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Abstract

The comparative advantage of a location shapes its industrial structure. Current
theoretical models based on this principle do not take a stance on how comparative
advantages in different industries or locations are related with each other, or what
such patterns of relatedness might imply about the underlying evolution of compar-
ative advantage. We build a simple Ricardian-inspired model and show that hidden
information on inter-industry and inter-location relatedness can be captured by sim-
ple correlations between the observed structure of industries across locations, or the
structure of locations across industries. Using this information from related industries
or related locations, we calculate a measure of implied comparative advantage and show
that it explains much of the location’s current industrial structure. We give evidence
that these patterns are present in a wide variety of contexts, namely the export of
goods (internationally) and the employment, payroll and number of establishments
across the industries of subnational regions (in the US, Chile and India). In each of
these cases, the deviations between the observed and implied comparative advantage
measures tend to be highly predictive of future industry growth, especially at hori-
zons of a decade or more; this explanatory power holds at both the intensive as well
as the extensive margin. These results suggest that a component of the long-term evo-
lution of comparative advantage is already implied in today’s patterns of production.
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1 Introduction

David Ricardo (1817)’s seminal theory predicts that locations benefit when they allocate
their resources in the goods in which they have a comparative advantage, i.e., those pro-
duced with a higher relative productivity. Yet these comparative advantage patterns are
not random, nor are they set in stone; theories detailing the evolution of locations’ produc-
tivity levels date back to the work of Marshall (1890) more than a century ago. Since then,
many studies have highlighted the role of relatedness between sectors and relatedness
between regions in the evolution of comparative advantage. Here, we take a complemen-
tary stance, giving evidence that these patterns of relatedness also reveal deeper informa-
tion about the requirements of industries and endowments of locations. We then show
how this information could be used to develop a measure of counterfactual or implied
comparative advantage, and how such a measure helps explain changes in comparative
advantage of locations over time.

According to the Ricardian theory of trade, the intensity of production of a location in
an industry is determined not by its absolute productivity in that industry, but instead by
its productivity relative to that of other industries in the same location and by its produc-
tivity in the industry relative to other locations. Although Ricardo introduced this idea
using two countries (England and Portugal) and two products (cloth and wine) almost
two centuries ago (Ricardo 1817), the multi-location multi-product version of his model
has only recently been formalized and subjected to rigorous empirical testing (Eaton and
Kortum 2002; Costinot et al. 2012). Yet these models can only infer the relative produc-
tivity of a location in a product if the location already makes the product This is an
important void, as the emergence of new, modern industries is an essential component
of economic development (Hausmann et al. 2007). In addition, current Ricardian models
assume that the relative productivity parameters are uncorrelated across industries. This
implies that the likely productivity of a country in motorcycle production, for example,
is equally independent of whether it currently has comparative advantage in car-making
or in coffee. We provide evidence that appears to contradict this.

In this paper we extend the neo-Ricardian models to address these issues. In our sim-
plified model, we assume that the comparative advantage is determined by the distance
between factor endowments of locations and factor requirements of industries. We then
illustrate how, given any two industries, the distance between their factor requirements

1. Deardorff (1984), as quoted by Costinot et al. (2012), says that “The ... problem is implicit in the Ricardian
model itself ...[because] the model implies complete specialization in equilibrium ...This in turn means that the
differences in labor requirements cannot be observed, since imported goods will almost never be produced in the
importing country.”



can be linked to the correlation between their output levels (in terms of their respective
patterns of comparative advantage across locations). That is, two industries with very
similar factor requirements will tend to have similar levels of comparative advantage (in
each location). Likewise, smaller differences between the factor endowments of locations
are translated into higher levels of correlations between their respective comparative ad-
vantage patterns as well. If our model is correct, then deep information on industries
and locations can be intuited from surface-level patterns in comparative advantage. In
particular, it would imply that the comparative advantage of an industry in a location (or
“industry-location”) can be estimated from the comparative advantage of highly corre-
lated industries, or highly correlated locations. This is true even for industry-locations
that are currently absent or unobserved.

We then propose how to construct such estimates. Unlike other predictive approaches
in the diversification and complexity literature, we build a proxy that expresses the ex-
pectations of an underlying factors model, that is, the implied comparative advantage
of an industry-location. We then extend our theoretical model to show how regression
residuals from such proxies would be expected to predict future changes in comparative
advantage, among industry-locations that already exist or those that have yet to emerge.

