilibrium prices is the curve p(x) is Figure 2b. The zero profits condition is satisfied
because the prices of the two contracts that are traded, xL and xH , equal the average cost of
providing them. The optimization condition is also satisfied because the price schedule p(x)

is above the indifference curves ICL and ICH . Therefore, no consumer wishes to purchase a
different bundle.

However, many other weak equilibria exist. One example is the same allocation with the
prices p̃(x) in Figure 2b. Again, firms make no profits because the prices of xH and xL are
actuarially fair, and consumers are optimizing because the price of other contracts is higher
than their indifference curves.

There are also weak equilibria with completely different allocations. For example, it is
a weak equilibrium for all consumers to purchase full insurance, and for all other contracts
to be priced so high that no one wishes to buy them. This does not violate the zero profits
condition because the expected cost of contracts that are not traded is arbitrary. This weak
equilibrium has full insurance, which is the first-best outcome in this model. It is also a weak

15The reason is that conditional expectation is only defined almost everywhere. Although it is possible to
understand all of our substantive results without recourse to measure theory, we refer interested readers to
Billingsley (2008) for a formal definition of conditional expectation.
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equilibrium for no insurance to be sold, and for prices of all contracts with positive coverage
to be prohibitively high. Therefore, weak equilibria provide very coarse predictions, with the
Bertrand solution, full insurance, complete unraveling, and many other outcomes all being
possible.

In a market with free entry, however, some weak equilibria are more reasonable than
others. Consider the case of H < 1 and take the weak equilibrium with complete unravelling.
Suppose firms enter the market for a policy with positive coverage, driving down its price.
Initially no consumers purchase the policy, and firms continue to break even. As prices
decrease enough to reach the indifference curve of high-risk consumers, they start buying. At
this point, firms make money because risk averse consumers are willing to pay a premium for
insurance. Therefore, this weak equilibrium conflicts with the idea of free entry. A similar
tâtonnement eliminates the full-insurance weak equilibrium. If firms enter the market for
partial insurance policies, driving down prices, they do not attract any consumers at first.
However, once prices decrease enough to reach the indifference curve of low-risk consumers,
firms only attract good risks and therefore make positive profits.

The same argument eliminates the weak equilibrium associated with p̃(x). Let x0 < xL

be a non-traded contract with p̃(x0) > p(x). Suppose firms enter the market for x0, driving
down its price. Initially no consumers purchase x0, and firms continue to break even. As
prices decrease enough to reach p(x0), the L types become indifferent between purchasing x0
or not. If they decrease any further, all L types purchase contract x0. At this point, firms
lose money because average cost is higher than the price.16 The price of x0 is driven down to
p(x0), at which point it is no longer advantageous for firms to enter. In fact, this argument
eliminates all but the weak equilibrium with price p(x) and the allocation in Figure 2b.

3.3 Definition and Existence of an Equilibrium

We now define an equilibrium concept that formalizes the free entry argument. Equilibria
are required to be robust to small perturbations of a given economy. A perturbation has a
large but finite set of contracts approximating X. The perturbation adds a small measure
of behavioral types, who always purchase each of the existing contracts and impose no costs
on firms. The point of considering perturbations is that all contracts are traded, eliminating
the paradoxes associated with defining the average cost of non-traded contracts.

We introduce, for each contract x, a behavioral consumer type who always demands
contract x. We write x for such a behavioral type and extend the utility and cost functions
as U(x, p, x) = ∞, U(x′, p, x) = 0 if x′ 6= x, and c(x, x) = 0. For clarity, we refer to
non-behavioral types as standard types.

16To see why, note that L types buy xL at an actuarially fair price. Therefore, they would only purchase
less insurance if firms sold it at a loss.
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Definition 2. Consider an economy E = [Θ, X, µ]. A perturbation of E is an economy
with a finite set of contracts X̄ ⊆ X and a small mass of behavioral types demanding each
contract in X̄. Formally, a perturbation (E, X̄, η) is an economy [Θ ∪ X̄, X̄, µ + η], where
X̄ ⊆ X is a finite set, and η is a strictly positive measure over X̄.17

The next definition says that a sequence of perturbations converges to the original econ-
omy if the set of contracts fills in the original set of contracts and the total mass of behavioral
consumers converges to 0.

Definition 3. A sequence of perturbations (E, X̄n, ηn)n∈N converges to E if

1. Every point in X is the limit of a sequence (xn)n∈N with each xn ∈ X̄n.

2. The total mass of behavioral types ηn(X̄n) converges to 0.

We now define what it means for a sequence of equilibria of perturbations to converge to
the original economy.

Definition 4. Take an economy E and a sequence of perturbations (E, X̄n, ηn)n∈N converg-
ing to E, with weak equilibria (pn, αn). The sequence of weak equilibria (pn, αn)n∈N

converges to a price-allocation pair (p∗, α∗) of E if

1. The allocations αn converge weakly to α∗.

2. For every sequence (xn)n∈N with each xn ∈ X̄n and limit x ∈ X, pn(xn) converges to
p∗(x).18

We are now ready to define an equilibrium.

Definition 5. The pair (p∗, α∗) is an equilibrium of E if there exists a sequence of pertur-
bations that converges to E and an associated sequence of weak equilibria that converges to
(p∗, α∗).

The most transparent way to understand how equilibrium formalizes the free entry idea
is to return to the Rothschild and Stiglitz model from example 2. Recall that there is a
weak equilibrium where no one purchases insurance and prices are high. But this is not
an equilibrium. A perturbation cannot have such high-price equilibria because, if standard

17Both an economy and its perturbations have a set of types contained in Θ ∪X and contracts contained
in X. To save on notation, we extend distributions of types to be defined over Θ ∪X and allocations to be
defined over (Θ∪X)×X. With this notation, measures pertaining to different perturbations are defined on
the same space.

18In a perturbation, prices are only defined for a finite subset X̄n of contracts. The definition of convergence
is strict in the sense that, for a given contract x, prices must converge to the price of x for any sequence of
contracts (xn)n∈N converging to x.
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types do not purchase insurance, prices are driven to 0 by behavioral types. Likewise, the
weak equilibrium corresponding to p̃ in Figure 2b is not an equilibrium. Consider a contract
x0 with p̃(x0) > p(x0). In any perturbation, if prices are close to p̃, then only behavioral
types would buy x0. But this would make the price of x0 equal to 0 because the only way to
sustain positive prices in a perturbation is by attracting standard types. In fact, equilibria of
perturbations sufficiently close to E involve most L types purchasing contracts similar to xL,
and mostH types purchasing contracts similar to xH . The price of any contract x0 < xL must
make L types indifferent between x0 and xL. There is a small mass of L types purchasing
x0 to maintain the indifference. If prices were lower, L types would flood the market for x0,
and firms would lose money. If prices were higher, no L types would purchase x0. The only
equilibrium is that corresponding to p(x) in Figure 2b (this is proven in Corollary 1).

