
Use Case Pitfalls:
Top 10 Problems from Real Projects Using Use Cases

Susan Lilly
SRA International, Inc.

4300 Fair Lakes Ct.
Fairfax, VA 22033

susan_lilly@sra.com
703-227-5103

Abstract

One of the beauties of use cases is their accessible, informal format. Use cases are easy to
write, and the graphical notation is trivial. Because of their simplicity, use cases are not
intimidating, even for teams that have little experience with formal requirements specification
and management. However, the simplicity can be deceptive; writing good use cases takes some
skill and practice. Many groups writing use cases for the first time run into similar kinds of
problems. This paper presents the author's "Top Ten" list of use case pitfalls and problems,
based on observations from a number of real projects. The paper outlines the symptoms of the
problems, and recommends pragmatic cures for each. Examples are provided to illustrate the
problems and their solutions.

Introduction

Over the past few years, we have seen a number of projects make their first attempts at
developing use cases. These projects have used use cases in a number of ways: as the entire
system requirements specification, as part of the system requirements, as an analysis technique
to elicit user requirements that were subsequently specified in other forms (e.g., traditional
"shalls"), and as software subsystem-level requirements. The project teams that developed the
use cases have included developers and/or analysts; in some cases the project teams have
included customers or end users as well.

Although the project teams had little trouble getting started with use cases, many of them
encountered similar problems in applying them on a larger scale. These problems include
undefined or inconsistent system boundary, use case model complexity, use case specification
length and granularity, and use cases that are hard to understand or never complete. These have
been grouped and summarized here as a "Top Ten" list of use case pitfalls and problems, which
may be encountered by inexperienced practitioners.

A sample problem is used to provide simple examples throughout this paper. The Baseball
Ticket Order System is a computer system that is to be deployed to simplify customer sales for
baseball games. Customers may view the season schedule and reserve tickets at kiosks placed
in convenient locations, such as malls. Alternately, customers may call an 800 number and a
phone clerk will reserve tickets for them. The customer may pay by credit card, or may pay at
the time the tickets are picked up at the stadium on the day of the game.

The Top Ten List

Problem #1: The system boundary is undefined or inconsistent.

Symptom: The use cases are described at inconsistent system scope -- some use cases at
business scope, others at system or even subsystem scope.

One element of the use case model is a labeled box that indicates the system boundary; the
actors go outside of this box, and the use cases go inside. Before we determine the actors and
use cases, we must be explicit about what we mean by "system." Is it a computer system? An
application? A component or subsystem? Or is it a whole business enterprise? Use cases might
be used to describe any of these "system" boundaries, but should only focus on one at a time.
The actors and use cases appropriate at one system boundary are likely to be incorrect for a
different system boundary. A common problem is the mix of both scopes in the same use case
model, or even within a single use case specification.

Example: A Kiosk Customer uses the computer system to order tickets. Alternately, a Phone
Customer may call the ticket business, and a Phone Clerk (an employee of the ticket business)
may use the computer system to order tickets. Who are the actors? Figure 1 illustrates a mixed-
up system boundary: The modelers have tried to show both the users of the business and the
users of the system in the same use case model.

Figure 1: Use Case with Mixed-Up Scope
Cure: Be explicit about the scope, and label the system boundary accordingly. Say: "Yes,

the business model is very interesting, but right now we are defining our use cases at the
computer system scope" -- and then stick to it. Example: In Figure 2, the system boundary
represents a computer system, and Kiosk Customer and Phone Clerk are actors who use the
Order Tickets use case.

Figure 2: Use Case at Computer System Scope

Kiosk Customer

Phone Clerk

Credit Card
Validation System

Order Tickets

System?

Phone Customer

Kiosk Customer

Phone Clerk

Credit Card
Validation System

Order Tickets

Baseball Ticket Ordering System

In Figure 3, the system boundary represents a whole business enterprise. The actor, Phone
Customer, is a user of the ticket business, but is not a user of the computer system. Both of
these are appropriate ways to model; the choice between them depends on whether we are
trying to define the requirements of a computer system (use Figure 2), or using use cases in
business process modeling or reengineering (use Figure 3).