Finally, we use a variety of datasets to construct these proxies and verify their pre-
dictive power. First, we show that our measures are highly significant predictors of in-
ternational export flows — both present-day export patterns and industry-location export
growth. Next, we apply our model at the subnational level, using data from the US,
India and ChileE| With this data, we obtain similar results when constructing our im-
plied comparative advantage measures using the wage bill, employment or the number
of establishments of industry-locations. Our results also operate both at the intensive
and the extensive margins of growth: they correlate with future growth rates of industry-
locations, as well as with the appearance and disappearance of new industries in each
location. Extending the trade models to make predictions on the extensive margin could
be crucial for shaping policy discussions, given the special importance of the emergence
of new industries.

Together, these results appear to confirm the predictions of our model: that (1) in-
formation on hidden endowments and requirements can be recovered from an analysis
of the realized economic structures (i.e., observed comparative advantage), (2) this infor-

mation can be used to construct a proxy of implied comparative advantage, and (3) the

2. We are not the first to apply international trade models to a subnational setting; see, for example,
Davis and Dingel (2014), Costinot et al. (2016), and Caliendo et al. (2017). Clearly, a city is an economy that
is open to the rest of its country and, hence, the logic behind trade models should be present, albeit with
more factor mobility than is usually assumed in trade models.



present-day gap between implied comparative advantage and observed comparative ad-
vantage is associated with long-term changes in observed comparative advantage.

The rest of the paper is structured as follows. Section 2 gives an overview of the related
literature. Section 3 provides the basic model behind our findings. Section 4 discusses the
data and methodology used to build our variables. Section 5 presents our main empir-
ical results: explaining the current structure of industry-locations, and exploring links
with future growth. Section 6 tests some direct implications of our model, and evaluates
the alternative explanations and robustness of our results. In Section 7, we discuss the

implications of our findings and conclude.

2 Related Literature

This paper relates to several strands of literature, given that it covers international trade,
growth, and subnational settings (cities and regions). It most directly builds on Haus-
mann and Klinger (2006), Hidalgo et al. (2007), Hausmann and Klinger (2007) and Bahar
etal. (2014), developing an underlying theoretical foundation to the empirical patterns de-
scribed in those papers. It also expands past literature by exploring the intensive margin
of industry-location growth (in addition to appearance and disappearance), and refining
the measures they use.

Other research explores the theoretical underpinnings of diversification. Boschma
and Capone (2015) analyze the interaction between relatedness and institutions and find
that different varieties of capitalism result in different diversification patterns. Petralia
et al. (2017) find that the related diversification is also important at the technological de-
velopment of countries especially at initial stages of development. Boschma et al. (2012,
2013) apply a similar approach to understand the regional diversification in Spain. Neffke
et al. (2011) show that regions diversify into related industries, using an industry related-
ness measure based on the co-production of products within plants. These studies could
be thought as a part of larger relatedness literature (Hidalgo et al. 2018} Boschma 2017).
Relatedness measures have been used to understand the relationship between technology
intensity of an industry and agglomeration (Liang and Goetz 2018) and to understand
how scientific knowledge diffuses between cities (Boschma et al. 2014) as well.

Our results using subnational data relate to the urban and regional economics litera-
ture. For example, Ellison et al. (2010) try to explain patterns of industry co-agglomeration
by exploring overlaps in natural advantages, labor supplies, input-output relationships
and knowledge spillovers. We do not try to explain co-agglomeration, but instead use

it to implicitly infer similarity in the requirements of industries or the endowments of

3



locations. Hanlon and Miscio (2017) further show that the historical pattern of location
distribution of industries in Britain are shaped by agglomerative forces as well. Del-
gado et al. (2010, 2015) and Porter (2003) use US subnational data to explain employment
growth at the city-industry level, using the presence of related industry clusters. Lu et
al. (2016) explore the effect of co-located clusters in the emergence of new clusters and
tind differential interactions depending on the maturity of the cluster. Implicitly, the ob-
served formation of clusters in a location and the location’s comparative advantage are
linked with each other. Beaudry and Schiffauerova (2009) survey the literature to deter-
mine whether Marshallian forces or diversity of a region is more effective on the economic
progress of regions. Our work does not take a stance in that regard, but the measures that
we use capture more than the Marshallian forces.