The mechanics of equilibrium are similar to the standard analysis of the Akerlof model
from example 1. In the example depicted in Figure 2a, the only equilibrium is that associated
with the intersection of demand and average cost.19 This is similar to the way that prices
for xL and xH are determined in example 2. If the average cost curve were always above the
demand curve, the only equilibrium would be complete unraveling. This is analogous to the
way that the market for contracts other than xL and xH unravels.

There are two ways to think about the equilibrium requirement. One is that it consistently
applies the logic of Akerlof (1970) and Einav et al. (2010a) to the case where there is more than
one potential contract. This is similar to the intuitive free entry argument discussed in Section
3.2. Another interpretation is that the definition demands a minimal degree of robustness
with respect to perturbations, while paradoxes associated with conditional expectation do
not occur in perturbations. This rationale is similar to proper equilibria (Myerson, 1978).

We now show that equilibria always exist.

Theorem 1. Every economy has an equilibrium.

The proof is based on two observations. First, equilibria of perturbations exist by a
standard fixed-point argument. Second, equilibrium price schedules in any perturbation are
uniformly Lipschitz. This is a consequence of the bounded marginal rate of substitution
(Assumption 2). The intuition is that, if prices increased too fast with x, no standard types
would be willing to purchase more expensive contracts. This is impossible, however, because a
contract cannot have a high equilibrium price if it is only purchased by the low-cost behavioral
types. We then apply the Arzelà–Ascoli Theorem to demonstrate existence of equilibria.

19There are other weak equilibria in the example in Figure 2a, but the only equilibrium is the intersection
between demand and average cost. For example, it is a weak equilibrium for no one to purchase insurance,
and for prices to be very high. But this is not an equilibrium. The reason is that, in a perturbation, behavioral
types make the average cost curve well-defined for all quantities, including 0. The perturbed average cost
curve is continuous, equal to 0 at a quantity of 0, and slightly lower than the original. As the mass of
behavioral types shrinks, the perturbed average cost curve approaches its value in the original economy.
Consequently, the only equilibrium is the standard solution, where demand and average cost intersect.
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Figure 3: Equilibrium prices (a) and demand profile (b) in the multidimensional health
insurance model from example 3.

Notes: Panel (a) illustrates equilibrium prices and quantities in example 3 under benchmark parameters.
The solid curve denotes prices. The size of the circles represent the mass of consumers purchasing each
contract, and its height represents the average loss parameter of such consumers, that is Ex[M ]. Panel (b)
illustrates the equilibrium demand profile. Each point represents a randomly drawn type from the population.
The horizontal axis represents expected health shock Mθ, and the vertical axis represents the absolute risk
aversion coefficient Aθ. The colors represent the level of coverage purchased in equilibrium.

Existence only depends on the assumptions of Section 2.3. Therefore, equilibria are well-
defined in a broad range of theoretical and empirical models. Equilibria exist not only in
stylized models, but also in rich multidimensional settings. Figure 3 plots an equilibrium in
a calibration of the Einav et al. model (example 3). Equilibrium makes sharp predictions,
displays adverse selection, with costlier consumers purchasing higher coverage, and consumers
sort across the four dimensions of private information. We return to this example below.

4 Discussion

This section establishes consequences of competitive equilibrium, and discusses the relation-
ship to existing solution concepts.

4.1 Equilibrium Properties

We begin by describing some properties of equilibria.

Proposition 1. Let (p∗, α∗) be an equilibrium of economy E. Then:

1. The pair (p∗, α∗) is a weak equilibrium of E.
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2. For every contract x′ ∈ X with strictly positive price, there exists (θ, x) in the support
of α∗ such that

U(x, p∗(x), θ) = U(x′, p∗(x′), θ) and c(x′, θ) ≥ p(x′).

That is, every contract that is not traded in equilibrium has a low enough price for some
consumer to be indifferent between buying it or not, and the cost of this consumer is at
least as high as the price.

3. The price function is L-Lipschitz, and, in particular, continuous.

4. If X is a subset of Euclidean space, then p∗ is Lebesgue almost everywhere differentiable.

The proposition shows that equilibria have several regularity properties. They are weak
equilibria. Moreover, equilibrium prices are continuous and differentiable almost everywhere.
Finally, the price of an out-of-equilibrium contract is either 0, or low enough that some type
is indifferent between buying it or not. Moreover, the cost of selling to this indifferent type is
at least as high as the price. Intuitively, these are the consumer types who make the market
for this contract unravel.20

With these properties, we can solve for equilibria in the Rothschild and Stiglitz model:

Corollary 1. Consider example 2. If H < 1, the unique equilibrium is the price p and
allocation in Figure 2b. If H = 1, the market unravels with equilibrium prices of x · l and low
types purchasing no insurance.

The corollary shows that equilibrium coincides with the Riley (1979) equilibrium and with
the Rothschild and Stiglitz (1976) equilibrium when it exists.21 Therefore, competitive equi-
librium delivers the standard results in the particular cases of Akerlof (1970) and Rothschild

20These conditions are necessary but not sufficient for an equilibrium. The reason is that the existence of
a type satisfying the conditions in Part 2 of the proposition does not imply that the market for a contract
x would unravel in a perturbation. This may happen because there can be other types who are indifferent
between purchasing x or not, and some of them may have lower costs. It is simple to construct these examples
in models similar to Chang (2010) or Guerrieri and Shimer (2013).

21There is some controversy in the literature on whether the Riley (1979) equilibrium is reasonable (and
whether other notions, such as the Wilson (1977) equilibrium, are more compelling). The Riley allocation has
been criticized because it is constrained inefficient when there are few H types (Crocker and Snow, 1985a),
and because the equilibrium does not depend on the proportion of each type and changes discontinuously to
full insurance when the measure of H types is 0 (Mailath et al., 1993). Although our solution concept inherits
these counter-intuitive predictions, we see it as reasonable, especially in the richer settings in which we are
interested, for two reasons. First, the Rothschild and Stiglitz assumptions are extreme and counter-intuitive,
with consumers having only two types and being heterogeneous across a single dimension. Thus, the counter-
intuitive results are driven not only by the equilibrium concept but also by counter-intuitive assumptions.
We also give some evidence that the Rothschild and Stiglitz setting is atypical in Appendix D. The appendix
shows that, under certain assumptions, generically, the set of competitive equilibria varies continuously with
fundamentals. Moreover, whenever there is some pooling (as in example 3) , the equilibrium will depend on
the distribution of types. Second, our model produces intuitive predictions and comparative statics in our
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and Stiglitz (1976). Moreover, simple arguments based on Proposition 1 can be used to solve
models with richer heterogeneity, such as Netzer and Scheuer (2010), where the analysis of
game-theoretic solution concepts is challenging.

4.2 Strategic Foundations

Our equilibrium concept can be justified as the limit of a strategic model, which is similar to
the models used in the empirical industrial organization literature. This relates our work to
the literature on game-theoretic competitive screening models and the industrial organization
literature on adverse selection. Moreover, the assumptions on the strategic game clarify the
limitations of our model and the situations where competitive equilibrium is a reasonable
prediction.