Figure 2: Use Case at Business Enterprise Scope

Symptom: Looking at the use case model, it's not really clear what's inside and what's
outside the system. This problem often comes up when the use cases are modeled using a
visual modeling/CASE tool (including the leading one on the market) that doesn't show the
system boundary on the use case model.

Cure: Draw the system boundary (at least in your head). If the modeling tool does not draw
a system boundary, place the use cases inside and the actors outside an imaginary box.
Example: Figure 4 shows the same use case model, formatted in different ways. The model on
the left has mixed up the actors and use cases; the one on the right has placed the use cases in
the middle ("inside") with the actors on the "outside."

Figure 3: Use Case Model Formatting (bad and better)

Problem #2: The use cases are written from the system's (not the actors') point of
view.

Symptom: The use case names describe what the system does, rather than the goal the actor
wants to accomplish.

Cure: Name the use cases from the perspective of the Actor's goals. Example: Process
Ticket Order and Display Schedule are things the system does (bad use case names). Order
Tickets and View Schedule are goals of the system's users (good use case names).

Symptom: The steps in the use case specification describe internal functionality, rather than
interactions across the system boundary.

Phone Customer Credit Card
Validation System

Order Tickets by Phone

Baseball Ticket Sales Business

Kiosk Customer

(from System Actors)

Create Schedule Schedule
Administrator

(from System Actors)

View ScheduleOrder Tickets

Credit Card
Validation System

Credit Card
Validation System

(from System Actors)
Kiosk Customer

(from System Actors)

Create Schedule

Schedule
Administrator

(from System Actors)

View Schedule

Order Tickets

Cure: Focus on what the system needs to do to satisfy the actor's goal, not how it will
accomplish it.

Symptom: The use case model looks like a data/process flow diagram.
Cure: Watch out when the use case model includes use cases that are not directly associated

with an actor, but are associated with <<uses>> or <<extends>> relationships. Sometimes this
is an appropriate way to model the use cases. But many neophyte use case modelers (especially
those who are programmers, or who have a process modeling background) misuse these
associations, functionally decomposing the problem, rather than focusing on the interactions
between actors and the system. Take a look at the specifications of used or extension use cases,
to ensure that the steps in them describe interactions between the actor (of the base use case)
and the system. If the steps are entirely focused on internal processing, the used and extended
use cases are probably being used as a mechanism for functional decomposition. (If so, they
don't belong in the use case model.)

Problem #3: The actor names are inconsistent.

Symptom: Different actor names are used to describe the same role. This is amazingly easy
to do, since different sources of requirements often use variant names for the same thing -- and
similar names for quite different things. When a problem is large, there are often multiple
teams working on use case models for different parts of the problem, and the same (logical)
actor may appear with variant names from model to model. Example: The role of the person
who manages the online baseball schedule is called "Schedule Administrator" in one model,
"Schedule Manager" in another, and "Scheduler" in a third.

Cure: Get agreement early in the project about the use of actor names (and other terms).
Establish a glossary early in the project and use it to define the actors. The glossary should
specify the actor name, its meaning, and any aliases that this name is known by. Include the
glossary as an appendix to the use case document.

Problem #4: Too many use cases.

Symptom: The use case model has a very large number of use cases.
Cure: Make sure that the granularity of the use cases is appropriate. Use cases should reflect

"results of value" to the system's users -- the attainment of real user goals.
− Combine use cases that describe trivial or incidental behavior that are actually

fragments of the real use cases. Use cases are sometimes chopped into fragments when
there is an attempt to associate user interface screens to use cases in a 1-to-1
relationship.

− Remove use cases that describe purely "internal" system processing ("internal" with
respect to whatever system boundary is being used).

Example: In Figure 5, the Happy Kiosk Customer actor is associated with a use case called
Order Tickets -- the customer's real goal in walking up to the kiosk in the mall. The Sad Kiosk
Customer actor is associated with three different use cases. They all describe interactions
between the Kiosk Customer and the system, but they represent incidental steps in the
attainment of the actor's real goal (to order tickets). How did the "real" use case get split into
three sub-goal use cases? The modelers were attempting to make a separate use case for each
user interface element.