In the international context, our paper is related to the literature on the Ricardian mod-
els of trade (Dornbusch et al. 1977; Eaton and Kortum 2002 Costinot et al. 2012), where
we abandon the assumption of an absence of systematic correlations of relative produc-
tivity parameters between industries. For example, Eaton and Kortum (2002) assumes
that the productivity parameters are drawn from a Frechét distribution, except for a com-
mon national productivity parameter. Costinot et al. (2012) relaxes this assumption by
assuming a country-industry parameter, but no correlation across industries in the same
country. These assumptions are clearly rejected by the data, as we document patterns of
positive and negative correlation across export industries in the same country. Finally,
our approach has the advantage of being able to estimate relative productivities for in-
dustries that currently have zero (or unobserved) output. Previous Ricardian literature,
however, cannot infer relative productivities of industries that do not yet existﬁ

Our approach uses two-dimensional industry-location matrices to explain the evolu-
tion of revealed comparative advantage. The economic complexity literature building on
Hidalgo and Hausmann (2009) creates one-dimensional projections from the same matrix
and develops metrics to quantify country complexity and product sophistication. This
work inspired different metrics such as the country fitness and product quality metrics
developed in Tacchella et al. (2012, 2013), Caldarelli et al. (2012), Cristelli et al. (2013),
and Bustos and Yildirim (2019). These measures can also be used to model new product
appearances in the context of evolution of complexity. Nevertheless, they do not aim to
model or predict industry-location-level production patterns as we do here.

Finally, the measures we derive are similar to the collaborative filtering recommenda-

3. An exception is Costinot et al. (2016), who estimate implied or counter-factual productivity for agri-
cultural industries using agronomic models and data. This requires detailed data and knowledge of agri-
cultural production functions and, hence, cannot easily be extended to other settings.



tion models in computer science. These models try to infer, for example, a user’s prefer-
ence for an item on Amazon based on their purchases of similar items (Linden et al. 2003),
or how they will rate items based on ratings by similar users (Resnick et al. 1994). But
these techniques never ask why a pair of consumers or products might have correlated

preferences. Here, we derive a theoretical rationale for their logic.

3 Model

In this section, we use a modified Ricardian framework to show how patterns in the ob-
served or revealed comparative advantage of locations can contain information on their
“true” comparative advantage, i.e., the hidden match between the requirements of indus-
tries and the ability of locations to meet those requirements.

To begin, we first need a definition of revealed comparative advantage. Let’s denote
the output of an industry 7 in a location I with y;;. It follows that the total output of an

industry is Y; = Y y;. Now, let us construct a counterfactual industry-location output
)

estimate, j;;, without any differences in comparative advantage across locations. In this
no-advantage Worldﬁ each location would produce its “fair share” in each industry; a fair

share based on population, for example, would be:
Yir = s1Y; G.1)

where s; is location [’s share of total population (s; = population;/population y,,.4). One
could also calculate a fair share using the location’s proportion of global output, exports,
value added or employment.

Since #j; is our representation of a world structure without differences in productiv-
ities, then we can define our comparative advantage term, r;;, as the ratio between that
no-advantage world and the real world:

Yir

Tt = 7

A

Yil

Taking logs and re-arranging terms gives a way to express all industry-location output:

log(yi;) = log(r;;) +1og(Y;) + log(s;) (32)

In this paper, we use s; to be the population share of the location. In the international

4. We assume there are no economies of scale and individuals have identical preferences in all locations.



context, y; is the exports of country / in industry iﬂ Alternatively, if we use y;; to be the
number of employees in industry i in location / and s; is the share of employment of the
location in the country, we arrive at the widely-used Location Quotient (LQ) measure.

In a sense, Equation 3.2|is a decomposition of the size of an industry in a location. It
has a component that captures the dynamics in the total size of the industry (Y;), another
component that captures the location size dynamics (s;), and a portion that is specific
to the interaction of locations and industries (r;;). In our empirical analysis, we will be
focusing in this interaction termﬂ

3.1 Modeling comparative advantage

Having defined our measure of industry-location comparative advantage, we can now
model how these values are generated. We will assume that the efficiency with which
industry i functions in location / depends on the distance between the requirements of
industry i and endowments of location I. Specifically, we measure this distance in a com-
pact and convex metric subspace in IR”, denoted by S. Suppose the requirements of the
industry i are characterized by a parameter i; € S and the endowments of location [ is
characterized by a parameter A; € S. The output intensity of industry 7 in location I (rj)

will depend on some function of the distance between ¢; and A;:

ri = f (d(Wi, A1) (3.3)

where d is the distance metric on our compact metric space S, and f is a strictly decreasing
function of the distance, such that f(0) = 1 and f(dyax) = 0, where d;;4y is the maximum
distance in S. In other words, r;; is increasingly large as the industry requirement and
location endowment are closer togetherﬂ

In reality, we are not able to observe i;and A; directly — they are hidden from the

observer. However, we do observe the r;;, and can in fact use then to glean information

5. If we take s; to be the share of the country in world trade, then r;; becomes Balassa (1964)’s Revealed
Comparative Advantage (RCA) measure. See the Appendix for our results using RCA.

