

Magnus Eriksson

An Approach to

Software Product Line

Use Case Modeling
LICENTIATE THESIS, 2006

DEPARTMENT OF COMPUTING SCIENCE

UMEÅ UNIVERSITY

SE-90187 UMEÅ, SWEDEN

© Magnus Eriksson, 2006
Print & Media, Umeå University

UMINF-06.01 ISSN 0348-0542 ISBN 91-7264-023-5

 iii

Abstract

Organizations developing software intensive defense systems are today faced with a
number challenges related to characteristics of both the market place and the system
domain:

1. Systems grow ever more complex, consisting of tightly integrated
mechanical, electrical/electronic and software components.

2. Systems are often developed in short series; ranging from only a few to a
few hundred units.

3. Systems have very long life spans, typically 30 years or longer.
4. Systems are developed with high commonality between different customers;

however systems are always customized for specific needs.
The goal of the research presented in this thesis is to investigate methods and tools

to enable efficient development and maintenance of systems in such a context. The
strategy adopted in this work is to utilize the forth system characteristic, high
commonality, to achieve this.

One approach to software reuse, which could be a potential solution as it enables
reuse of common parts but at the same time allow for variations, is known as software
product line development. The basic idea of this approach is to use domain
knowledge to identify common parts within a family of related products and to
separate them from the differences between the products. The commonalties are then
used to create a product platform that can be used as a common baseline for all
products within such a product family.

The main contribution of this licentiate thesis is a product line use case modeling
approach tailored towards organizations developing software intensive defense
systems. We describe how a common and complete use case model can be developed
and maintained for a whole family of products, and how the variations within such a
family are modeled using a feature model. Concrete use case models, for particular
products within a family, can then be generated by selecting features from a feature
model. We furthermore describe extensions to the commercial requirements
management tool Telelogic DOORS and the UML modeling tool IBM-Rational Rose
to support the proposed approach. The approach was applied and evaluated in an
industrial case study in the target domain. Based on the collected case study data we
draw the conclusion that the approach performs better than modeling according to the
styles and guidelines specified by the IBM-Rational Unified Process (RUP) in the
current industrial context. The results however also indicate that for the approach to
be successfully applied, stronger configuration management and product planning
functions than traditionally found in RUP projects are needed.

 v

Acknowledgements

There are many people involved in the completion of this licentiate thesis that I am
very grateful to. First of all, I would like to thank my academic supervisor Associate
Professor Jürgen Börstler, and my industrial supervisor Kjell Borg. You always make
yourselves available to discuss my ideas, and your advice has significantly increased
the quality of my work.

Dr. Örjan Olsson and Mats Bergström, without your support this doctorial project
would never have been initiated in first place. Mats, I am really sad that you are no
longer with us to see how it is starting to transform development at Hägglunds.

Henrik Morast, without your enthusiasm developing tools to support my ideas,
they would have had far less influence on development at Hägglunds. Thank you also
for your sanity checks of my tool ideas.

Dr. Carl-Gustav Löf and Conny Flemin, thank you for believing in me and
providing me with the means to apply my ideas at Hägglunds.

All the people at Hägglunds that applied my ideas and participated in my studies,
without you, none of this work would have been possible. Thank you all!

Dr. Charilaos Christopoulos, my master thesis supervisor at Ericsson Research,
without your encouragement I would never have pursued a research degree in the first
place.

Finally, I would like to thank my family for their support, but also apologize to
them. Conducting process improvement activities is very rewarding when things work
out right, but sometimes also very frustrating when they do not. Thank you for always
being there for me when I needed you, and sorry for all those long hours that were
required to finish this work.

Umeå, December 2005
Magnus Eriksson

 vii

Preface

This licentiate thesis consists of the following three papers and an introduction to the
research area (Kappa):

I. M. Eriksson, J. Börstler & K. Borg (2004): Marrying Features and Use
Cases for Product Line Requirements Modeling of Embedded Systems1,
Proceedings of the Fourth Conference on Software Engineering Research
and Practice in Sweden, Institute of Technology, UniTryck, Linköping
University, Sweden, pp. 73-82

II. M. Eriksson, J. Börstler & K. Borg (2005): The PLUSS Approach ─ Domain
Modeling with Features, Use Cases and Use Case Realizations2,
Proceedings of the 9'th International Conference on Software Product Lines,
LNCS, Vol. 3714, Springer-Verlag, pp. 33-44

III. M. Eriksson, H. Morast, J. Börstler & K. Borg (2005): The PLUSS Toolkit ─
Extending Telelogic DOORS and IBM-Rational Rose to Support Product
Line Use Case Modeling3, Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, Long Beach California,
ACM Press, pp. 300-304

These papers have been reformatted, compared to the original publication, to have
a consistent layout with the rest of the thesis. Furthermore, minor typographical errors
have also been corrected.

1 © Magnus Eriksson, 2004
2 © Springer-Verlag, 2005
3 © ACM Press, 2005

 ix

Table of Contents

1 THESIS INTRODUCTION ____________________________________1
1.1 Background and Motivation __________________________________ 1
1.2 Research Question __ 1
1.3 Research Context ___ 1
1.4 Research Hypothesis __ 3
1.5 Thesis Outline ___ 3

2 RESEARCH METHOD ______________________________________3
3 SOFTWARE PRODUCT LINES________________________________5

3.1 Reuse __ 6
3.2 Product Line Management____________________________________ 7
3.3 Essential Artifacts __ 8

4 REQUIREMENTS ENGINEERING ____________________________10
4.1 Traceability __ 10
4.2 Use Case Modeling __ 11
4.3 Feature Modeling__ 12

5 THE IBM-RATIONAL UNIFIED PROCESS (RUP) _______________13
5.1 Develop Iteratively __ 14
5.2 Manage Requirements ______________________________________ 17
5.3 Use Component Architectures ________________________________ 17
5.4 Model Visually ___ 18
5.5 Continuously Verify Quality _________________________________ 18
5.6 Manage Change ___ 19

6 THE PROPOSED APPROACH _______________________________19
6.1 Related Work ___ 20
6.2 Marrying Use Case Modeling with Feature Modeling______________ 22
6.3 Product Instantiation _______________________________________ 23
6.4 A Note on Notations Used ___________________________________ 24
6.5 Tool Support ___ 25

7 SUMMARY OF CONTRIBUTIONS ____________________________25
7.1 Paper I – Marrying Features and Use Cases _____________________ 26
7.2 Paper II – The PLUSS Approach______________________________ 26
7.3 Paper III – The PLUSS Toolkit _______________________________ 26

8 ONGOING AND FUTURE WORK _____________________________27
8.1 Test of Research Hypothesis _________________________________ 27
8.2 Further Development and Evaluation of the Proposed Approach _____ 27
8.3 Reuse of Systems Engineering Specifications ____________________ 28
8.4 Managing Variants in Design Specifications_____________________ 29

REFERENCES___29
PAPER I __ 35
PAPER II ___ 53
PAPER III __ 67

Kappa 1

1 Thesis Introduction

1.1 Background and Motivation

Organizations developing software intensive defense systems are today faced with a
number challenges. These challenges, which are related to characteristics of both the
market place and the system domain, include:

1. Systems grow ever more complex, consisting of tightly integrated
mechanical, electrical/electronic and software components. This implies that
strong means of communication between different engineering disciplines
are important to achieve efficient development.

2. Systems are often developed in short series; ranging from a few to a few
hundred units. This implies that it is important to achieve efficient
development, since development costs are carried by only a few units.

3. Systems have very long life spans, typically 30 years or longer. This implies
that it is important to develop high quality systems, and to achieve effective
maintenance of these systems once developed.

4. Systems are developed with high commonality between different customers;
however systems are always customized for specific needs. This implies that
there is potential for high levels of reuse of development efforts between
different customer projects.

1.2 Research Question

The research presented in this thesis is intended to address some of the complexity
related to development and maintenance of systems such as those described above.

The research question investigated in this licentiate thesis is:

What methods and tools are needed to enable effective development and
maintenance of complex and long-lived software intensive systems?

1.3 Research Context

The work presented in this licentiate thesis is financed by, and performed in
collaboration with, Land Systems Hägglunds AB. Land Systems Hägglunds, which is
part of the Land Systems division of BAE Systems, is a leading developer and
manufacturer of combat vehicles, all terrain vehicles and a supplier of various turret
systems.

To address some of the complexity related to the development of such systems (as
discussed in section 1.1), Land System Hägglunds has a systems engineering [31]
team which is responsible for system-wide technical issues (see Fig. 1). Systems

2 Magnus Eriksson

engineering is an interdisciplinary approach to enable the realization of complex
systems [30]. Its focus is on defining stakeholder needs and required functionality
early in the development cycle and to synthesis an overall system design that captures
those requirements from a total life-cycle perspective (see Fig. 2).