We consider such a strategic setting in Appendix B. We start from a perturbation
(E, X̄, η). Each contract has n differentiated varieties, and each variety is sold by a different
firm. Consumers have logit demand with semi-elasticity σ. Firms have a small efficient scale.
To capture this in a simple way, we assume that each firm can only serve up to a fraction k
of consumers. Firms cannot turn away consumers, as with community rating regulations.22

The key parameters are the number of varieties of each contract n, the semi-elasticity of
demand σ, and the maximum scale of each firm k.

We consider symmetric Bertrand-Nash equilibria, where firms independently set prices.
Proposition B1 shows that Bertrand-Nash equilibria exist as long as firm scale is sufficiently
small and there are enough firms selling each product to serve the whole market. The
maximum scale that guarantees existence is of the order of the inverse of the semi-elasticity.
Therefore, equilibria exist even if demand is close to the limit of no differentiation. At a
first blush, this result seems to contradict the finding that the Rothschild and Stiglitz model
often has no Nash equilibrium (Riley, 1979). The reason why Bertrand-Nash equilibria exist
is that the profitable deviations in the Rothschild and Stiglitz model rely on firms setting
very low prices and attracting a sizable portion of the market. However, this is not possible
if firms have small scale and cannot turn consumers away. Besides establishing existence of
a Bertrand-Nash equilibrium, Proposition B1 shows that profits per contract are bounded

application in Section 5. While we see our framework as a reasonable first step to study markets with rich
consumer heterogeneity, it would be interesting to explore alternative equilibrium notions in settings with
rich heterogeneity. For example, it would be interesting to generalize the Wilson (1977) equilibrium to such
settings. Moreover, we caution readers that, while we seek to propose a useful framework that can be applied
more generally, we do not seek to resolve the debate about whether the Riley (1979) or the Wilson (1977)
concept is more appropriate in the Rothschild and Stiglitz example. Nevertheless, we believe that exploring
alternative equilibrium notions in settings with more realistic assumptions on preferences can contribute to
understanding what equilibrium notions produce useful predictions in these settings.

22Instead of assuming a small efficient scale, we could establish similar results by requiring that strategies
are only locally optimal. See Appendix B.3.
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above by a term of order 1/σ plus a term of order k.
Proposition B2 then shows that, for a sequence of parameters satisfying the conditions for

existence and with semi-elasticity converging to infinity, Bertrand-Nash equilibria converge
to a competitive equilibrium. Thus, competitive equilibrium corresponds to the limit of this
game-theoretic model.

A limitation of this result is that each firm offers a single contract, as opposed to a menu
of contracts. In particular, the strategic model rules out the possibility that firms cross-
subsidize contracts, which is a key requirement of our equilibrium notion. To address this,
we generalize our convergence results to the case where firms offer menus of contracts in
Appendix C. This generalization shows that, even if firms can cross-subsidize contracts, in
equilibrium they do not do so, and earn low profits on all contracts.

These results have four implications. First, convergence to competitive equilibrium is
relatively brittle because it depends on the Bertrand assumption, on the number of varieties
and maximum scale satisfying a pair of inequalities, and on semi-elasticities growing at a fast
enough rate relative to those parameters. This is to be expected because existing strategic
models lead to very different conclusions with small changes in assumptions. Second, although
convergence depends on special assumptions, it is not a knife-edge case. There exists a non-
trivial set of parameters for which equilibria are justified by a strategic model.

Third, our results relate two types of models in the literature. Our strategic model is
closely related to the differentiated products models in the industrial organization literature,
such as Starc (2014), Decarolis et al. (2012), Mahoney and Weyl (2014), and Tebaldi (2015).
Our results show that our competitive equilibrium corresponds to a particular limiting case
of these models. This implies that the models of Riley (1979) and Handel et al. (2015) are
also limiting cases of the differentiated products models, because their equilibria coincide
with ours in particular cases, as dicussed below.

Finally, the sufficient conditions give insight into situations where competitive equilibrium
is reasonable. Namely, when there are many firms, efficient firm scale is small relative to the
market, and firms are close to undifferentiated. The results do not imply that markets with
adverse selection are always close to perfect competition. Indeed, market power is often an
issue in these markets (see Dafny, 2010, Dafny et al., 2012, and Starc, 2014). Nevertheless, the
sufficient conditions are similar to those in markets without adverse selection: the presence
of many, undifferentiated firms, with small scale relative to the market (see Novshek and
Sonnenschein, 1987).

4.3 Unravelling and Robustness to Changes in Fundamentals

It is possible that there is no trade in one or all competitive equilibria. This is illustrated
in Corollary 1 and in other particular cases of our model. For example, with one contract
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(example 1), there is no trade if average cost is always above the demand curve, as in Akerlof’s
classic example. Hendren (2013) gives a no-trade condition in a binary loss model with a
richer contract space.

Unravelling examples such as those in Hendren (2013) raise the question of whether
competitive equilibria are too sensitive to small changes in fundamentals. For example,
consider an Akerlof model as in example 1, with a unique equilibrium, which has a positive
quantity. Suppose we add a positive but small mass of a type who values every non-null
contract more than all other types, say $1,000,000, and has even higher costs, say $2,000,000.
This change in fundamentals creates a new equilibrium where all contracts cost $1,000,000
and no contracts are traded (although there may be other equilibria close to the original
one).

Appendix D examines the robustness of the set of equilibria with respect to fundamentals.
We give examples in the one-contract case where adding a small mass of high-cost types
introduces a new equilibrium with complete unraveling. However, competitive equilibria
have two important generic robustness properties. First, generically, equilibria with trade are
never considerably affected by the introduction of a small measure of high-cost types. Second,
generically, small changes to demand and average cost curves lead to small changes in the
set of equilibria. That is, the only way to produce large changes in equilibrium predictions is
to considerably move average cost or demand curves. In particular, the $1,000,000 example
only works because it considerably changes expected costs conditioning on the consumers
who have sufficiently high willingness to pay. This would not be possible if, for example,
the original model already had consumers with high willingness to pay. Finally, Appendix D
gives a formal result showing that the latter robustness property holds with many potential
contracts.

4.4 Equilibrium Multiplicity and Pareto Ranked Equilibria

Competitive equilibria may not be unique. This is the case, for example, in the Akerlof
model (Example 1) when average cost and demand cross at multiple points. This example
is counterintuitive because equilibria are Pareto ranked, so market participants may attempt
to coordinate on the Pareto superior equilibrium. Moreover, only the lowest-price crossing of
average cost and demand is an equilibrium under the standard strategic equilibrium concept
in Einav et al. (2010a). Thus, in applications, a researcher may choose to select Pareto
dominant equilibria, as commonly done in dynamic oligopoly models and cheap talk games.