Figure 4: Real Use Cases vs. Incidental Actions

If the granularity of the use cases is right, but the system is simply very large, partition the
set of use cases. Break the use case model into use case packages, each of which contains a
cohesive set of use cases and a limited set of actors. Example: Figure 6 shows a use case
model that has a large number of use cases. Figure 7 illustrates the same set of use cases,
partitioned into 5 packages. Each package should contain a "cohesive" subset of the use cases,
grouped around one or more actors who share common goals.

Figure 5: Model Needs Partitioning Figure 6: Model with Packages

Problem # 5: The actor-to-use case relationships resemble a spider's web.

Symptoms: (a) There are too many relationships between actors and use cases. (b) An actor
interacts with every use case. (c) A use case interacts with every actor.

Cure: The actors may be defined too broadly. Examine actors to determine whether there
are more explicit actor roles, each of which would participate in a more limited set of use
cases. Example: Employee is very general, and is associated with a large number of use cases.

Kiosk Customer

Select Stadium Section

Order Tickets

Baseball Ticket Ordering System

Swipe Credit Card

Select Game Date

Kiosk Customer

Actor C

Actor E

Actor B

Actor A

Actor D

System

Actor DActor A

Actor B

Actor A

Actor C

Actor E

Actor A
Actor C

Package 1

Package 2

Package 3

Package 5

Package 4
Package 1

Package 3 Package 4

Package 5

Package 2

Phone Clerk and Schedule Administrator are more specific; each of these is associated with a
smaller, more role-oriented set of use cases.

There may be cases where recognition of a more general class of actors helps to simplify a
model. This often occurs where two or more actors are associated with the same set of use
cases, because of some commonality in their roles. The resulting use case model has a spider's
web of crossed lines between actors and use cases, as shown in Figure 8.

Figure 7: Actors with Overlapping Roles

The use case modeling notation provides a mechanism, actor generalization, for explicitly
recognizing the commonality of actor roles. Figure 9 shows how the use case model can be
redrawn with actor generalization to simplify the relationships between actors and use cases.
This model says that a Kiosk Customer is a kind of Ticketer and that a Phone Clerk is a kind of
a Ticketer. Any Ticketer may view a schedule or order tickets. A Phone Clerk (but not a Kiosk
Customer) may additionally view a sales report.

Figure 8: Use Case Model with Actor Generalization

Note that it would not have been correct to simply model Phone Clerk as a specialization of
Kiosk Customer, in place of Ticketer. While the actor-to-use case relationships would be
correct, the actor-to-actor relationship is semantically unsound: A Phone Clerk is not a kind of
Kiosk Customer. (I saw that example in a recent use case book, which modeled a Sales Rep
actor as a subclass of a Customer actor, in order to inherit the overlapping use case
relationships.)

Baseball Ticket Order System

View Schedule

Order Tickets

View Daily Sales Report

Kiosk Customer

Phone
Clerk

Baseball Ticket Order System

View Schedule

Order Tickets

View Daily Sales Report

Ticketer

Phone
Clerk

Kiosk
Customer

Problem #6: The use case specifications are too long.

Symptom: A use case specification goes on for pages.
Cure: The granularity of the use case may be too coarse. Example: Use Schedule (a use

case that includes everything any user might want to do with a schedule) is too broad. More
narrowly defined, specific use cases (such as View Schedule and Create Schedule) tend to be
shorter and easier to understand.

Alternately, the granularity of the steps in the use case may be too fine. The steps may be
too detailed or include purely internal processing (implementation). Rewrite them to focus on
the essential interaction.

Problem #7: The use case specifications are confusing.

Symptom: The use case lacks context; it doesn't "tell a story."
Cure: Include a Context field in your use case specification template to describe the set of

circumstances in which the use case is relevant. Make sure that the Context field puts each use
case in perspective, with respect to the "big picture" (the next outermost scope). Don't just use
it to summarize the use case.