Engineering

Systems Engineering Software EngineeringDesign

Mechnical Engineering Electrical Engineering

Engineering

Systems Engineering Software EngineeringDesign

Mechnical Engineering Electrical Engineering
Fig. 1: A partial view of Land Systems Hägglunds organization.

Land Systems Hägglunds develops software according to a tailored version of the
IBM-Rational Unified Process (RUP) [48]. RUP, which is widely used in industry, is
a specific and detailed version of the more general Unified Software Development
Process (USDP) [40]. RUP will be further discussed in section 5.

System development projects at Land Systems Hägglunds are often constrained by
different types of standards prescribed by acquisition organizations (customers).
These standards typically prescribe certain artifacts to be developed and certain
processes to be executed. The organization is also certified according to the ISO 9001
[32] standard.

S
ystem

 Analysis

Requiremetns
Analysis

Requiremetns
Verification

Functional
Analysis

Functional
Verification

Synthesis

Design
Verification

Control

Verified physical architecture

Physical architecture

Verified functional architecture

Functional architecture

Validated requiremetns baseline

Requiremetns baseline

Requirement and constraint conflicts

Requirements
trade studies and

assessments

Functional
trade studies and

assessments

Design
trade studies and

assessments

Requiremetns trade-offs
and impacts

Decomposition and requirement allocation alternatives

Decomposition/allocation trade-
offs and impacts

Design solution requirements and alternatives

Design solution trade-offs and
impacts

PROCESS
INPUTS

PROCESS OUTPUTS
Fig. 2: The Systems Engineering Process [30].

Kappa 3

1.4 Research Hypothesis

The strategy adopted in this work was to take advantage of the forth system
characteristic described in section 1.1 (high commonality) to enable effective
development and maintenance of systems in the target domain. One approach to
software reuse, which could be a potential solution that utilizes this characteristic, is
known as software product line development. The basic idea of this approach is to use
domain knowledge to identify common parts within a family of related products and
to separate them from the differences between the products. The commonalties are
then used to create a product platform that can be used as a common baseline for all
products within the product family.

The research hypothesis on which the work presented in this thesis is based on is
therefore:

Adopting a software product line development approach enables effective
development and maintenance of complex and long-lived software intensive
systems.

A formal capability assessment of Land Systems Hägglunds in accordance with the
ISO/IEC 15504 standard (SPICE) [33,34,35,36,37], revealed system- and software
requirements engineering to be important areas on which to focus process
improvement efforts [51]. A decision was therefore made to investigate if software
product line development could be introduced in the organization using a
requirements-based approach.

1.5 Thesis Outline

The remainder of this thesis is structured as follows: Section 2 describes the research
method adopted in this work. Section 3, 4 and 5 provides introductions to software
product line development, requirements engineering and RUP respectively. Section 6
presents the main contribution of this thesis, an approach to software product line use
case modeling. Section 7 summarizes the thesis contributions and section 8 presents
some ongoing and future work in the area.

2 Research Method

An “Industry-as-laboratory” [62] (see Fig. 3) approach was chosen for this work. The
motivation for this was to allow for frequent exchange of information from the
problem domain (industry) to the academic domain and back.

4 Magnus Eriksson

The Research-then-transfer Approach

Problem
(version 1)

Problem
(version 2)

Problem
(version 3)

Problem
(version 4)

Application-problem domain

Research
(version 1)

Research
(version 2)

Research
(version 3)

Research
(version 4)

Research-solutions domain
Wide gulf, bridged by

indirect, anecdotal knowledge

Technology-transfer gap bridged by hard,
but frequently inappropriate technology

Incremental refinement
of research solutions

Problem evolves invisibly to the
research community

The Industry-as-laboratory Approach

Problem
(version 1)

Problem
(version 2)

Problem
(version 3)

Problem
(version 4)

Application-problem domain

Research
(version 1)

Research
(version 2)

Research
(version 3)

Research
(version 4)

Research-solutions domain

Narrowing gulf,
bridged by hard,

empirical data, and
hard transferred

technology

Problem
(version 5)

Fig. 3: The “Industry-as-laboratory” approach [62].

The industry-as-laboratory approach was applied as illustrated in Fig. 4, where
industry expresses the initial research problem. This problem is then analyzed by
academia, and a solution to the problem is proposed. Industry then executes one or
more pilot projects where the proposal is applied in the problem domain. Academia
supports this activity by training personnel in new methods and tools, and by
assuming a mentoring role during pilots.

In parallel to, and after these pilots, academia collects data to enable an empirical
evaluation of the proposal. This data is typically of qualitative type. Since qualitative
data is richer than quantitative data [66], it is often a better choice when gathered
from only one or a few pilot projects. Example sources of such qualitative data are
document analysis, participant observation, questionnaires and interviews [50].

Based on the empirical evaluation, a decision is made to either refine/reject the
proposal or to institutionalize the change and move on to other research problems. If a
decision is made to refine or reject the proposal, the process returns to the problem
analysis activity which is then followed by new proposals and new pilots. If a
decision is made to institutionalize the change, industry will incorporate the proposal
in its quality system and also apply it in future projects. This enables academia to
perform follow-up studies on a larger set of projects. Evaluating proposals in such a
setting typically involves collection of quantitative data. Example sources of such
data are surveys, and metrics from both historical (pre-change) and new (post-change)
projects.

Kappa 5

One risk associated with this research strategy is the close involvement of the
research team with the development teams. This confounding factor4 may affect the
internal validity of any empirical evaluations performed. It is therefore important to
take this fact into consideration during data analysis. To minimize the effect of other
confounding factors it is also important that pilots are staffed using normal
procedures, subjects are given adequate training, and that subjects have sufficient
experience of the new technology prior to pilots [44].

Express problem

Analyze
problem(s)

Develop solution
proposal

Run pilot(s)

Evaluate proposal
(based on pilots)

Satisfying
results?No

Institutionalize
change

Perform follow-up
study

Yes

Decision

Industry activity

Academia activity

Fig. 4: An overview of the applied research approach.

3 Software Product Lines

Over the last few years a new5 approach to software reuse has gained considerable
attention both by industry and academia. This approach is known as software product
line development and it supports large-grained (architecture level) intra-organization
reuse. Software product line6 development is an approach to gain organizational
benefits by exploiting commonalities between a set of related products that address a
particular market segment. The basic idea of the software product line approach is to

4 A confounding factor is one that can not properly be distinguished form another factor

measured in a study [45].
5 The basic concepts were actually presented already in the seventies by David Parnas [61].
6 A number of software product line development methods have been proposed in the

literature. Surveys of the most important ones can be found in [71] and [25].

6 Magnus Eriksson

use domain knowledge to identify and separate common parts among a family of
products from the differences between the products. The commonalties are used to
create a product platform that can be used as a common baseline for all products
within a product family. Studies have shown that organizations can yield considerable
improvements in productivity, time to market, product quality and customer
satisfaction by applying this approach [12,13,15].

In this work the term Product Line or Product Family is used to denote [15]:
“a set of software-intensive systems sharing a common set of features that
satisfy the specific needs of a particular market or mission and that are
developed from a common set of core assets in a prescribed way”.

The term Core Assets or Platform is used to denote the reuse repository of a product
line. These software product line core assets include, not only software components,
but also often architecture, requirements, documentation, schedules, budgets, test
plans, test cases, etc. [58].

3.1 Reuse

The main purpose with software reuse is to improve software quality and
productivity, and thereby maximize a software development organizations profit [25].
The software engineering community has had long-standing high hopes that software
reuse would be the answer to the “software crisis”7. A number of software reuse
approaches have been presented over the years. One example of such an approach is
the object oriented programming paradigm (OOP). OOP supports software reuse by
techniques known as polymorphism, encapsulation and inheritance [22]. These
techniques help the developer in producing highly modular and to some extent
reusable code. Much research has also been done on reuse libraries8 [25]. The basic
idea of such traditional software reuse approaches is that organizations create
repositories where the outputs of practically all development efforts are stored. These
repositories would typically contain components, modules and algorithms that
developers are then urged to use. Unfortunately, it usually takes longer to find the
desired functionality and adapting it to current needs than it would to build it anew
[12]. The typical programmer solution to this problem is to ignore the legacy and
build most of the software from scratch. Traditional techniques, which support so
called small-grained9 reuse, have therefore proved ineffective10 when trying to address
the software crisis in practice [12].