While this selection is sometimes compelling, we note that multiple equilibria are a stan-
dard feature of Walrasian models. There is experimental evidence that multiple equilibria are
observed in competitive markets where supply is downward sloping (Plott and George, 1992).
In markets with adverse selection, Wilson (1980) pointed out the potential multiplicity of



21

equilibria, and Scheuer and Smetters (2014) used multiple equilibria to study the effect of
initial conditions.23

4.5 Relationship to the Literature

Our price-taking approach is reminiscent of the early work by Akerlof (1970) and Spence
(1973). Multiplicity of weak equilibria is well-known since Spence’s (1973) analysis of labor
market signaling.

The literature addressed equilibrium multiplicity in three ways. One strand of the litera-
ture employed game-theoretic equilibrium notions and restrictions on consumer heterogeneity,
typically in the form of ordered one-dimensional sets of types. This is the case in the com-
petitive screening literature, initiated with Rothschild and Stiglitz’s (1976) Bertrand game,
which led to the issue of non-existence of equilibria. Subsequently, Riley (1979) showed that
Bertrand equilibria do not exist for a broad (within the one-dimensional setting) class of
preferences, including the standard Rothschild and Stiglitz model with a continuum of types.
Wilson (1977), Miyazaki (1977), Riley (1979), and Netzer and Scheuer (2014), among others,
proposed modifications of Bertrand equilibrium so that an equilibrium exists. It has long
been known that the original Rothschild and Stiglitz game has mixed strategy equilibria, but
only recently Luz (2013) has characterized them.24

The literature on refinements in signaling games shares the features of game-theoretic
equilibrium notions and restrictive type spaces. In order to deal with the multiplicity of
price-taking equilibria described by Spence, this literature modeled signaling as a dynamic
game. However, since signaling games typically have too many sequential equilibria, Banks
and Sobel (1987), Cho and Kreps (1987), and several subsequent papers proposed equilibrium
refinements that eliminate multiplicity.

Another strand of the literature considers price-taking equilibrium notions, like our work,
but imposes additional structure on preferences, such as Bisin and Gottardi (1999, 2006),
following work by Prescott and Townsend (1984). Dubey and Geanakoplos (2002) introduced
a general equilibrium model where consumers have different endowments in different states

23Moreover, game theorists debate whether selecting Pareto dominant equilibria is reasonable, and when
well-motivated refinements produce this selection (see Chen et al., 2008 for a discussion of this issue in cheap
talk models). Unfortunately, these refinements do not immediately select Pareto efficient equilibria in our
model. The most closely related paper is Ambrus and Argenziano (2009), who apply “Nash equilibrium in
coalitionally rationalizable strategies” to a two-sided markets model. Their refinement guarantees, for exam-
ple, that consumers do not all coordinate on an inferior platform. However, in Example 1, the coordination
failure depends on both consumer and firm behavior. Moreover, firms are indifferent between all equilib-
ria, because they earn zero profits. Thus, the Ambrus-Argenziano approach does not rule out the Pareto
dominated equilibria in our setting.

24There has also been work on this type of game with nonexclusive competition. Attar et al. (2011) show
that nonexclusive competition leads to outcomes similar to the Akerlof model. The game we consider in
Section 4.2 is related to the search models of Inderst and Wambach (2001) and Guerrieri et al. (2010).
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of the world, and may join “competitive pools” to share risk. They write the Rothschild
and Stiglitz setup as a particular case. Dubey et al. (2005) considered a related model
with endogenous default and non-exclusive contracts. These papers address multiplicity of
equilibria with a refinement where an “external agent” makes high deliveries to each pool in
every state of the world. This refinement is similar to our approach in the case of a finite
number of contracts. There are three main differences with respect to our work. First, we
consider more general preferences, that can accommodate richer preference heterogeneity in a
simple way as in example 3. Second we allow for continuous sets of contracts, as in examples
2 and 3. To do so, we generalize the equilibrium refinement, make the key assumption
of bounded marginal rates of substitution, and develop the proof strategy of Theorem 1.
Third, we introduce new analytical techniques by analyzing our examples directly in the
limit, enabling novel applied results such as Propositions 2 and 3.

Gale (1992), like us, considers general equilibrium in a setting with less structure than the
insurance pools. However, he refines his equilibrium with a stability notion based on Kohlberg
and Mertens (1986). More recent contributions have considered general equilibrium models
where firms can sell the right to choose from menus of contracts (Citanna and Siconolfi,
2014).

Our results are related to this previous work as follows. In standard one-dimensional
models with ordered types, our unique equilibrium corresponds to what is usually called
the “least-costly separating equilibrium.” Thus, our equilibrium prediction is the same as
in models without cross-subsidies, such as Riley (1979), Bisin and Gottardi (2006), and
Rothschild and Stiglitz (1976) when their equilibrium exists. It also coincides with Banks
and Sobel (1987) and Cho and Kreps (1987) in the settings they consider. It differs from
equilibria that involve cross-subsidization across contracts, such as Wilson (1977), Miyazaki
(1977), Hellwig (1987), and Netzer and Scheuer (2014). Our equilibrium differs from mixed
strategy equilibria of the Rothschild and Stiglitz (1976) model, even as the number of firms
increases. This follows from the Luz (2013) characterization. In the case of a pool structure
and finite set of contracts, our equilibria are the same as in Dubey and Geanakoplos (2002).

Although our equilibrium coincides with the Riley equilibrium in particular settings, our
equilibrium exists, is tractable, and has strategic foundations in settings where the Riley
equilibrium may not exist. Our predictions are the same as the Riley equilibrium in two
important particular cases. One is Riley’s (1979) original setup with ordered types, and the
other is Handel et al.’s (2015) model, where types come from a more realistic empirical health
insurance model and are not ordered, but there are only two contracts. In particular, our
strategic foundations results lend support to the predictions in these models. We note that,
with multidimensional heterogeneity, existence of Riley equilibrium can only be guaranteed
with restrictions on preferences (see Azevedo and Gottlieb, 2016 for a simple example where
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a Riley equilibrium does not exist).
Another strand of the literature considers preferences with less structure. Chiappori et al.

(2006) consider a very general model of preferences within an insurance setting. This paper
differs from our work in that they consider general testable predictions without specifying
an equilibrium concept, while we derive sharp predictions within an equilibrium framework.
Rochet and Stole (2002) consider a competitive screening model with firms differentiated as in
Hotelling (1929), where there is no adverse selection. Their Bertrand equilibrium converges to
competitive pricing as differentiation vanishes, which is the outcome of our model. However,
Riley’s (1979) results imply that no Bertrand equilibrium would exist if one generalizes their
model to include adverse selection.

Veiga and Weyl (2014b) and Handel et al. (2015) consider endogenous contract charac-
teristics in a multidimensional framework. Handel et al. (2015) develop a tractable model
by using Riley equilibria with a simple set of contracts. Veiga and Weyl (2014b) consider
an oligopoly model of competitive screening in the spirit of Rochet and Stole (2002), but
where each firm offers a single contract. Contract characteristics are determined by a simple
first-order condition, as in the Spence (1975) model. Moreover, their model can incorporate
imperfect competition. Our numerical results suggest that the our model and Veiga and
Weyl’s agree on many qualitative predictions. For example, insurance markets provide ineffi-
ciently low coverage, and increasing heterogeneity in risk aversion seems to attenuate adverse
selection.