Symptom: The steps in the normal flow look like a computer program.
Cure: Rewrite the steps to focus on a set of essential interactions between an actor and the

system, resulting in the accomplishment of the actor's goal.
− Break out conditional behavior ("If...") into separately described alternate flows, leaving

the normal flow shorter and easier to understand.
− Use case steps are not particularly effective for describing non-trivial algorithms, with

lots of branching and looping. Use other, more effective techniques to describe complex
algorithms (e.g., decision table, decision tree, or pseudocode).

− Make sure that the steps don't specify implementation. Focus on the external
interactions. Consider expressing some of the behavior as "rules," rather than
algorithms.

Problem #8: The use case doesn't correctly describe functional entitlement.

Symptom: The associations between actors and use cases doesn't correctly or fully describe
who can do what with the system. This problem seems to occur for two reasons:

− The use case modelers were trying to be "object oriented," by making fat use cases that
include all possible actions that might be performed on a business object. (I call these
"CRUD use cases," since they often contain flows for creating, reading, updating, and
deleting the object.) These use cases often have names that include the words
"maintain," "manage," or "process."

− The use case modelers were trying to match up use cases to user interface screen. Faced
with a view screen, that could also be edited (by a user with the right authority), they
combined viewing and updating into a single use case that relates to the single screen
design.

Example: Figure 10 shows a use case Process Game Schedule, that describes everything
that any actor might want to do with a game schedule. Its specification has a "normal flow" for
viewing the schedule, and alternate flows for updating the schedule. The Kiosk Customer actor
may use the normal flow, but cannot use the alternate flow. Only the Schedule Administrator is
functionally entitled to perform the schedule update.

Figure 9: Confusing Functional Entitlement

Cure: Make sure that each actor associated with a use case is completely entitled to perform
it. If an actor is only functionally entitled to part of the use case, the use case should be split.
Example: The Process Game Schedule use case should be split into two: View Game
Schedule and Update Game Schedule, as shown in Figure 11. Now it is clear, at a glance,
that the Kiosk Customer may view, but not update, a schedule.

Figure 10: Use Cases with Correct Functional Entitlement

Problem #9: The customer doesn't understand the use cases.

Symptom: The customer doesn't know anything at all about use cases, but has been given a
use case-based requirements document for review or approval. (Of course it's best when
customers/end users have been included in the use case development. However, the person
who reviews or approves the requirements may not have been involved in developing the use
cases.)

Cure: Teach them just enough to understand.
− Put a short (1-2 page) explanation of use cases in the use case document, as a preface or

appendix. The explanation should include a key to reading the model and specifications,
and a simple example.

− Lead a short training session when use case document is distributed for review.
− Think long and hard about using <<uses>> and <<extends>> relationships in the use

case model. They are a modeling convenience, but are not at all intuitive to the
inexperienced reviewer.

Symptom: The use cases don't tell a story.
Cure: Add information to tell the story:

− Include a Context section in the use case template.

Kiosk Customer
(may only view
the schedule)

Schedule Administrator
(may view or update

the schedule)

Process Game Schedule

Baseball Ticket Ordering System

Kiosk Customer Schedule Administrator

View Game Schedule

Baseball Ticket Ordering System

Update Game Schedule

− Add an overview section that provides context to a set of related use cases (e.g., a
package), and use this section to "tell the story."

− Include other kinds of models as needed. Often, a single use case will result in a state
change to a major domain object, but the use case model alone won't tell the story of how
the object changes state across many use cases over time. A state model (state transition
diagram) of a major domain object may be an excellent way to show how several related
use cases fit together over time.

Symptom: The use case organization doesn't match the way the customer thinks of the
problem.

Cure: Determine what strategy for organizing the use cases makes the most sense to the
customer. Listen to how the customer describes the business.
− How to partition the use cases into packages: Break out the use cases by major roles/actors,

or by major events in the customer's business. Example: The customer talks a lot about
"Spring Setup" -- when they put the new game schedule, stadium section definitions, and
ticket prices into the system. Even if that's not the way the system developers think about
the system, that's the package organization that makes sense to the customer.