Another and more effective approach to software reuse is known as the “clone and
own” approach [15]. When a new product project is initiated using this approach, the
development team tries to find another product within the organization that resembles
the current product as much as possible. The organization then copies (clones) all

7 See [26] for more information regarding the ‘software crisis’.
8 See [55] for more information regarding research on reuse libraries.
9 Also known as ‘code salvation’ or ‘code scavenging’ (see [22,12]).
10 One exception is the “Japanese Software Factories” approach, which proved very successful

in the 1970’s and 1980’s. The main weakness of this approach was however that it had too
much focus on process improvement, and not enough support for product innovation [17].

Kappa 7

project artifacts, and modify and add whatever needed to launch the new product.
This approach can yield considerable savings compared to developing all products
from scratch. One drawback with the clone-and-own approach is however inefficient
maintenance. When “cloning” an existing product to create a new product, its
maintenance trajectory is split into two separate paths. This could lead to considerable
additional maintenance costs for the common parts of the products over their lifespan.

Software product lines are about strategic reuse, this means that software product
lines are as much about business practices as they are about technical practices [58].
Adopting a software product line approach requires a shift in mind for an
organization. An organization must move from developing single products to
developing product families. During analysis several related products are envisioned
together and a design that can capture the requirements of the whole family must be
developed. This means that everything is developed with reuse (within the family) in
mind. This in turn implies that the effort needed for customization of the reusable
assets to fit a new system is largely reduced compared to traditional reuse approaches.
Another benefit of software product line development compared to traditional reuse is
maintenance. In software product line development, products are built on a common
platform and maintenance costs of the platform can be shared by all products using
the platform.

3.2 Product Line Management

As illustrated in Fig. 5 and Fig. 6, development in a software product line
organization can be divided into two main activities, Domain engineering and
Application engineering:

• The purpose of the domain engineering activity is to develop the product line
reusable core assets. The goal of this core asset development is to provide a
production capability for products [58]. Together with these core assets,
some sort of production plan [15] is also developed. The purpose of a
production plan is to describe how products are to be built from a core asset.
For example by describing how specific tools are to be applied in order to
use, tailor and evolve assets.

• The purpose of the application engineering activity is to generate new
applications utilizing the assets developed by domain engineering. The main
input to this activity, besides from core assets and production plans, is
product requirements.

As discussed above, in software product lines, reuse is planned, enabled and
enforced [15]. This implies that management is an integral part of any successful
product line effort. Both technical (project) and organizational management must be
strongly committed to the product line effort [58]. Technical management oversees
core asset development and enforces use of the core assets by product development
teams. Organizational management must set necessary organizational structures, such
as funding models, in place to ensure the evolution of core assets.

8 Magnus Eriksson

Domain
Engineering

Application
Engineering

Product Line
Development

Core Asset
Development

Product
Development

Management

Fig. 5: Essential product line activities [58].

3.3 Essential Artifacts

As illustrated in Fig. 6, some of the key artifacts of a product line are its requirements,
its architecture and its components. However, compared to single system
development, a few differences exist in these product line artifacts:

• Product line requirements span several products. This means that some of
these product-line-wide requirements must be written with variation points to
be able to capture variations between individual products within a product
line. Mannion classifies product line requirements to be “Non-reusable”,
“Directly reusable”, “Variable” (see Fig. 7) or “Obsolete” [53].

• Product line architectures define a set of explicitly allowed variations that
represent the individual products that can be built within a product line. In
conventional software architectures, almost any variation is allowed as long
as the product requirements are fulfilled. It is also the product line
architectures’ responsibility to provide the necessary mechanisms to
implement these variations [15]. A number of variability mechanisms (see
for example [68,70]), and product line architecture design methods (see for
example COPA [4], FAST [75], FORM [43], KobrA [5] and QADA [57])11
can be found in the literature.

• Product lines components can either be a part of the core assets, or they can
be developed for product specific reasons. Even though software product line
development employ a form of component-based development [69], a few
differences exist compared to the view of components in other settings. For
example:

11 Further discussion of these methods is not within scope of this thesis, a summary and

comparison of these methods can be found in [54].

Kappa 9

o Product line components are typically not independently deployed.
Product line components are assembled in a prescribed way
specified by their production plans and the product line architecture
[15].

o Product line components implement variability mechanisms
specified by the product line architecture [12]. Fig. 8 shows an
overview of the activities and artifacts leading up to component
design and implementation in a software product line context.

Domain
Analysis

Domain
Design

Domain
Implementation

Application
Requirements

Application
Design

Application
Coding

Requirements Components

Architecture

Reference Architecture Reusable Components
Domain Technology
Reference Requirements

TracabilityTracability

Feedback / Adaptations / Reverse Architecting

Legacy Code
Domain Expertise

New
Requirements

Domain
Engineering

Application
Engineering

Fig. 6: The ESAPS reference process [72].

CMD-01220: It shall be possible to define up to a maximum of

@MAXNUMCMD command sub-systems where
MAXNUMCMD can not be greater than 255.

Fig. 7: An example of a variable (parameterized) requirement [53].

Software

archithectural
design

Variability
analysis

Component
design

Constraints
& rules

Component
requirements

Legacy
code

Component
implementation

Fig. 8: Activities and deliverables in software product line component development

[12].

10 Magnus Eriksson

4 Requirements Engineering

Software requirements engineering involves activities such as discovering,
documenting and maintaining a set of requirements for a computer based system [67].
The purpose of the requirements engineering activities in a software project is to
describe precisely what to build without describing how to build it. This seems like a
simple task, however in large complex software projects, requirements are often
considered to be the biggest software engineering challenge [24]. System/Software
requirements can be divided into two main categories [67]:

• Functional requirements, which describe what the system should do.
• Non-functional requirements12, which place constraints on how functional

requirements are implemented.
One problem in requirements engineering is that requirements are continuously

changing [48]. It is impossible to capture all requirements for a non-trivial system
before development starts. As a system evolves during development, so does its
requirements as the system stakeholders gain a better understanding of the system
domain. It is therefore critical to keep track of the current status of each requirement
throughout the project.

4.1 Traceability

A critical key to successful system development is the ability to understand
relationships that exists between requirements, design, code, and tests [60]. The tool
used to achieve this ability is referred to as traceability or requirements tracing.
Lauesen defines four types of requirements tracing (see Fig. 9) [49]:

1. Forward tracing from demands (stakeholder needs) to system requirements
(needed to verify that all demands are reflected by system requirements).

2. Forward tracing from system requirements to a system design (needed to
verify that all system requirements are considered in the design).

3. Backward tracing from a system design to system requirements (needed to
verify that all parts of the design are required).

4. Backward tracing from system requirements to demands (needed to see that
all system requirements have a purpose).

Stakeholder
Needs

System
Requirements

System
Design

Type 1

Type 4

Type 2

Type 3
Fig. 9: Requirements traceability types.

12 Also referred to as, for example, “Quality requirements” in [49] or, “Quality attributes” or

“Constraints” in the systems engineering community. The term non-functional requirement is
used in this work to be consistent with the RUP terminology.

Kappa 11

4.2 Use Case Modeling

Use cases provide a semi-formal framework for modeling (mainly functional)
requirements [39,1]. A use case can be described as goal that a user of a system want
to accomplish by interacting with the system. These goals are depicted in UML use
case diagrams [59]. Use case diagrams may contain two types of entities:

• Actors, depicted as stick figures (see Fig. 10), which represents users of the
modeled system. These actors can be either human users or external systems.

• Use cases, depicted as ellipses, which can have association relationships to
actors. An association relationship between an actor and a use case means
that the actor can communicate with the use case. That is, either initiate or
participate in the behavior specified in the use case.

These use cases are further specified by a number of use case scenarios (also
referred to as use case instances). These scenarios, which describe interaction between
a system and its actors, are typically described in informal natural language. However,
UML Sequence diagrams and Activity diagrams [59] are other popular notations used
for describing use case scenarios.

Typically, for each use case in a use case model, there is also a corresponding use
case realization in a design model [7]. A use case realization is a description of how
different design elements collaborate to solve a specific use case (see Fig. 10) [48].
The main purpose or a use case realization is to provide a bridge between
requirements modeled as a use case and a systems’ design (i.e. traceability). Use case
realizations are often described using UML Sequence or Collaboration diagrams [7].

Use Case Model

Use Case Model Hierarchy

Use Case Specificaton
Intro
...
Main Success Scenario

Alternative Scenarios
...
Exceptional Scenarios
...