The key difference is that their model has a single traded contract, while our model
endogenously determines the set of traded contracts. In their model, when competitive
equilibria exist,25 all firms offer the same contract.26 In contrast, a rich set of contracts is
offered in our equilibrium. For example, in the case of no adverse selection (when costs are
independent of types), our equilibrium is for firms to offer all products priced at cost, which
corresponds to the standard notion of perfect competition. A colorful illustration is tomato
sauce. The Veiga and Weyl (2014b) model predicts that a single type of tomato sauce is
offered cheaply, with characteristics determined by the preferences of average consumers. In
contrast, our prediction is that many different types of tomato sauce are sold at cost. Italian
style, basil, garlic lover, chunky, mushroom, and so on. In a less gastronomically titillating
example, insurers offer a myriad types of life insurance: term life, universal life, whole life,
combinations of these categories, and many different parameters within each category. Our
results on the convergence of Bertrand equilibria suggest that the two models are appropriate
in different situations. Their model of perfect competition seems more relevant when there are

25Perfectly competitive equilibria do not always exist in their model. In a calibration they find that
perfectly competitive symmetric equilibria do not exist, and equilibria only exist with very high markups.

26This is so in the more tractable case of symmetrically differentiated firms. In general, the number of
contracts offered is no greater than the number of firms.
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few firms, which are not very differentiated, the fixed cost of creating a new contract is high,
and it is a good strategy for firms to offer products of similar quality as their competitors.
That is, when firms herd on a particular type of contract.

5 Application: Equilibrium Effects of Mandates

5.1 Calibration

We calibrated the multidimensional health insurance model from example 3 to illustrate the
equilibrium concept and understand equilibrium effects of policy interventions. To under-
stand what effects are quantitatively plausible, we calibrated the model based on Einav et
al.’s (2013) preference estimates from employees in a large US corporation.27

We considered linear contracts and normal losses. The advantage of this parametric
restriction is that willingness to pay and costs are transparently represented by equation
(2). Consumers differ along four dimensions: expected health shock, standard deviation
of health shocks, moral hazard, and risk aversion. All parameters are readily interpretable
from equation (2). We assumed that the distribution of parameters in the population is log-
normal.28 Moments of the type distribution were calibrated to match the central estimates of
Einav et al. (2013), as in Table 1. There are two exceptions. We reduced average risk aversion
because linear contracts involve losses in a much wider range than the contracts in their data.
Lower risk aversion better matched the substitution patterns in the data because constant
absolute risk aversion models do not work well across different ranges of losses (Rabin, 2000
and Handel and Kolstad, forthcoming). The other exception is the log variance of moral
hazard, which we vary in our simulations. In our baseline we set σ2

H to 0.28. See Appendix
E for details on the calibration and computational procedures. Appendix F shows that the
key qualitative results hold with nonlinear contracts similar to those typically used in health
insurance markets and to those in Einav et al. (2013).

To calculate an equilibrium, we used a perturbation with 26 evenly spaced contracts,
and added a mass equal to 1% of the population as behavioral consumers. We then used a
fixed-point algorithm. In each iteration, consumers choose optimal contracts taking prices as
given. Prices are adjusted up for unprofitable contracts and down for profitable contracts.
Prices consistently converge to the same equilibrium for different initial values.

The equilibrium is depicted in Figure 3a. It features adverse selection with respect to
27Our simulations are not aimed at predicting the outcomes in a particular market as in Aizawa and Fang

(2013) and Handel et al. (2015). Such simulations would take the Einav et al. (2013) estimates far outside
the range of contracts in their data, so even predictions about demand would rely heavily on functional form
restrictions.

28Note that the set of types is not compact in our numerical simulations. Restricting the set of types to a
large compact set does not meaningfully impact the numerical results.
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Table 1: Calibrated distribution of consumer types

A H M S
Mean 1.0E-5 1,330 4,340 24,474

Log covariance
A 0.25 -0.01 -0.12 0
H σ2

logH -0.03 0
M 0.20 0
S 0.25

Notes: In all simulations of the health insurance example, consumer types are log normally distributed with
the moments in the table.
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Figure 4: Equilibrium prices with a 60% mandate (a) and optimal prices (b).

Notes: The graphs plot equilibria of the multidimensional health insurance model from example 3. In both
graphs, the solid curve denotes prices. The size of the circles represent the mass of consumers purchasing
each contract, and its height represents the average loss parameter of such consumers, that is Ex[M ].

the average loss, in the sense that, on average, consumers who purchase more coverage have
higher losses. Moreover, consumers sort across contracts in accordance to their preferences.
This is illustrated in Figure 3b, which displays the contracts purchased by consumers with
different expected loss and risk aversion parameters. The figure corroborates the existence
of adverse selection on average loss, as consumers with higher expected losses tend to choose
more generous contracts. However, even for the same levels of risk aversion and expected
loss, different consumers choose different contracts due to other dimensions of heterogeneity.

Although there is adverse selection, equilibria do not feature a complete “death spiral,”
where no contracts are sold. It is also possible that the support of traded contracts is a small
subset of all contracts. Whenever this is the case, buyers with the highest willingness to pay
for each contract that is not traded value it below their own average cost (Proposition 1).
That is, the markets for non-traded contracts are shut down by an Akerlof-type death spiral.
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5.2 Policy Interventions

This section investigates the effects of policy interventions. We focus on a mandate requiring
consumers to purchase at least 60% coverage. Equilibrium is depicted in Figures 1 and
4a. With the mandate, about 85% of consumers get the minimum coverage. Moreover, some
consumers who originally chose policies with greater coverage switch to the minimum amount
after the mandate. In fact, the mandate increases the fraction of consumers who buy 60%
coverage or less, as only 80% of consumers did so before the mandate.

The reason why some consumers reduce their coverage is that the mandate exacerbates
adverse selection on the intensive margin. With the mandate, many low-cost consumers pur-
chase the minimum coverage. This reduces the price of the 60% policy, attracting consumers
who were originally purchasing more generous policies. In equilibrium, consumers sort across
policies so that prices are continuous (as must be the case by Proposition 1). This leads to
a lower but steeper price schedule, so that some consumers choose less coverage.

Consider now the welfare measure consisting of total consumer and producer surplus.
Despite the unintended consequences, the mandate increases welfare in the baseline example
by $140 per consumer.29 This illustrates that competitive equilibria are inefficient (in the
sense of not maximizing welfare, and that even coarse policy interventions can have large
benefits.

We calculated the price schedule that maximizes welfare (Figure 4b). This is the schedule
that would be implemented by a regulator who maximizes welfare, can use cross subsidies,
but does not possess more information than firms. The optimal price schedule is much flatter
than the unregulated market or the mandate. That is, optimal regulation involves subsidies
across contracts, aimed at reducing adverse selection on the intensive margin. Optimal prices
increase welfare by $279 from the unregulated benchmark. Hence, addressing distortions
related to contract characteristics can considerably increase welfare.