6. Normalizing output values in this way is attractive: it lets us strip out the scaling effects that exist
purely at the location level (e.g., the population size of a country or total exports of a country) and the
industry level (e.g., the global demand for a commodity), and instead focus on explaining the interplay
between industries and locations. That is, instead of asking questions like “Why is employment growth
higher in Boston than in Kansas City?” or “Why is employment in retail services growing faster than
electronics manufacturing?” we ask questions in the class of “Why is electronics manufacturing growing
relatively faster in Boston than in Kansas City?”

7. We introduce a more structural model in the Appendix, in which labor productivity is the consequence
of the requirements and availability of multiple factors of production. In this setting, based on the canonical
Heckscher-Ohlin-Vanek trade model, we reproduce the same key results as those given here.



about the underlying ¥; and A; values. For example, it is clear that the difference between
a location’s comparative advantage in two industries, r;; and r, is an increasing function
of the distance between the ¢; and ¢y. By the same token, the difference in the same
industry across two locations, r;; and r;;, would be an increasing function of the difference
in the A; and Ay.

We can generalize this intuition to incorporate information from all of the industry-
location pairs. To do so, we must first construct a metric that lets us formally relate one
industry to another (by comparing their r-values in the same locations) or one location
to another (by comparing their r-values in the same industries). Suppose we start with
the normalized output intensity r;; for each industry in each location. We can calculate a
matrix that contains correlations of each industry pair across all locations. We define as
the industry similarity matrix ¢;; between two industries i and i’ as the scaled Pearson

correlation betweenﬂ r; and ry across all locations:
¢ir = (14 corr{r;,ry})/2 (3.4

Symmetrically, we define the location similarity matrix ¢ between two locations ! and I’

as the scaled Pearson correlation between r; and ry» across all industries:
¢ = (1 + corr{r;, ry})/2 (3.5)

We want to show that ¢ captures the distance between two industries” requirements
or two locations” endowments in our compact space S. That is, without knowing what
Y; and Py are, we would like to infer the distance between them using ¢;. In fact, it
can be shown (Section A.1.1 of Appendix) that if we model our space S as a unit-sphere
in an arbitrary number of dimensions (R"), and use any function f satisfying the rules
described above, it follows that ¢;;r (¢;/) strictly decreases as distance between ; and ¢y
(A; and Ay) increases:

9w o %
(i, i) ~ " 9d(Ap,Ay)

In other words, for any two industries (or locations), the closer their hidden requirements

< 0. (3.6)

(or endowments) are, the more highly correlated their observable comparative advan-
tages will be across locations (or across industries).

Going forward, we will focus on the simplest space, where ¢ and A are points on a

8. As a notational convention going forward, when we skip an index subscript, it means that it becomes
a vector over the skipped variable. In this case, r; is the vector whose elements are r;;.



unit-sphere of one dimension, i.e., the unit circle, Uﬂ On U, output intensity is maxi-
mized when ¢; = A;; in the opposite case, where ¢; and A; are on antipodal sides of the
circle (and distance is 0.5), output is zero. In addition, we now assign a specific functional

form for f, in order to calculate actual r;; values:

fdinA) =1—4d> (i, Ay). (3.7)

If we assume that ¢; and A; are uniformly distributed on U, then we can derive a closed
form expression for the expected value of the ¢;; (¢;7) as a monotonic function of the
distance between ; and ¢} (A; and Ay) (see Appendix section A.1.2):

¢y =1-15 (d(lPi, i) — d* (v, 1Pi/)>2z ¢y =1-15 (d(/\h)\l/) - dZ(Alz/\l’)>2 (3.8)

Note that for distance d = 0, the expected proximity would be 1. If distance is equal
to its maximum value (d = 1/2) then the expected proximity would be the minimumm
If p and A are distributed uniformly, we can expect to find a wide range of ¢ values.

Thus, we can conclude that our similarity measures — built from observable industry-
location information — are directly linked to the difference between two industries” unob-

served factor requirements, or two locations” unobserved factor endowments.

3.2 Calculating the implied comparative advantage

Equipped with our industry similarity and location similarity metrics, we can now de-
velop a metric for the implied comparative advantage of an industry in a location. We
can imagine an industry 7 in location /, where we do not know the comparative advan-
tage r;; and thus wish to estimate it. What we do know is that whenever we observe
industry 7 in other locations, it is produced in virtually identical intensities to a second
industry, 7'; it follows that ¢; ~ 1. Likewise, when we look at the other industries in loca-
tion I, we note that their intensities are virtually identical to those in a second location, I’;
this means that ¢y ~ 1. Based on equations [3.8and [3.7, we know that ¢; = 1 = ¢; = ¢y
and ¢y ~ 1 = A; = Ap. Plugging these into our formula for r;; in Equation would
imply that ¢;» =~ 1 = ry =~ rjand ¢y =~ 1 = rjy = ry. That is, if we can find a nearly

9. We chose the unit circle rather than a line to avoid boundary effects of the space. For instance, for an
interval like [0, 1], the boundaries, 0 and 1, will introduce break points.