Use Case
Package 1

Use Case
Package 1.2

Use Case
Package 1.1

Use Case
Package 1.3

Use Case Diagram

Actor 1

Use Case 1

Use Case 2

Actor 1 System

Design Model

Use Case <X> Use Case Realization

<<realize>>

Use Case Realization <X>

:Actor

: a

: c

: b

1: ...

2: ...

4: ...

6: ...

5: ...

: d

7: ...

8: ...
3: ...

Fig. 10: An overview of use case modeling artifacts and concepts.

12 Magnus Eriksson

An interesting extension to use case modeling, from the perspective of software
product lines, is known as Change case modeling. Change cases, which were
proposed by Ecklund et al. at OOPSLA’96 [19], are basically use cases that specify
anticipated changes to a system over its foreseeable lifetime. Change cases provide a
relation “impact link” that creates traceability to use cases whose implementations are
affected, if the change case is realized (see Fig. 11). Modeling change cases, allows
product line designers to plan for and, more effectively, accommodate anticipated
future requirements in a domain [15].

1 1

* *

1 1

* *

1

*

1

*

0..1

*

+impactedCase

*

*

Crew Member

View Video Select Video Source

<<include>>

<<change case>>
View Picture-in-Picture Video

<<extend>>

<<impacts>>

(a) (b)
Directed Relationship

(from Kernel)

Extend Include Impact

Use Case

Change Case

Actor

Classifier

Fig. 11: (a) A change case meta-model13 based on the UML use case meta-model, and

(b) a change case example in a UML use case diagram.

4.3 Feature Modeling

The activity in which commonality and variability analysis is performed in software
product line requirements engineering is commonly referred to as domain analysis. A
widely used technique in domain analysis is Feature modeling [18]. Kang et al. first
proposed using feature models in 1990 as part of Feature Oriented Domain Analysis
(FODA) [42].

Kang et al. define a feature as: “A prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or systems”. In feature models, system
features are organized into trees of AND and OR nodes that represent the
commonalities and variations within a family of related systems. General features are
located at the top of the tree and more refined features are located below. Originally,
FODA described “Mandatory”, “Optional” and “Alternative” features that may have
“requires” and “excludes” relations to other features. Mandatory features are available
in all systems built within a family. Optional features represent variability within a
family that may or may not be included in products. Alternative features represent an
“exactly-one-out-of-many” selection that has to be made among a set of features. A
“requires” relationship indicates that a feature depends on some other feature to make
sense in a system. An “excludes” relationship between two features indicates that both
features can not be included in the same system.

13 A meta-model is an explicit model of constructs and rules needed to build a model within a

specific domain (i.e. a meta-model is a model of how a specific type of model may be
constructed).

Kappa 13

Fig. 12 shows an example of a simple feature model in the FODA notation,
however there are also a number of other feature modeling notations available in the
literature. Robak has provided an overview of some commonly used ones in [64].

Car

Transmission Horsepower Air conditioning

AutomaticManual

Alternative
features

Mandatory
features

Optional
feature

Fig. 12: A FODA Feature model [42].

5 The IBM-Rational Unified Process (RUP)

A software development process defines who is doing what and how to build or
enhance a software product [40]. An effective process reduces risk and improves
predictability by providing guidelines based on best practices for the development of
quality software. The IBM-Rational Unified Process (RUP) [48] is a commercial
product which provides a framework for such a software development process.

As mentioned in section 1.3, RUP is an instance of the Unified Software
Development Process (USDP) framework [40]. There are also other instances of
USDP available, for example the Agile Unified Process (AUP) [3] and the Enterprise
Unified Process (EUP) [2]. However, further discussion of these other instances is not
within the scope of this thesis.

As shown in Fig. 13, RUP has its roots in work preformed by the Ericsson
Corporation in the late sixties on visual modeling of telecom systems using scenarios.
This work was later refined into a process product developed by Objectory AB. At the
same time (1987) the term “Use Case” was first introduced by Ivar Jacobson at
OOPSLA [38], and it became a cornerstone of the developed process. In 1995 the
Rational Software Corporation acquired Objectory AB [40]. This lead to further
development of the process by adding ideas developed at Rational regarding for
example architectural views [46] and on arranging iterative development into phases
[40]. This led to the development of the Rational Objectory Process, which also
adopted the Unified Modeling Language (UML) [59]. In 1998, Philippe Kruchten
from Rational published the book “The Rational Unified Process: An introduction”
[47] and thereby made the details of the proprietary process available to the general
public for the first time. Today, RUP is well established and has become widely used
in the software industry.

RUP has been developed based on six “best practices” which are adopted by many
successful software development organizations [48]:

1. Develop Iteratively
2. Manage Requirements

14 Magnus Eriksson

3. Use Component Architectures
4. Model Visually
5. Continuously Verify Quality
6. Manage Change

The following sections will discuss these best practices in some more detail.

The Ericsson Approach
(1967-)

Objectory Process v. 1.0-3.8
(1987-1995)

Rational Objectory Process v.4.1
(1996-1997)

Rational Unified Process v.5.0-
(1998-)

UML

Several other sources

The Rational Approach

Fig. 13: History of the RUP [40].

5.1 Develop Iteratively

The iterative development approach is based on the spiral model (see Fig. 15)
developed by Barry Boehm [8]. The Spiral model was intended to address
shortcomings of the waterfall model [65] (see Fig. 14) which was widely accepted in
industry at the time.

SYSTEM

REQUIREMENTS

SOFTWARE
REQUIREMENTS

ANALYSIS

PROGRAM
DESIGN

CODING

TESTING

OPERATIONS
Fig. 14: The waterfall model [65].

The basic idea of iterative development is to develop systems incrementally by
applying the waterfall model on portions of the system several consecutive times as
illustrated in Fig. 16. These “miniature waterfalls” are referred to as iterations. This
enables teams to work more risk-driven, since the most critical parts of the system can
be developed and tested early in the project. It furthermore helps to find

Kappa 15

contradictions in requirements, design and implementations early, since an executable
subset of the system is developed in each iteration.

Fig. 15: The Spiral Model [8].

Business
Modeling

Requirements
Analysis & Design

ImplementationPlanning
Initial
Planning

Evaluation
Deployment

Test

Config. & Change
Management

Environment

Fig. 16: Iterative and incremental development [48].

To make work more controlled, RUP group iterations by dividing projects into four
phases: Inception, Elaboration, Construction and Transition (see Fig. 17). Each of
these phases is related to a major project milestone which must be achieved before
entering the next phase of the project. These RUP milestones are identical to the
milestones that were proposed by Barry Boehm in 1996 [9,48]:

16 Magnus Eriksson

• The Lifecycle Objectives Milestone: The goal of the inception phase is to
achieve concurrence among the system stakeholders on the life cycle
objectives for the project. A major part of this is to determine scope and
boundaries for the software to be developed. The major evaluation criteria
for the lifecycle objectives milestone, which ends the inception phase, are:

o Stakeholders agree upon system scope and project estimates.
o Agreement exist that the right set of requirements has been

captured.
o Agreement exist that all major risk in the project have been

identified, and that mitigation strategies exist for each of them.
• The Life Cycle Architecture Milestone: The main goal of the elaboration

phase is to baseline the software architecture, to provide a stable basis for the
bulk of the design and implementation work in the construction phase. The
major evaluation criteria for the lifecycle architecture milestone, which ends
the elaboration phase, are:

o Requirements are stable.
o The architecture is stable.
o Major risk elements have been addressed by prototypes or other

means.
• The Initial Operational Capability Milestone: The goal of the construction

phase is to clarify the remaining requirements and develop the operational
software based on the baselined software architecture. The major evaluation
criteria for the initial operational capability milestone, which ends the
construction phase, are:

o The product is mature and stable enough to be deployed in the end-
user community.

o All stakeholders are ready for the transition to the end-users.
• The Product Release Milestone: The goal of the transition phase is to ensure

that the software is readily available to its end-users. This includes activities
such as testing and making minor adjustments based on user feedback. After
the transition phase, the project lifecycle ends and the software product
moves into its maintenance phase. The major evaluation criteria for the
product release milestone, which ends the transition phase, is:

o Customers have reviewed and accepted the project deliverables.

Kappa 17

Fig. 17: An overview of RUP [48].

5.2 Manage Requirements

As discussed in section 4, managing requirements and maintaining traceability to the
design are important activities in a software development project. This view has also
been adopted in RUP. The most prominent requirements artifact in RUP is the use
case model. RUP is often referred to as a use case driven methodology. The reason for
this is that use cases form the basis for many activities in RUP, they drive [48]:

• Creation and validation of the design
• Definition of test cases and test procedures
• Project planning
• Development of user manuals
• Deployment

Non-functional requirements are managed in a natural language (text) specification
called “Supplementary Specification” in RUP [48].