We considered variations of the model to understand whether the results are representa-
tive. Expected coverage and welfare are reported in Table 2 for different sets of contracts and
log variances of moral hazard. Equilibrium behavior is robust to both changes. For example,
a 60% mandate in a market with 0%, 60%, and 90% policies also increases welfare. In all
cases, optimal regulation considerably increases welfare with respect to the 60% mandate.
Moreover, we replicate the result in Handel et al. (2015) and Veiga and Weyl (2014a) that
the markets with only 60% and 90% contracts almost completely unravel. This suggests that
our results are not driven by details of the parametric model.

Finally, the variance in moral hazard does not have a large qualitative impact on equi-
librium, but considerably changes optimal regulation. For example, when X = [0, 1], the
optimal allocation in the high moral hazard scenario gives about 84% coverage to all con-

29Note that mandates may decrease welfare, as shown by Einav et al. (2010b).
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Table 2: Welfare and coverage under different scenarios

σ2
H = 0.28 σ2

H = 0.98
Equilibrium Efficient Equilibrium Efficient

X Welfare E[x] Welfare E[x] Welfare E[x] Welfare E[x]
[0, 1] 0 0.46 279 0.8 0 0.43 366 0.84
[0.60, 1] 140 0.62 280 0.8 191 0.61 363 0.84
0, 0.90 101 0.66 256 0.9 131 0.63 355 0.9
0.60, 0.90 128 0.62 263 0.83 175 0.61 355 0.9
0, 0.60, 0.90 63 0.53 263 0.83 86 0.51 355 0.9

Notes: The table reports welfare as defined in Section 6, with welfare of the unregulated market with
X = [0, 1] normalized to 0. When the set of contracts includes an interval we added a contract for every
0.04 coverage. Welfare is optimized with a tolerance of 1% gain in each iteration. Due to this tolerance,
calculated welfare under efficient pricing is slightly higher with X = [0.60, 1] than with X = [0, 1], but we
know theoretically that these are at most equal.

sumers, which is quite different from the rich menu in Figure 4b. The reason is that con-
sumers with higher moral hazard tend to buy more insurance, but it is socially optimal to
give them less insurance. Therefore, a regulator may give up screening consumers (we dis-
cuss this in detail below). From a broader perspective, this numerical result shows that the
relative importance of different sources of heterogeneity can have a large impact on optimal
policy. Therefore, taking multiple dimensions of heterogeneity into account is important for
government intervention.

5.3 Theoretical Results

To clarify the main forces behind the calibration findings, we derive two comparative statics
results on the effects of increasing a mandate’s minimum coverage. First, if there is selection,
the mandate necessarily has knock-on effects. The intuition is that the mandate changes
relative prices, which induces consumers to change their choices. For example, if there is
adverse selection, the inflow of cheap consumers decreases the price of low-quality coverage.
This price decrease induces some consumers who are not directly affected by the mandate to
change their choices. Second, we give a sufficient statistics formula for the effect on the price
of low-quality coverage. The formula predicts the sign and magnitude of the change, while
using only a small amount of data from the original equilibrium. The formula predicts, in
particular, that prices go down if there is adverse selection.

5.3.1 Knock-on Effects

Consider economies where the set of contracts is an interval X = [m + dm, 1] with 0 <

m ≤ m + dm < 1. Utility is quasilinear and higher contracts are better and more costly. A
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regulator mandates a level of minimum coveragem+dm. We are interested in how equilibrium
changes as the regulator changes dm, increasing the minimum coverage. Consider, for every
sufficiently small dm ≥ 0, an equilibrium (pdm, αdm).

Instead of making parametric assumptions, we require some regularity conditions on the
original equilibrium. Assume that the marginal distribution of contracts according to αdm is
represented by a distribution Gdm. We denote G0 by G, p0 by p, and α0 by α. G has a point
mass at minimum coverage with G(m) > 0 and both G and p are continuously differentiable
at m. Consumer choices are described by a function x̂(θ, dm). That is, the allocation αdm is

αdm(S) = µ({θ : (θ, x̂(θ, dm)) ∈ S}).

We assume that consumers who purchased minimum coverage for dm = 0 continue to do
so after minimum coverage increases, and that the original optimal choice is unique for
consumers purchasing sufficiently low coverage.

Define the intensive margin selection coefficient at minimum coverage as

SI(m) = p′(m)− Em[mc].

This coefficient corresponds to the cost increase per additional unit of coverage minus the
average marginal cost of a unit of coverage. In other words, SI(m) is the increase in costs
due to selection. This coefficient is positive if, locally around the contract m, consumers who
purchase more coverage are more costly, and it is negative if consumers who purchase more
coverage have lower costs. Thus, SI(m) is closely related to the positive correlation test of
Chiappori and Salanié (2000).30 It is natural to say that there is adverse selection around m
if SI(m) is positive, and advantageous selection if SI(m) is negative.

The next result shows that, if there is selection, mandates must have knock-on effects.

Proposition 2. (Knock-on Effects of Mandates) Consider the effects of a small increase
in minimum coverage, and assume that there is selection in the sense that the intesive margin
selection coefficient at m, SI(m), is not zero.

Then there are changes in the relative prices of contracts. Moreover, there is a positive
mass of consumers who change their choices beyond the direct effect of the mandate. That is,
there is a positive mass of consumers whose choice after the mandate is not their preferred
contract in [m+ dm, 1] under pre-mandate prices p.

Proposition 2 shows that a mandate affects prices and coverage decisions, beyond the
direct effect of restricting coverage choices. To understand the intuition, consider the case of

30Under certain regularity conditions, SI(m) can be written as the increase in cost of purchasing contractm
for consumers who purchase slightly higher contracts, clarifying the connection with the positive correlation
test.
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adverse selection, when SI(m) > 0. The mandate drives cheap consumers into the contract
with the minimum coverage, so the direct effect of the mandate is to reduce the price of
the minimum coverage contract. If consumers who previously purchased better contracts
did not change their choices after the mandate, the prices of these better contracts would
remain the same (since each contract must break even). But this would imply that prices are
discontinuous, contradicting Proposition 1. Thus, some consumers necessarily change their
choices, as in the unintended consequences found in the calibrations.

5.3.2 Sufficient Statistics Formula for the Effect of Mandates on Prices

The next result requires some regularity conditions on how equilibrium changes with dm.
Namely, we assume that equilibrium prices and allocations vary smoothly, consumer types
are smoothly distributed, and consumers change their choices continuously.

We formalize these assumptions as follows. pdm(x) is a smooth function of x and dm.
x̂(θ, dm) is continuous, and is smooth when x̂ > m+ dm. Gdm has a point mass at minimum
coverage with Gdm(m+ dm) > 0 and is otherwise atomless with smooth density gdm.