10. Using this form for f, the minimum similarity value turns out to be 1/16. This corresponds to a
correlation of -7/8. The reason that we do not observe a correlation of -1 is that even at the antipodal
locations, it is impossible to get perfect anti-correlation on the unit circle. Even in that case, the points at
90° and 270° will have similar values of comparative advantage.



identical comparator industry (based on its intensity in other locations), then our measure
of implied comparative advantage is the intensity of that industry in the same location.
Likewise, if we find a nearly identical comparator location (based on its intensity across
other industries), then we can use the intensity of the same industry in that location as
our implied comparative advantage proxy.

In practice, however, we argue that the best estimate of implied comparative advan-
tage comes not from a single comparator; instead, a weighted mean of the top k most
similar comparators is often more accurate (Sarwar et al. 2001). We can use our model to
illustrate two ways such an approach would yield better results.

First, we find that there are no perfect comparators in the real world — it is exceedingly
rare to find nearly identical pairs of industries or locations in our datasetsE Thus, if we
base our proxy on the single most related industry or location, we may be introducing
a large error in our prediction. In fact, using a larger number of comparators would
improve the odds that we are including locations whose endowments deviate from A; in
opposite directions, i.e., places whose differences from ! will “cancel out” each otherE

Second, it is unlikely that one can ever witness the true comparative advantage of an
industry-location. It is more plausible to imagine a gap between an industry-location’s
true comparative advantage and its observed comparative advantage. The underlying or
true comparative advantage of an industry, r;;, is determined as before, solely by the
distance between the technological requirement of the industry ¢; and the technological
ability of the location A;. Let us assume that the comparative advantage of each industry-

location has deviated from this underlying value because of a disturbance term ¢;;:
Fir = 1t + €1, (3.9)

What could cause this disturbance? The location might have the potential to be produc-
tive in this industry, but has not yet allocated necessary resources to this industry; in this
case the disturbance term would be negative. Conversely, a location might have gambled
on an industry with a low underlying comparative advantage; it could allocate resources
and achieve some level of production in the short term, but would struggle to sustain it.

The disturbance term in this case would be positive. As a result of the disturbance, we no

11. Section 2.2 below analyzes the distribution of similarity values in real-world data. For most locations,
the best comparator location is far from identical (median similarity = 0.690). Industries, however, are
likelier to have a highly similar best comparator (median = 0.902).

12. Consider a location ! with two highly similar comparators, I’ and I”. In cases where Ay > A; > Ay or
A > A; > Ay, the average of r; and r;;» will be closer to r;; than either 7 or r;» individually. For example,
if we set {A;, Ay, A} t0 {0.75,0.77,0.72} and ¢; equal to 0.44, then we get {r;;, r;y, ;v } = {0.62,0.56,0.69};
the mean of r;y and r;;» — 0.63 — is much closer to r;; than either r;s or r;» are.



longer see the true comparative advantage r;;; we can only witness observed comparative
advantage 7;;. Again, our comparators will come to rescue: by integrating information
from several meaningful comparators, we might be able to predict r;;. Since we do not
observe the sign of the disturbance term, including a larger number of comparators en-
sures there are enough positively biased values to offset negatively biased ones.

Going forward, for any location /, we can formally define our expected value of its
true r;; value using the following approach. First, we use the similarity parameters ¢ to
build the set of its k most similar comparator locations. Next, we take a weighted mean
of the 7y values of each of the locations in this set, with the ¢;; serving as the weights.

We refer to this proxy for implied comparative advantage as country space density:

oI (3.10)
I'eL; (k) l"e%(k) Pu
with the set L;(k) defined as:
Ll(k) = {l/|R€ll’lk (47”/) S k} (311)

We can also build an analogous metric with industry similarity. In this case, the im-
plied comparative advantage of an industry-location would be the weighted mean of the

observed comparative advantage of the k most related industries in the same location:

-y g, (3.12)
i"€1;(k) i,,g Piic

where set I;(k) contains the k nearest neighbors of industry i:

We refer to this variable as product space density@ As the two density measures are sym-
metric, we can expect that they capture some non-overlapping information; that is, the
best proxy may be a hybrid of both of them.

We do not particularly impose a structure on the disturbance term in Equation 3.9} ¢;;.
The density measures rely on taking an average to smooth out the effects of these terms.
Hence, for that to be true, the mean of ¢; terms should be 0 and the variance of these

13. Our density variable is in fact similar to the product space density first proposed by Hausmann and
Klinger (2006), adapted to describe continuous inputs.