5.3 Use Component Architectures

The software architecture is the structure of a system, which comprises software
components, the externally visible properties of those components, and the
relationships among them [6]. The basic idea of component based development is that
software building blocks (components) are pre-fabricated, deployed and assembled
into a system. Components have clearly defined interfaces and can be (re)used
independently of other components [69]. Iterative development combined with such
component architectures means that a system can grow continuously. Each iteration
produces an executable architecture that can be evaluated against system requirements
[48]. RUP uses the “4+1 model view” [46] (see Fig. 18) to describe the software
architecture.

18 Magnus Eriksson

• The Logical View describes the system architecture from a functional
perspective.

• The Development View (referred to as Implementation View in RUP),
describes how source code and other related static software modules such as
data files are organized in the development environment.

• The Process View describes concurrency aspects within the system, such as
thread management, deadlocks, fault tolerance, etc.

• The Physical View (referred to as Deployment View in RUP), describes how
executable software modules are allocated to the underlying (hardware)
platform.

• The Scenario View (referred to as Use Case View in RUP), has a special role
since it ties the other views together. The use case view contains a number of
key usage scenarios and descriptions of how the software architecture
realizes these scenarios.

Logical View Development
View

Process View Physical View

Scenarios

Programmers
Software Management

End-users
Functionality

Integrators
Performance
Scalability

Systems Engineers
Topology

Communications
Fig. 18: The 4+1 View of Architecture [46].

5.4 Model Visually

A model is a simplification of reality that describes a system from a certain viewpoint
[48]. Visual modeling helps teams to cope with system complexity by enabling
abstraction. As mentioned in section 5, RUP has adopted UML [59] as its visual
modeling language. UML provides a standardized graphical notation that can be used
to specify, visualize, construct, and document the artifacts of software-intensive
systems. UML includes language constructs to capture both system structure,
behaviour and interactions.

5.5 Continuously Verify Quality

Finding and fixing a software problem is typically 5-100 times more expensive after
delivery than finding and fixing it during requirements analysis or design [10]. It is
therefore important that problems are found as early as possible in the system

Kappa 19

lifecycle. Adopting an incremental development approach enables testing to be
performed in each iteration. This in turn means that the software quality can be
continuously and quantitatively measured throughout the project.

5.6 Manage Change14

One of the big challenges when developing complex software intensive systems is to
manage a large number of developers divided into several teams, working at the same
time on several releases of project deliverables [48]. Without good guidance, this
process may result in chaos. Having a formalized way of managing change to project
artifacts addresses some of this complexity. It also enables metrics to be extracted
from projects regarding change statistics, which then can be used for objective project
status assessments.

6 The Proposed Approach

The strategy employed in this work was to extend the requirements discipline of RUP
to better support software product line development. An analysis of RUP revealed that
it provides little or no support for managing (or modeling) variability among members
of a product family. This is unfortunate, however not surprising since the scope of
RUP is a single software development project, and focus is on new development,
rather than where coordination with other projects and maintenance.

One approach to address the problem of lack of commonality and variability
analysis in RUP would be to transform RUP into a feature driven approach. This
could be accomplished by replacing the RUP use case model with a FODA feature
model. However, since use cases have such a central role in RUP, such a change
would make it hard to even recognize the unified process in the result. This would in
turn, lead to problems for organizations applying the resulting process. Examples of
such problems could be increased training costs of new personnel and problems
capturing new market segments, since features do not provide strong support for
exploring new or poorly understood system characteristics [14]. Instead, the approach
adopted in this work was to investigate how use case modeling could be extended to
better support commonality and variability analysis.

Analysis of a number of use case models, revealed four types of variants that can
exist in product family use case models as we described in Paper I and Paper II:

• The first type of variability regards the set of included use case in each
product within a family.

• The second type of variability regards the set of included use case scenarios
within each of these use cases.

14 “Manage Change” in RUP refers to having control over changes, not to rapidly respond to

changes; which is the main focus in agile software development [16]. This lack of agility is
one of the most common critics of RUP, since it makes RUP unsuitable for small fast paced
project [29].

20 Magnus Eriksson

• The third type regards the set of included steps within each of these use case
scenarios.

• The fourth and final type of variability regards cross-cutting aspects that can
affect several use cases on several levels. For example the existence of
different sets of use case actors in different products.

6.1 Related Work

The UML use case meta-model provides poor support for variability modeling [74]. A
number of suggestions on how to address this issue have been discussed in the
literature (see Table 1 for an overview). These approaches can be divided into four
main categories:

1. Approaches that structure use cases according to a feature model, and model
variants in the feature model (see [28,27]).

2. Approaches that extend UML use case diagrams with variability constructs
(see [27,74,41,56]).

3. Approaches that add variability mechanisms to textual use case
specifications (see [39,28,23,27]).

4. Approaches that combine two or more of the different types of variability
mechanisms described above.

We do, however, see a number of problems with existing approaches to product
line use case modeling:

• When attempting to model variability in UML use case diagrams, diagrams
tend to get cluttered to a degree where it is impossible to get an overview of
the variants within (a non-trivial) product family. It is furthermore not
enough to only manage variability among whole use cases (see discussion on
types of variability in section 6).

• Existing approaches to manage variability within textual use case
specifications do not have any means to provide a good overview of all
variants within a family.

• Most existing approaches lack strong mechanisms to trace variant use case
behavior to the system design.

• Most existing approaches allow Free Selection15 among use cases and
variants during product instantiation of the product line use case model.
Adopting such an approach, instead of maintaining (and enforcing) a
common system family model, is a major maintenance concern when
working on extremely long lived systems. Copying documents and removing
variant information is not good from this perspective, since information is
being duplicated.

15 Free selection means allowing single system requirements engineers to browse a product line

model and simply copy requirements from the family model and pasting it into a single
system model [52].

Kappa 21

Table 1: An overview of variability mechanisms used in other published software
product line use case modeling approaches.

 Variability mechanism:
Approach Use case Scenario Step Cross-cutting

Jacobson et al.
[39]
(RSEB)

Using the
generalization and
extend
relationships in
UML use case
diagrams by using
a different use
case stereotype
icon for abstract
use cases.

N/A16 N/A16

Only within a single
use case
specification using
textual parameters.

Griss et al.
[28]
(FeatuRSEB)

Using a feature
model that is
linked to the use
case model.

N/A16 N/A16

Only within a single
use case
specification using
RSEB parameters.

Fantechi et al.
[23]
(PLUC)

N/A N/A N/A

Only within a single
use case
specification using
the tags
“Alternative”,
“Optional” and
“Parametric”.

Gomaa [27]
(PLUS)

Using UML
stereotypes in use
case diagrams
(“kernel”,
“optional” or
“alternative” use
cases) and by
modeling use
cases packages as
features in a
feature model.

N/A16 N/A16

Only within a single
use case
specification using a
section describing
all variation points
according to a
variation point
template.

van der
Maβen &
Lichter [74]

By extending the
UML use case
meta-model with
the relations
“Option” and
“Alternative”.

N/A16 N/A16 N/A

16 Could be managed by describing variant scenarios and variant steps as separate use cases

which extends the original use case. This strategy is however likely to fragment the use case
model resulting in too many and too small use cases when applied on a product line of non-
trivial systems (See also [27] for further discussion of this issue).

22 Magnus Eriksson

John &
Munthig [41]

Using UML
stereotypes in use
case diagrams
(“variant”), and
marking sections
of diagrams as
optional.

Using
XML-like
tags to mark
scenarios as
optional or
alternatives.

Using XML-
like tags to
mark steps as
optional or
alternatives.

N/A

Moon et al.
[56]
(DREAM)

Using UML
stereotypes in use
case diagrams
(“common” and
“optional” use
cases)

N/A16 N/A16 N/A

6.2 Marrying Use Case Modeling with Feature Modeling

The approach for managing variability in use case models, presented in this thesis
(see Paper I and Paper II), is based on the work by Griss et al., on FeatuRSEB17 [28].
Like Griss et al. we argue that feature models are better suited for domain modeling
than for example UML use case diagrams. A feature model should therefore be used
as the high level view of a product family. However, in the proposed approach, the
primary purpose of the feature model is not to take “center stage”, but rather to be a
tool for visualizing variants in our abstract product family use case models.