− How to order use cases within a package: Order the use cases "chronologically," to
describe a story of system use over time. Don't order the use cases alphabetically!

Symptom: Use case is written in "computerese."
Cure: Watch out for computer slang that is not part of the customer's vocabulary. Example:

Say "The system displays the result screen," rather than "The result screen is invoked."

Symptom: The customer just hates the use cases.
Cure: Deliver what the customer wants. This doesn't mean that use cases can't be used as a

requirements elicitation technique, if use cases are really the right technique for the job. But
they might not be a primary delivered work product. Example: One customer has its own
requirements document template, and it's not use-case based. But the system is highly
operational in nature, and we feel that use cases are the best approach for eliciting and
modeling the requirements. We perform the use-case based analysis, and then write the
requirements in the format that the customer wants, based on what we learned in that analysis.
The use cases might be included in an appendix to the requirements document, or they might
not be a deliverable at all.

Problem #10. The use cases are never finished.

Symptom: Use cases have to change every time the user interface changes.
Cure: Loosely couple the user interface details and use case interactions. The user interface

design is likely to change, and you don't want your system requirements to be dependent on
design. (The dependency goes the other way -- the user interface design must satisfy the use
case requirements.) A little coupling is okay -- "low fidelity" pictures of the user interface can
aid understanding of the use case. But don't overly tie the fundamental interactions to the UI
mechanisms (which are more likely to change). In the flows, focus on the essentials of what
the actor does (e.g., "selects a game," "submits a request") rather than how the interaction is
done (e.g., "double-click on the Submit button").

Specify use case "triggering" events as preconditions (e.g., "user has selected a game, and
requested to order tickets"), rather than screen navigation details. Keep the screen navigation
information in a (separate) user interface design document, not in the use case model.

Symptom: The use cases require change every time the design changes.
Cure: The easy answer is "Don't put design in your use cases." That's generally good advice

when the use cases are at a computer system scope. The use cases should record what the
system must do, not the design/implementation details. Make sure that your use case steps are
not unnecessarily low level; that is, they should completely specify what they system must do,
but no more than that. Put design information discovered during analysis into a separate
Design Guidance document.

When use cases are defined at a subsystem scope, changes in system-level design (e.g., how
functionality is partitioned between subsystems) can affect the subsystem requirements. Until
the system design is stable (and explicitly documented), the subsystem requirements, including
the use cases, will not stabilize.

Symptom: There are so many possible alternate cases!
Cure: Watch out for "analysis paralysis." There is a point at which the requirements are

adequately specified, and further analysis and specification does not add quality. Cover the
"80%" cases; do your best on the rest within the allocated budget of time and money.

Symptom: The requirements are just unknown.
Cure: Use cases have a simple, informal, and accessible format. This may lead to the

deceptive conclusion that developing use cases is easy. However, the simplicity of the format
does not mean that the requirements analysis process is any less critical or any easier. Use
cases are a mechanism for defining and documenting operational requirements, not magic.

Conclusions

The pitfalls and problems described in this paper are not an indictment of use cases, but
rather problems in the application of use cases by inexperienced practitioners. In our
experience, most use case development teams include inexperienced members. Use cases may
be a new technique to the organization, and are being used by the development team for the
first time. Even when the analysts or system developers have experience with use cases, other
team members may not. The ideal use case team includes customers, end users, and/or domain
experts. In most cases, these team members will have no prior experience with use cases. The
simplicity of the use case modeling notation and natural-language specifications make use
cases extremely accessible to such team members. They may fully participate in the use case
modeling and specification, but are likely to encounter the pitfalls described in this paper.

One suggestion for teams in which some or all of the members are new to use cases is
perform periodic informal "in-progress" reviews of the use case models and specifications, in
order to catch problems early in the development, and to educate the team members. Of course,
a formal review or inspection of a finished use case document is also appropriate. The reviews
can be made more effective by the use of a checklist to help identify these common problems.
An example of such a checklist is available by email on request from the author.