10



terms should be well-defined and finite, as in the central limit theorem. If the variance is
not bounded, then there might be some extreme values skewing the results. If the mean
is not 0, then the density measures would give results biased towards this mean value;
this would be largely captured by the regression coefficient and/or constant term
Finally, following the rule of thumb established by Duda et al. (2012), we set the k
parameter equal to /N, i.., the geometric midpoint between including only the most
similar comparator (k = 1) and including all comparators (k = N). We later relax this
constraint, testing the relationship between k and accuracy directly (Appendix A.3).
Note that neither ?Z[II] nor ?z[lL] contain direct information from 7;;, meaning that we are
not using an observation to proxy itself This also means that we can find non-zero
implied comparative advantage values for industry-locations that have current observed
values of zero (7; = 0); such implied values could be interpreted as the likelihood of a

new industry-location being born.

3.3 Predicting trends towards true comparative advantage

At this point, we have derived a proxy for a location’s implied comparative advantage in
an industry. But what can such a measure tell us about industry-location growth?

In Equation above, we introduce a disturbance term, ¢;;, that captures locations’
tendency to deviate from their true comparative advantage, allocating resources sub-
optimally. As such, let us assume that these deviations are unsustainable, and will di-
minish over long periods of time, i.e., tlgglo ei; = 0/ This lets us posit that we will be
able to observe a trend towards the true Ricardian structure — i.e., that as the temporary
disturbance shrinks over time, the observed 7; ; values will grow closer to the true ;.
This implies that there should be a positive relationship between changes in 7;; ; and the

original gap between true and observed comparative advantage:

Firy, — Firey = B(rit — Firg, ), p>0

We still cannot test this relationship directly, since we do not witness the true com-

parative advantage values. But since we believe that our implied comparative advantage

14. Likewise, if the mean of disturbance term varies by industry or location, this effect would be largely
absorbed by industry or location fixed effects (if not the controls). The only truly troubling scenario would
be persistent industry-location bias in the disturbance, e.g. machinery exports are artificially high in Euro-
pean comparator countries but not in Asian comparator countries.

15. Strictly speaking, 7;; is still included in the similarity index calculation; section A.2.2 uses a cross-
validation approach to verify that completely excluding 7; from density does not impact our results.

16. To declutter our notations, we only use time indices (t) when we explicitly study the time dimension.

11



measure is a proxy for true comparative advantage (or at least captures novel information
on true comparative advantage), then we can substitute it into the above equation. This
would then imply that we can expect to find a (positive) empirical relationship between
the present-day gap between implied and observed comparative advantage (7i;¢, — Fir1,)

and changes over time in observed comparative advantage (7 1, — i1 ,):
Fitt, — Titey = BTit — Titty)s g>0 (3.14)

3.4 Hypotheses

We can now summarize the theoretical hypotheses we wish to test.

H1: If the output of an industry-location can be estimated based on highly similar in-
dustries and locations, then our measures of implied comparative advantage should be

strongly and positively associated with measures of observed comparative advantage.

H2: If industry-locations are displaced from their true Ricardian comparative advantage,
then (H2a) information regarding the true (non-displaced) comparative advantage will
still be implied by highly similar industries and locations, and (H2b) our measures of this
implied comparative advantage will give a better estimate of true comparative advantage

than predictions using observable (displaced) output levels.

H3: If the displacement is diminishing over time, with each industry-location’s growth
tending towards its true comparative advantage, then (H3a) the difference between present
output and future output should be correlated with the difference between present out-
put and our implied comparative advantage measures. Furthermore, (H3b) the explana-
tory power of this relationship should increase for longer-term growth, as the real world

moves closer to the Ricardian ideal over time.

H4: Since information on true comparative advantage can be estimated even for indus-
tries currently absent from a location, then (H4a) the implied comparative advantage
measures will be predictive of which new industries will emerge (or fail to emerge). Con-
versely, (H4b) industries that are not supported by the current economic structure, i.e.,

those that have low implied comparative advantage values, will disappear over time.

To investigate these hypotheses, we begin with a simulation of our theoretical model, ver-
ifying that the model performs as expected when we supply the underlying parametersm

We then test our remaining expectations empirically, using a variety of datasets.