We use a feature model as a tool for structuring and instantiating our abstract
family models into concrete product use case models for each system built within the
family. We accomplish this by relating use cases, use case scenarios and use case
scenario steps to features of appropriate types in a feature model as illustrated in Fig.
19 (see Paper II). We then select among the variants in the family model by selecting
features from the feature model. To manage cross-cutting aspects, textual parameters
as described by Mannion et al. in [53], are used. These parameters, which can be used
anywhere in use case specifications, are linked to and visualized in the feature model
as well. We also maintain use case realizations [48] and change cases [19] as part of
this product family model. We utilize use case realizations to trace variant use case
behavior to the system design (see Fig. 10), and change cases to mark proposed
however not yet accepted functionality in a domain (see section 4.2).

Our approach is similar to Gomaa’s approach [27]. Gomaa proposed to model
features as use case packages. We extended this idea, saying that possibly a whole set
of features compose a use case package. This has the advantage of enabling us to also
visualize variants within use case specifications using a feature model. This means
that a feature model provides a total overview of all variants that exist within a
product family. A set of included features directly correspond to a specific set of
included (concrete) use cases for a specific product within a family.

17 In FeatuRSEB [28] a feature model is added to the 4+1 view model (see Fig. 18) adopted by

Jacobson et al. in RSEB [39]. The feature model in FeatuRSEB takes “center stage” and
provides a high-level view of the domain architecture and the reusable assets in the product
family.

Kappa 23

<<extend>>

Domain

bb

S
bac

S
bac

S
baa

S
baa

S
bab

S
bab

S
bba

S
bba

bbbbbaba

S
bbb
S

bbb

aa

M
abc

M
abc

M
abb

M
abb

S
ab
S
ab

S
aa
S

aa

M
aaa
M

aaa
M

aab
M

aab

acac

M
aba

M
aba

Use Case: <X>
Introduction
<Some info...>

Main Success Scenario
...

Alternative Scenarios:
<Scenario Name 1>
...

<Scenario Name 2>

Step Actor Action Blackbox
System Response

Blackbox
Budgeted Req.

1 The Actor… The System… It shall…
2 … … …
2 … … …
2 … … …
3a … …$PARAM… …
3b … … …
3c … … …
(4) … … …

(5)a … … …
(5)b … … …
(5)c … … …
(6) … … …
(6) … … …
(6) … … …

S
e3

S
e3

S
e1

S
e1

S
e2

S
e2

bbaebbae

M
d3
M

d3
M

d1
M

d1
M

d2
M

d2

bbadbbad

S
b3

S
b3

S
b1

S
b1

S
b2

S
b2

bbabbbab

M
a3
M

a3
M

a1
M

a1
M

a2
M

a2

bbaabbaa bbacbbac

<<exclude>><<require>> <<include>>

S Single Adaptor FeatureS Single Adaptor Feature

Mandatory FeatureMandatory Feature Optional Feature Optional Feature

M Multiple Adaptor FeatureM Multiple Adaptor Feature

RequiresRequires ExcludeExcludeRefineRefine

0..1 10..* 1..*Multiplicity:

Feature
construct: S S...S S... MM ... MM ... S S...S S... MM ... MM ...

S Single Adaptor FeatureS Single Adaptor Feature

Mandatory FeatureMandatory Feature Optional Feature Optional Feature

M Multiple Adaptor FeatureM Multiple Adaptor Feature

RequiresRequires ExcludeExcludeRefineRefine

0..1 10..* 1..*Multiplicity:

Feature
construct: S S...S S... MM ... MM ... S S...S S... MM ... MM ...

Fig. 19: An example of the relationship between features and use cases.

6.3 Product Instantiation

By marrying feature modeling with use case modeling, we have provided means to
maintain a common and complete use case model for a whole product family. This
means that product instantiation of the model is basically done by adding any new
requirements to the model (which is likely to require new features to be added to the
feature model as well) and then using the feature model to choose among its variants
(see Fig. 20). New requirements are modeled as change cases to provide an overview
the current delta in the model and to provide stronger support for change impact
analysis [11]. A product use case model is generated by applying a filter to the
domain model sorting out features not included in the current system. This will result

24 Magnus Eriksson

in three types of reports: A “Use Case Model Survey” including all use cases (and
possible change cases) for the product, and “Use Case Specifications” and “Use Case
Realizations” for all use cases in that survey (see Paper III for tool support).

Analyze/Negotiate new product
requirements

Acceptable
request?No

Yes

Decision

Activity

Develop change cases

Add change cases (and possibly new
features) to the domain model

Generate preliminary use case model
for new product

Analyze product line change impact

Transform change cases into use
cases

Generate use case model for new
product

Select a preliminary set of features for
new product

Fig. 20: Adding a new product to a product line model.

6.4 A Note on Notations Used

As we described in Paper I and Paper II, we have chosen a tabular natural language
description of use case scenarios and use case realizations in the proposed approach
(see Fig. 21). The main motivation for this was that the industrial partner works in the
embedded systems domain. This increases the number and diversity of stakeholders
interested in the resulting models, including for example systems- and electrical
engineering. This makes UML unsuitable for the purpose, since we believe its
learning threshold is too high for wide-spread use within the organization. These
natural language descriptions can however be supplemented with UML diagrams to
improve understandability and precision/formality as needed.

Kappa 25

DesignElement_1…

…
…
…
…
…
…

Whitebox Action

DesignElement_2…
DesignElement_3…

It shall…

…
…
…
…
…
…

Whitebox
Budgeted Req.

…
…

1

2

3

Step

The use case
begins when
the Actor…

…

…

Actor Action

The System…

…

The use case
ends when the
System…

Blackbox
System Response

The System
shall…

…

…

Blackbox
Budgeted Req.

(a) (b)

DesignElement_1…

…
…
…
…
…
…

Whitebox Action

DesignElement_2…
DesignElement_3…

It shall…

…
…
…
…
…
…

Whitebox
Budgeted Req.

…
…

1

2

3

Step

The use case
begins when
the Actor…

…

…

Actor Action

The System…

…

The use case
ends when the
System…

Blackbox
System Response

The System
shall…

…

…

Blackbox
Budgeted Req.

(a) (b)
Fig. 21: The (a) Blackbox flow of events used for describing use case scenarios, and

(b) the Whitebox flow of events used for describing use case realizations.

6.5 Tool Support

The main tools used to support the proposed approach are the commercial
requirements management tool Telelogic DOORS and the commercial UML
modeling tool IBM-Rational Rose. Both tools are widely used and accepted in
industry. Telelogic DOORS is utilized to manage these system family use case
models and IBM-Rational Rose is used for drawing feature graphs and UML
diagrams. Appropriate reports are generated from DOORS as MS Word documents,
as shown in Fig. 22. A number of extensions to these tools were also developed to
better support the proposed approach (see Paper III for details).

Feature Model,
Use Case Specifications

and
Use Case Realizations

DOORS

Feature Graph
and

UML Diagrams

Rose

Repository of
Published Reports

Software CM SystemMS Word Reports

Feature Model,
Use Case Specifications

and
Use Case Realizations

DOORS

Feature Graph
and

UML Diagrams

Rose

Repository of
Published Reports

Software CM SystemMS Word Reports
Fig. 22: An overview of the PLUSS toolkit.

7 Summary of Contributions

We have developed a simple extension to use case modeling that enable a common
use case model to be developed and maintained for a whole family of products. The

26 Magnus Eriksson

following sections will briefly summarize the appended papers which describe our
contributions to this area of research.

7.1 Paper I – Marrying Features and Use Cases

Paper I outlines the proposed approach in terms of marrying use case modeling with
feature modeling. A two-layer product family model is proposed in which concrete
product use case models are derived from an abstract product family use case model.

Paper I also proposes the idea of introducing domain modeling and requirements
reuse as part of the systems engineering process to provide stronger support for
embedded software product line development. An approach for this, based on the
RUP SE [63] “Use case flowdown“-activity, is also discussed in Paper I (see section
8.3 for future work in this area).

7.2 Paper II – The PLUSS Approach

Paper II extends the proposal of Paper I by providing means to develop and maintain
a common and complete use case model for a whole product family. Paper II thereby
removes the need to allow free selection (see footnote on page 20) in the model,
which turn is likely to ease maintenance of the resulting product use case models.

Furthermore, a meta-model is presented which also includes use case realizations
in the family model. The approach thereby provides strong means for tracing variant
use case behavior to the system design.

Paper II also describes an extension to FODA feature models that enables
modeling of “at-least-one-out-of-many”-selections. This extension was required to be
able to capture all variants that can exist in use case models. Together with this
extension, a new feature modeling notations was also proposed.

Finally, an industrial case study is presented where the proposed approach was
applied and evaluated in the target domain.