For each consumer θ and contract x, define the intensive margin elasticity of substitution
as

ε(x, θ) =
1

x
· mu(x, θ)

∂xxu(x, θ)− p′′(x)
.

This elasticity represents, for consumers choosing an interior optimum, the percent change in
optimal coverage given a one percent increase in marginal prices. We assume that the joint
distribution of elasticities, costs, and marginal costs is atomless and varies continuously with
contracts. That is, the joint distribution of (ε(x, θ), c(x, θ),mc(x, θ)) conditional on α and a
contract x is represented by a smooth density h(·|x). Moreover, h(·|x) varies smoothly with
x for x > m. We have the following result.

Proposition 3. (Effect of Mandates on Equilibrium Prices) Consider the effects of
a small increase in minimum coverage from m to m + dm. The change in prices close to
minimum coverage equals the negative of the intensive margin adverse selection coefficient
plus an error term, that is

lim
x→m

∂dmpdm(x)|dm=0 = −SI(m) + ξ,

where the error term ξ is given by equation (A9) in the Appendix.
If there is adverse selection, and if the error term ξ is small, then the level of prices goes

down, pushed by the inflow of cheaper consumers who originally purchased minimum coverage.
The error term ξ is small if there are many consumers initially purchasing minimum coverage
so that g(m)/G(m) is small.
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The proposition provides a sufficient statistics formula for how much the price of low-
quality coverage changes with the introduction of a mandate. The intuition is that prices are
shifted by the inflow of consumers who are constrained to purchase minimum coverage in the
original equilibrium. In particular, if there is adverse selection, these consumers are cheaper
and push down the price of low-quality coverage.

We can illustrate the formula in the calibrated 60% mandate example. We have that
SI(m) equals 5385 (measured in $/100% coverage), so that there is a large amount of adverse
selection at the lowest level of coverage. Proposition 3 predicts that each 1% increase in
minimum coverage should decrease prices by $54. To test this, we calculated the equilibrium
of an economy with minimum coverage set at 64% instead of 60%. The price of the contract
offering 64% coverage went down by $183, which is close to the 0.04 · SI(m), or $215, as
predicted by Proposition 3. The approximation depends on there being a large mass of
consumers purchasing minimum coverage. To evaluate the robustness of the formula, we
simulated an increase in minimum coverage from 40% to 44%, where only 55% of consumers
purchase minimum coverage. The decrease in prices predicted by Proposition 3 is $135, while
the actual change is $80. While this approximation is less accurate, it is still useful, given
the low data requirements of the formula.

6 Market Failure

This section gives an overview of the sources of market failure in competitive equilibria and
explains the mechanics behind the numerical results. We show that competitive equilibria are
inefficient, that even simple regulations like mandates can increase welfare, and that optimal
interventions involve subsidies on the intensive margin.

A general formal treatment of optimal regulation requires solving a multidimensional
screening problem, which would make the exposition more involved. Moreover, it is possible
to understand some key issues in the simple case below. Therefore, for clarity, we proceed
informally, and refer readers to Azevedo and Gottlieb (in preparation) for a mathematically
rigorous treatment.

We use the insurance terminology, although the analysis does not rely on parametric
assumptions. The set of contracts is X = [0, 1]. Preferences are quasilinear as in equation
(1), ignoring income effects. We abstract from redistributive issues, reclassification risk,
the possibility to discriminate across subgroups of consumers, and assume that consumers
have restrictive substitution patterns across contracts. We treat conditional expectations as
functions, even though conditional expectations are only formally defined almost everywhere.
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6.1 Inefficiency

We now show that the competitive equilibrium is inefficient when consumers have private
information about costs. In this sense, our model echoes the standard view of economists,
regulators, and market participants that adverse and advantageous selection causes market
outcomes to be inefficient.

Let ˆ
u− c dα (3)

denote the total surplus generated by the allocation α.31 We will consider total surplus as a
welfare measure, and refer to it henceforth as welfare.32 Assume that cost, utility, and the
endogenously determined price functions are continuously differentiable.

To understand the wedge between privately and socially optimal choices, fix a consumer θ.
Denote marginal utility and marginal cost functions as mu(x, θ) = ∂xu(x, θ) and mc(x, θ) =

∂xc(x, θ). The consumer trades off the price against her willingness to pay for coverage, as
in Figure 5. In an interior choice such as xeq, she equates marginal utility and the price
of an additional unit of coverage p′(x). However, the socially optimal choice xeff equates
marginal utility and marginal cost. Therefore, whenever costs vary among consumers, there
is no reason to expect market outcomes to be efficient.

To understand the sources of inefficiency, define the intensive margin selection coefficient
as

SI(x) = ∂xEx[c]− Ex[mc].

This measure is identical to the intensive margin selection coefficient at minimum coverage
defined in Section 5.3, but evaluated at contract x.

The wedge can be divided into two components. First, in a multidimensional model many
different types purchase contract x. This is the case in our calibrated example, as depicted
in Figure 3b. Therefore, there is no reason for the marginal cost of any single buyer of x to
equal p′(x). Second, even the average marginal cost Ex[mc] of consumers buying x may differ
from p′(x). The difference between p′(x) and Ex[mc] is SI(x), so these two quantities differ
whenever there is advantageous or adverse selection. These two components are depicted in

31The literature sometimes refers to this measure as Kaldor-Hicks welfare, although this is only precise,
according to the original definitions by Kaldor and by Hicks, in the case where a government has access to
lump-sum transfers.

32Our basic analysis focuses on this particular welfare measure, as does much of the applied literature.
However, constrained Pareto efficiency is also an important concept in the study of markets with adverse
selection. Crocker and Snow (1985a) show that, in the Rothschild and Stiglitz model, the Miyazaki-Wilson
equilibrium is constrained Pareto efficient in that its allocations maximize the low-risk type’s utility subject
to incentive and zero profits constraints. The Riley equilibrium, which coincides with competitive equilibrium
in the Rothschild and Stiglitz model, is only constrained efficient when it coincides with Miyazaki-Wilson.
Therefore, in our model, equilibria may be constrained Pareto inefficient.
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Figure 5: Inefficiency of private choices.

Notes: The figure illustrates the decision of an individual consumer θ. The privately optimal decision xeq is
to equate marginal utility mu with the price of an additional unit of coverage p′. The socially optimal choice
xeff equates marginal utility with marginal cost mc. The figure also depicts the average marginal cost curve
of consumers purchasing contract xeq, in bold and denoted Ex[mc], and the marginal cost curves of other
consumers purchasing xeq as faded curves.

Figure 5, where p′(x) is higher than the average marginal cost, implying that there is adverse
selection.

6.2 Optimal Regulation and Risk Adjustment

Consider a government with no excess burden of public funds who wishes to regulate the
market to maximize welfare. The government can regulate the product space, prices, and
employ taxes and subsidies. However, it faces the same informational constraints as firms do
and, therefore, cannot treat consumers differently conditional on their type.

Without loss of generality, the government’s problem is to choose an optimal price function
p(x), let consumers optimize reaching an allocation α, and make transfers t(x) per unit of
contract x to firms so that they break even:

p(x) + t(x) = Ex[c].