17. In particular, Hypothesis 2 is only verifiable in a simulated setting, since we never observe true com-
parative advantage in real life.
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3.5 Simulating the theoretical model

We can now build our simulation to test our expectations based on our theoretical mo-
tivation. We set the dimensions of the simulation to N; = 100 industries by N; = 100
locations, and assume a uniform distribution of the 1; and the A; along the unit circle
U. We then use these parameters to calculate the r; values, using the functional form in
Equation Next, we model ¢; in in Equation [3.9| as normally distributed, with zero
mean and variance equal to the variance of r; (denoted by (72 times a parameter s, the
noise-to-signal ratio (¢;; ~ N (0, s0?)). We vary this noise-to-signal ratio, going from 0% (no
error) to 100% (equal parts signal and noise) to 400% (four times more noise than signal).
From the noisy output levels (7;;), we build the product space and country space densi-
ties, setting k = VN = v/N; = 10. We then measure the explanatory power of PS and
CS density (and the mean of the two) by running linear regressions of the (noiseless) true
comparative advantage values.

Table 1: Simulated explanatory power of observed and implied comparative advantage
(mean R? from 5,000 simulations)

Regression of true comparative advantage on. ..

Noise-to-  observed implied comparative advantage
signal comparative

ratio advantage PS Density CS Density Hybrid
0% 1.000 0.982 0.982 0.990
25% 0.885 0.968 0.968 0.980
50% 0.640 0.927 0.927 0.955
100% 0.250 0.774 0.774 0.852
200% 0.040 0.370 0.370 0.490
400% 0.003 0.015 0.015 0.028

We carry out this exercise multiple times (5,000 simulations) and report the results
in Table [1} First, we can verify the validity of Equation on average, the absolute
difference between the observed similarity value and the similarity value implied by the
equations is less than 5%@ We can also check the distribution of the simulated similarity

index values. As expected, there is a wide range of comparator pairs. This includes both

18. We find that the average standard deviation of r;; converges to 0.298, so we use that value for o2.

19. The estimated values will never be identical to the values implied by the proof, since the correlations
are taken on a finite number of random locations and industries. In fact, increasing this number — from
N =100 to N = 1000 — decreases the error to 1.4%.
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positively- and negatively-correlated comparators, distributed symmetrically about the
midpoint (i.e., zero correlation), though the exact shape of the distribution depends on
the amount of noise added (see Figure in Appendix).

At this point, we can use the simulation to test the relation between our measures
of implied, observed and true comparative advantage. Table [1| gives the mean R? values
across our repeated simulations@ We can see that the PS and CS densities perform well
at nearly all error levels: other than the noisiest simulations, R? values are quite high (0.37
to 0.98)@ Most importantly, the density indices also perform well relative to the observed
comparative advantage term (the 7; values). As expected based on their construction,
7;; values tend to correlate well with true comparative advantage (the r;; values) when
noise is low; in the extreme case, when the error term is nonexistent, observed compara-
tive advantage is identical to true comparative advantage. However, as we increase the
noise-to-signal ratio, observed comparative advantage becomes an increasingly weak cor-
relate of true comparative advantage. The explanatory power of the PS and CS densities
also decreases with increasing noise, but at a much slower rate; at s = 100%, the densi-
ties are still strongly associated with true comparative advantage, and combined together
they estimate over 85% of the variance of the true values. This confirms our prediction: in
a noisy world, where industry-locations are far from their true comparative advantages,
the implied comparative advantage measures may be a better predictor of the underlying
values than the observed values. For an empirical setting, this implies that even if the un-
derlying Ricardian dynamics have a relatively low explanatory power today, our density

measures may be able to separate their message from the noise@

4 Data and Methods

4.1 Data

We utilize international trade data to study the industry-location relationship at an in-
ternational scale. Here we use UN COMTRADE data, downloaded from the Atlas of

20. The R? values are highly consistent across the simulations, with standard errors of the means all less
than a tenth of a percentage point.

21. Note that the explanatory power of the PS and CS densities are virtually identical. This is expected,
since their formulas are mirror images of each other (and since the number of locations and industries
is the same). Note also that the combination of the two densities is a stronger predictor than either one
individually; this is an expected consequence of the law of large numbers, as we mentioned above.

22. We also test the power of our predictors when given pure noise as an input (i.e., without the underlying
Ricardian component). As expected, the R? values fall to zero.
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Economic Complexity@ Exports are disaggregated into product categories according the
Harmonized System four-digit classification (HS4), for the years 1995-2016@ We restrict
our sample to countries with population greater than one million and total exports of at
least $1 billion in 2005 (the midpoint of the period studied)ﬁ We then drop the 73 prod-
ucts with under $100 thousand in total world trade in 2005, and the miscellaneous code
HS 9999. These restrictions reduce the sample to 119 countries and 1166 products, which
in 2016 account for 92% of world trade and 93% of world population.