7.3 Paper III – The PLUSS Toolkit

Paper III describes how commercial tools can be adapted and utilized to support the
proposed product line use case modeling approach. A toolkit is presented, which
extends the commercial UML modeling tool IBM-Rational Rose, and the commercial
requirements management tool Telelogic DOORS, to better support the proposed
product line use case modeling approach.

The basic idea presented in Paper III is to add the semantics of feature models to
the heading outline of a natural language specification (in our case a Use case model
survey). This enables sections of a specification to be included or not by a specific
product in a product family, by selecting or deselecting features from a feature model.

Kappa 27

8 Ongoing and Future Work

8.1 Test of Research Hypothesis

The study presented in Paper II indicates that adopting our software product line
modeling approach enables more efficient development of systems in the target
domain. However, how software product line development affects the maintainability
of these systems is yet to be investigated. Even though it intuitively seems like a
common platform would ease maintenance of systems by reducing the total amount of
source code, other factors might have a negative influence. One example of such an
influencing factor could be increased code complexity due to implemented variability
mechanism in the platform. Another example could be the need for a more
heavyweight process for change impact analysis and release management compared
to single system development.

8.2 Further Development and Evaluation of the Proposed Approach

Further experience using the approach at Land Systems Hägglunds has shown the
concept of local and global use case parameters (see Paper I and Paper II) is not as
intuitive as initially indicated. The use of parameters has therefore been modified to
only have one type. These new parameters are defined on an appropriate level in a
feature model (on the same level as, or above, the use case(s) using them), and instead
have scope rules similar to variable names in an imperative programming language.
These new parameters can either be single-valued or multi-valued as illustrated by
“PARAM_1” and “PARAM_2” in Fig. 23.

A follow-up study, as discussed in section 2, is planned to investigate if the initial
positive results applying the proposed approach reported in Paper II, are still valid
when being applied by a larger set of projects throughout the organization.

The study presented in Paper II indicated that the proposed approach form a good
basis for early cost estimates. This area of application of the approach could be further
developed. By attaching metrics to use cases and change cases in the model, powerful
and highly automated cost estimates could be implemented in the presented toolkit.
Examples of such metrics could be cost of development and integration of use cases
in historical projects, and use case point [73] style metrics that could be added to
change cases.

28 Magnus Eriksson

<<extend>>

Domain

bb

S
bac

S
bac

S
baa

S
baa

S
bab

S
bab

bbbbbaba

aa

M
acc
M

acc
M

acb
M

acb

S
ac
S
ac

S
aa
S

aa

M
aaa

M
aaa

M
aab

M
aab

abab

M
aca

M
aca

Use Case: <Y>
Introduction
...

Main Success Scenario:

Alternative Scenarios:
...

Exceptional Scenarios:
...

Use Case: <Y>
Introduction
...

Main Success Scenario:

Alternative Scenarios:
...

Exceptional Scenarios:
...

Step Actor Action Blackbox
System Response

Blackbox
Budgeted Req.

1 … … …
2 … … …
3 … …… $PARAM_1 …

<<include>>

$
$PARAM_1

S
Value_2

S
Value_2

S
Value_1

$
$PARAM_2

M
Value_b

M
Value_b

M
Value_a

M
Value_a

S Single Adaptor FeatureMandatory Feature Optional Feature M Multiple Adaptor Feature

Requires Relation Exclude RelationRefine Relation

Parametric Feature $

Use Case: <X>
Introduction
... $PARAM_2 ...

Main Success Scenario:

Alternative Scenarios:
...

Exceptional Scenarios:
...

Use Case: <X>
Introduction
... $PARAM_2 ...

Main Success Scenario:

Alternative Scenarios:
...

Exceptional Scenarios:
...

Step Actor Action Blackbox
System Response

Blackbox
Budgeted Req.

1 … … …
2 … …$PARAM_1 … …

Fig. 23: Examples of the new parametric feature type.

8.3 Reuse of Systems Engineering Specifications

For successful embedded software product line development, we believe it is
important that product line concepts such as domain modeling are also introduced into
the systems engineering process (see Fig. 2). The reason for this is that embedded
software requirements are for the most part not posed by customers or end users, but
by systems engineering and the systems architecture (see Fig. 24). We have therefore
developed a use case driven systems engineering method [20,21], that can be applied
in accordance with the proposed product line use case modeling approach. Our
assumption is that this will lead to systematic reuse of systems engineering
specifications and thereby also ease the organizations’ embedded software product
line development. A major part of the reminder of this project will be dedicated to
investigation of this area.

Kappa 29

Solution DomainProblem Domain
Need
(Mission)

System Concept
(Implementation Approach)

Stakeholder Requirements
(Capabilities & Characteristics)

System Requirements System Architecture

Subsystem Requirements Subsystem Architecture

Fig. 24: System vs. subsystem (software) requirements.

8.4 Managing Variants in Design Specifications

An important supplement to the presented approach is a systematic methodology to
handle variants in design specifications. One such variant example is if a single use
case has different realizations in different products in a product line. At the first
glance this might seem unnecessary since the basic idea of software product line
development is to have a common architecture for all products in a family. This
would in turn imply that if use cases are the same, so would their realizations.
However, experience has shown situations where this is not the case. One example is
if the architecture is very modular and enables different implementations of the same
function (for example if a high-end vs. low-end product choice is possible).

We believe that similar techniques as those presented in this work for managing
variability in use cases, can also be applied to other types of specifications. The idea
of adding the semantics of feature models to specification heading outlines is likely to
be applicable to basically any type of specification provided adequate tool support is
available. This might however require a more expressive feature modeling notation
than the one used in this work.

References

1. Adolph S., Bramble P., Cockburn A., Pols A.: Patterns for Effective Use Cases, Addison-
Wesley (2003)

2. Ambler S., Nalbone J., Vizdos M.: The Enterprise Unified Process – Extending the
Rational Unified Process, Prentice Hall PTR (2005)

3. Ambler S.: The Agile Unified Process v0.9, Available at:
http://www.ambysoft.com/unifiedprocess/agileUP.html (January 2006)

4. America P., Obbink H., Muller J., van Ommering R.: COPA: A Component-Oriented
Platform Architecting Method for Families of Software Intensive Electronic Products,
Proceedings of the First Conference on Software Product Line Engineering, (2000)

30 Magnus Eriksson

5. Atkinson C. et al.: Component-based Product Line Engineering with UML, Addison-
Wesley (2002)

6. Bass L., Clements P., Kazman R.: Software Architecture in Practice (1999) Addison-
Wesley

7. Bittner K., Spence I: Use Case Modeling, Addison-Wesley (2003)
8. Boehm B.: A Spiral Model of Software Development and Enhancement, IEEE Computer

(May 1988) 61-72
9. Boehm B.: Anchoring the Software Process, IEEE Software (July 1996) 73-82
10. Boehm B., Basili V.: Software Defect Reduction Top 10 List, IEEE Computer (January

2001) 135-137
11. Bohner S., Arnold R.: Software Change Impact Analysis, IEEE Computer Society Press,

Los Alamitos , CA, US (1996)
12. Bosch J.: Design & Use of Software Architectures, Addison-Wesley (2000)
13. Brownsword L., Clements P.: A Case Study in Successful Product Line Development,

CMU/SEI-96-TR-016), Pittsburgh, PA: Carnegie Mellon University, Software
Engineering Institute (1996)

14. Chastek G., Donohoe P., Kang K.: Product Line Analysis: A Practical Introduction,
Technical Report CMU/SEI-2001-TR-001, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA (2001)

15. Clements P., Northrop L.: Software Product Lines, Practices and Patterns, Addison-
Wesley (2001)

16. Cockburn A.: Agile Software Development, Addison-Wesley (2002)
17. Cusumano M.: The Software Factory: A Historical Interpretation, IEEE Software, vol. 6,

no. 2 (March 1989) 23-30
18. Czarnecki K., Eisenecker U.: Generative Programming – Methods, Tools, and

Applications, Addison-Wesley (2004)
19. Ecklund E., Delcambre L., Freiling M.: Change Cases - Use Cases that Identify Future

Requirements, Proceedings of OOPSLA 96, San Jose, Ca (October 6-10 1996) 342-358
20. Eriksson M., Borg K., Börstler J.: The FAR Approach - Functional Analysis/Allocation

and Requirements Flowdown Using Use Case Realizations, Submitted to the Sixteenth
Annual International Symposium of the International Council on Systems Engineering
(2006) Available on request

21. Eriksson M., Börstler J., Borg K.: Performing Functional Analysis/Allocation and
Requirements Flowdown Using Use Case Realizations – An Empirical Evaluation,
Submitted to the Sixteenth Annual International Symposium of the International Council
on Systems Engineering (2006) Available on request