That is, setting prices directly subsumes all other policy instruments. For example, forbidding
a contract is tantamount to setting a very high price.

We approach the problem of finding optimal prices from a sufficient statistics approach
similar to Dixit and Sandmo (1977), Wilson (1993), Piketty (1997), Roberts (2000), and
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Saez (2001). We consider a price schedule p(x), and perform a small perturbation p̃(x). If
p(x) was originally optimal, then the perturbation p̃(x) should have a higher-order effect on
welfare. Our perturbation works as follows. Fix a contract x0. We increase the derivative
p′(x) by dp′ in a small interval [x0, x0 + dx], and leave it unchanged otherwise. We make the
additional assumption that only adjustments in the intensive margin matter. That is, we
assume that most of the welfare effects of this perturbation come from consumers who adjust
their coverage in the intensive margin.

Under these assumptions, the welfare effect of the perturbation can be calculated as
follows. There are approximately f(x0) ·dx consumers who are affected by the change, where
f(x) is the density of consumers purchasing contract x. Each of these consumers reduces her
coverage by

ε(x0, θ) ·
dp′

p′(x0)
· x0,

where ε(x0, θ) is the intensive margin elasticity of coverage with respect to p′, defined in Sec-
tion 5.3. Note that, although the perturbation extracts revenues from consumers purchasing
contracts higher than x0, this is moot because we are ignoring redistribution and there is no
excess cost of public funds. Therefore, the total welfare effect equals

Ex0 [ε · (mu−mc)] ·
f(x0) · x0
p′(x0)

· dxdp′

plus higher-order terms, which become insignificant as dx, dp′, and dp′/dx converge to 0.
Consequently, optimal subsidies satisfy, for all x,

Ex[ε · (p′ −mc)] = 0.

This expectation can be decomposed as

0 = Ex[ε] · Ex[p′ −mc]− Covx[ε,mc]

= Ex[ε] · (SI(x)− t′(x))− Covx[ε,mc].

Rearranging this equation we find that optimal subsidies are given by33

t′(x)︸︷︷︸
incremental subsidy

= SI(x)︸ ︷︷ ︸
risk adjustment

− Covx[ε,mc]

Ex[ε]︸ ︷︷ ︸
sorting

. (4)

The intuition for the optimal regulation formula is as follows. The term SI(x) compensates
33We caution readers that this formula is not mathematically rigorous because conditional expectations

are only defined almost everywhere according to α.
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firms for incremental costs that are due to selection. This term is closely related to risk
adjustment, a common policy intervention in insurance markets. Actual risk-adjustment
policies cross-subsidize insurance plans based on observable enrollee characteristics that are
predictive of costs. Formulae differ in what characteristics are used, how expected costs
are measured, and whether prospective or retrospective data is used. Both private and
public sponsors use risk adjustment. For example, in employer-provided health insurance,
plans are often priced according to expected costs of the average employee. Despite these
differences, and practical shortcomings of actual risk adjustment policies,34 policymakers
and market participants often believe that it is important for cross subsidies to lean against
the wind of advantageous or adverse selection, consistent with the SI(x) term. Moreover,
the differences between the optimal subsidy and the usual risk-adjustment formulae clarifies
that cross subsidies should fulfill economic objectives, as opposed to simply being equal to
selection in a statistical sense. This is consistent with the shortcomings of purely statistical
risk adjustment pointed out by Glazer and McGuire (2000) and Einav and Levin (2015).

To understand the intuition for the covariance term, recall the two sources of inefficiency
identified in Section 6.1: marginal costs of any given consumer are different than the price
of additional coverage, and marginal costs and prices differ even on average. The risk-
adjustment term SI(x) addresses this second source of inefficiency by eliminating adverse or
advantageous selection from the point of view of the firms. The covariance term deals with
the first source of inefficiency, which is due to the variation in marginal costs among different
buyers of contract x. Hence, this term sorts consumers more efficiently. If buyers of x with
higher marginal costs also have more elastic demands, then the formula calls for a higher
slope of prices p′(x) than under pure risk adjustment, which induces the high cost consumers
to purchase lower levels of coverage. If this correlation is negative, then incremental prices
should be lower, inducing consumers with lower costs to purchase more insurance.

This formula is consistent with the findings in Section 5. Namely, optimal prices in-
volve cross subsidies on the intensive margin to reduce adverse selection not only in whether
consumers participate in the market, but also in what kinds of contracts they buy.

Finally, our intuitive discussion considered the case where optimal regulation has an
interval of contracts being offered. However, we saw in the numerical simulations that,
with higher heterogeneity in moral hazard, the optimal allocation may involve all consumers
purchasing the same contract. The intuition of why this can happen is simple. In the
parametric example, the first-best contract for consumer θ can be calculated by equating

34Practical hurdles include measurement biases (Wennberg et al., 2013), gaming by firms (Brown et al.,
2014; Geruso and Layton, 2015), and failure to capture all relevant dimensions of heterogeneity (Shepard,
2014; Einav et al., 2015).
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marginal utility and marginal cost, which gives

x =
AθS

2
θ

AθS2
θ +Hθ

.

This expression is decreasing in the moral hazard parameter. All things equal, the social
planner prefers to provide less coverage to consumers who are more likely to engage in moral
hazard. However, consumers with higher moral hazard parameters always wish to purchase
more insurance. Hence, if all heterogeneity is in moral hazard, the planner prefers not to
screen consumers and, instead, assigns the same bundle to everyone. This phenomenon has
been described by Guesnerie and Laffont (1984) in one-dimensional screening models, who
call it non-responsiveness.

7 Conclusion

This paper considers a competitive model of adverse selection. Contract characteristics are
determined endogenously and consumers may be heterogeneous across more than one dimen-
sion, unlike standard models. Competitive equilibrium extends the Akerlof (1970) and Einav
et al. (2010a) models beyond the case of a single contract, determining which contracts are
traded with supply and demand.

Equilibria are inefficient (in the sense of not maximizing total surplus) and even simple
interventions such as mandates can increase welfare. Numerical examples suggest that stan-
dard policies can have important unintended consequences. Policy interventions should take
into account not only whether consumers participate in the market, but also policy effects
on contract characteristics. This is in concert with the view of regulators, who often imple-
ment policies aimed at affecting these characteristics, and with Einav et al. (2009), who have
suggested that contract characteristics may be important.

It would be interesting to test how well competitive equilibrium predicts behavior in mar-
kets with adverse selection and to test it against alternative models. For example, in the case
of one dimension of heterogeneity there is considerable controversy over what a reasonable
equilibrium notion is, despite many alternatives such as those proposed by Riley (1979) and
Miyazaki (1977)-Wilson (1977). Unfortunately, these equilibria are defined in more restric-
tive settings, so one cannot compare predictions in richer settings like our calibrated example.
It would be interesting to extend these equilibrium notions to richer settings and compare
their predictions to competitive equilibria.
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