22. Ezran M., Morisio M., Tully, C: Practical Software Reuse, Springer (2002)
23. Fantechi A., Gnesi S., Lambi G., Nesti E.: A Methodology for the Derivation and

Verification of Use Cases for Product Lines, Proceedings of the International Conference
on Software Product Lines, Lecture Notes in Computer Science, Vol. 3154, Springer-
Verlag (2004) 255-265

24. Faulk R.: Software Requirements: A Tutorial, Software, Requirements Engineering, IEEE
Computer Society Press (1997)128-149

25. Frakes W, Kang K.: Software Reuse Research: Status and Future, IEEE Transactions on
Software Engineering, vol. 31, no. 7 (July 2005) 529-536

26. Gibbs W.: Software's Chronic Crisis, Scientific American 271, 3 (1994) 72-81
27. Gomaa H.: Designing Software Product Lines with UML – From Use Cases to Pattern-

Based Software Architectures, Addison-Wesley (2004)
28. Griss M., Favaro J., d’Alessandro M.: Integrating Feature Modeling with the RSEB,

Proceedings of the Fifth International Conference on Software Reuse, Vancouver, BC,
Canada (June 2-5 1998) 76-85

Kappa 31

29. Hirsch M.: Making RUP Agile, Proceedings of OOPSLA 02, Seattle, Ca (November
2002).

30. IEEE 1220-1998, Standard for Application and Management of the Systems Engineering
Process, ISBN 0-7381-1543-6 (January 1999)

31. International Council on Systems Engineering (31), Systems Engineering Handbook
Version 2a, 31-TP-2003-016-02 (June 2004)

32. ISO 9001:2000, Quality Management Systems – Requirements
33. ISO/IEC 15504-1, Information technology – Process assessment – Part 1: Concepts and

vocabulary
34. ISO/IEC 15504-2, Software Engineering – Process assessment – Part 2: Performing an

assessment
35. ISO/IEC 15504-3, Information technology – Process assessment – Part 3: Guidance on

performing an assessment
36. ISO/IEC 15504-4, Information technology – Process assessment – Part 4: Guidance on use

for process improvement and process capability determination
37. ISO/IEC 15504-5, Information technology – Process assessment – Part 5: An exemplar

Process Assessment Model
38. Jacobson I.: Object Oriented Development in an Industrial Environment, Proceedings of

OOPSLA’87, Orlando, FL (4-8 October 1987) 183-191
39. Jacobson I., Griss M., Jonsson P.: Software Reuse – Architecture, Process and

Organization for Business success, Addison-Wesley (1997)
40. Jacobson I., Booch G., Rumbaugh J.:The Unified Software Development Process,

Addison-Wesley (1999)
41. John I., Muthig D.: Product Line Modeling with Generic Use Cases, SPLC-2 Workshop

on Techniques for Exploiting Commonality Through Variability Management, Second
Software Product Line Conference, San Diego, USA (August 2002)

42. Kang K. Cohen S., Hess J., Novak W., Peterson A.: Feature Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

43. Kang K., Kim S., Shin E., Huh M.: Form: A Feature-Oriented Reuse Method with Domain
Specific Reference Architectures, Annals of Software Engineering, vol. 5 (1998) 143-168

44. Kitchenham B., Pickard L., Pfleeger S.: Case Studies for Method and Tool Evaluation,
IEEE Software, Vol. 12 Nr. 45 (1995) 52-62

45. Kitchenham B., Pickard L.: Evaluating Software Eng. Methods and Tools Part 10:
Designing and Running a Quantitative Case Study, Software Engineering Notes, vol. 23,
no. 3 (May 1998) 20-22

46. Kruchten P.: The 4+1 Model View of Architecture, IEEE Software (November 1995) 42-
50.

47. Kruchten P.: The Rational Unified Process: An Introduction, Addison-Wesley (1998)
48. Kruchten P.: The Rational Unified Process: An Introduction, Second Edition, Addison-

Wesley (2000)
49. Lauesen S.: Software Requirements – Styles and Techniques, Addison-Wesley (2002)
50. Lethbridge T., Sim S., Singer J.: Studying Software Engineers: Data Collection

Techniques for Software Field Studies, Empirical Software Engineering Journal, vol. 10
(2005) 311-341

51. Linqvist M., Johansson G.: Processutvärdering vid Alvis Hägglunds AB i Örnsköldsvik,
Uppdragsrapport 03/31, Internal Report (October 20, 2003)

52. Mannion M., Lewis O., Kaindl H., Wheadon J.: Reusing Single System Requirements
from Application Family Requirements, Proceedings of the International Conference on
Software Engineering ICSE’99, Los Angeles, CA, USA, (1999) 453-462

32 Magnus Eriksson

53. Mannion M., Lewis O., Kaindl H., Montroni G., Wheadon J.: Representing Requirements
on Generic Software in an Application Family Model, Proceedings of the International
Conference on Software Reuse ICSR-6 (2000) 153-196

54. Matinlassi M.: Comparison of Software Product Line Architecture Design Methods:
COPA, FAST, FORM, KobrA and QADA, Proceedings of the 26th International
Conference on Software Engineering ICSE’04 (2004) 127-136

55. Mili A., Mili R., Mittermeir R.: A Survey of Reuse Libraries, Annals of Software
Engineering, vol. 5 (1998) 349-414

56. Moon M., Yeom K., Chae H.: An approach to Developing Domain Requirements as a
Core Asset Based on Commonality and Variability Analysis in a Product Line, IEEE
Transactions on Software Engineering, vol. 31, no. 7 (July 2005) 551-569

57. Niemelä E.: QADA – Quality-driven Architecture Design and Architecture Analysis,
Available at: http://www.vtt.fi/qada/, (January 2006)

58. Northrop L.: SEI’s Software Product Line Tenets, IEEE Software (July/August 2002) 32-
40

59. Object Management Group: The Unified Modeling Language, Version 2.0, Available at:
http://www.uml.org (2005)

60. Palmer J.: Traceability, In Software Requirements Engineering, Ed. Thayer H. and
Dorfman M.), IEEE Computer Society Press, Los Alamitos, CA (1996)

61. Parnas D.: On the design and development of product families, IEEE Transactions on
Software Engineering, vol.2, no. 1 (1976) 1-9

62. Potts C.: Software-Engineering Research Revisited, IEEE Software (September 1993) 19-
28.

63. Rational Software: The Rational Unified Process for Systems Engineering Whitepaper,
Ver. 1.1, Available at: http://www.rational.com/media/whitepapers/TP165.pdf (2003)

64. Robak S.: Feature Modeling Notations for System Families, Proceeding of the
International Workshop on Software Variability Management, Co-located with ICSE’03 in
Portland, Oregon (May 2003) 58-62

65. Royce W.: Managing the Development of Large Software Systems: Concepts and
Techniques, Proceedings of IEEE Wescon (August 1970) 1-9

66. Seaman C.: Qualitative Methods in Empirical Studies of Software Engineering, IEEE
Transactions on Software Engineering (July/August 1999) 557-572

67. Sommerville I., Sawyer, P.: Requirements Engineering, A good practices guide (1997)
Wiley

68. Svahnberg, M., Gurp, J., Bosch, J.: On the Notation of Variability in Software Product
Lines, Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(2001) 45-55

69. Szyperski C., Gruntz D., Murer S.: Component Software ─ Beyond Object-Oriented
Programming, Second Edition, Addison-Wesely (2002)

70. Thiel S., & Hein A.: Systematic Integration of Variability into Product Line Architecture
Design, Proceedings of the Second International Conference on Software Product Lines
(2002) 130-153

71. Trigaux J., Haymans P.: Software Product Lines: State of the Art, Technical Report
EPH3310300R0462/215315, PLENTY project, Available at:
http://www.info.fundp.ac.be/~jtr/PLENTY/Files/productline0309.pdf (September 2003)

72. van der Linden F.: Engineering Software Architectures, Processes and Platforms for
System Families - ESAPS Overview, Proceedings of the Second International Conference
on Software Product Lines, San Diego, CA, USA (August 2002) 383-397

73. Vinsen K., Jaimieson D., Callender G.: Use Case Estimation – The Devil is in the Detail,
Proceedings of the 12th IEEE International Requirements Engineering Conference (2004)

Kappa 33

74. von der Maßen T., Lichter H.: Modeling Variability by UML Use Case Diagrams,
Proceedings of the International Workshop on Requirements Engineering for Product
Lines, (2002) 19-25

75. Weiss D., Lai C., Tau R.: Software product-line engineering: a family-based software
development process, Addison-Wesley (1999)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