In addition to the international trade data, we use subnational data from three coun-
tries, namely the US, India and Chile. For the US, we use the County Business Patterns
(CBP) database from 2003—2011@ It includes data on employment and number of es-
tablishments by county, which we aggregate into 708 commuting zones (CZ; Tolbert and
Sizer (1996)), and 1,086 industries (NAICS 6-digit). This dataset also provides annual pay-
roll data for 698 CZ and 941 industries?”] Our Chilean dataset comes from the Chilean
tax authority, and includes the number of establishments based on tax residency for 334
municipalities and 681 industries, from 2005 to 2008 (see Bustos et al. (2012) for details).
Lastly, we study India’s economic structure using the Economic Census, containing data
on employment for 371 super-districts and 209 industries, for the years 1990, 1998 and
2005@ For all the datasets above, we include only industries and regions that have non-

zero totals for all years. This approach effectively removes discontinued categories.

4.2 Constructing the model variables

For each dataset, we build the similarity and density measures as described above. Our
tirst step is to normalize the export, employment and payroll data to focus on the intensity
of each industry-location link, and to facilitate comparison across location, industry and
time. For the international data, we use the exports per capita as a share of the global

23. The data and cleaning procedure can be found at: https://atlas.cid.harvard.edu/about-data

24. Trade data for earlier years are available, but it uses a different product classification system. We might
introduce error due to major continuity breaks when converting between classifications.

25. We also remove Iraq (which was war-torn and has severe quality issues), Serbia-Montenegro (which
split into two countries during the period studied), and Namibia and Botswana (which lack customs data
for the initial five years of the period).

26. During these years, two versions of NAICS (2002 and 2007) were used. If we extend the data to earlier
or later years, we would need to convert an additional revision, which might introduce errors.

27. The discrepancy between employment and establishment versus payroll sample sizes comes from the
data suppression methods of Census Bureau. To protect the privacy of smaller establishments, the CBP
occasionally discloses only the range of employment of an industry in a location, e.g., 1 to 20 employees.
In these censored cases, we use the range’s midpoint as the employment figure (see Glaeser et al. (1992)).
However, the CBP offers no payroll information in these cases, leaving a smaller payroll sample.

28. This is an earlier version of the data used in Asher and Novosad (2017).
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average in that industry. This can be seen as a variant of Balassa’s revealed comparative
advantage (RCA) index (Balassa|1964), but using the population of a location as a measure
of its size rather than its total production or exports (Bustos et al. 2012). This small change
eliminates the impact of the movement in output or prices of one industry on the values
of other industries. For instance, for a country like Saudi Arabia, the price change in oil
will result in changes in RCA in other industries even though the production levels in
other industries do not change. We formally define the Revealed per-Capita Advantage
(RpCAH of location / in industry i as:

vi1/ pop;
Ry = 41
Y Yil/ Y pop @D

where y;; is the export, employment or payroll value, and pop; is the population in loca-
tion [. Note that locations with very low populations will tend to have higher R;; values.
To address the potential bias against high-population locations, we cap R;; at Ryax = 5
when building our similarity indices (Equations 3.4{and below)m We do not normal-
ize the data for the number of establishments.

At this point, we can use the normalized industry intensity values, R;;, to build the
similarity indices defined above in Equations [3.4{and Tables [2| and 3| show the top
ten most similar pairs of countries and products in the most recent year. We note that the
most similar countries are those in the same geographic region, a phenomenon that can
be explained by geological and climate effects as well as regional knowledge spillovers
(Bahar et al. 2014). The list of most similar product pairs contains a mix of different cat-
egories, though the lower half of the list is dominated by machinery and electrical prod-
ucts. This matches the observation in Hausmann et al. (2014) that such industries are
highly interconnected. That said, if we restrict the list to products in different Harmo-
nized System chapters (panel b), the resulting pairs still seem highly intuitive.

Figure [1| shows the full distribution of the similarity index values. The right panel
depicts location similarity values. This distribution is roughly symmetric, with a peak at
the center (median = 0.509, mode at 0.49-0.50); this matches the “noisy world” predictions
of the simulation (Figure [A.T). However, the same cannot be said for the industry simi-
larity values (left panel). The distribution of these values is also roughly symmetric, but

29. Our results are robust to the use of standard RCA instead of RpCA. See Appendix for details

30. We specifically set the ceiling at Ryax = 5 because this is the highest possible RpCA value for the
most populous country in the world, China. In a hypothetical industry i where China exports the entire
industry’s output, then R; cpina = POPworta/ POPChina = 5

31. Though we use the Pearson correlation here, we obtain comparable results using other similarity mea-
sures, namely cosine distance, Euclidean distance, the Jaccard index, minimum conditional probability (Hi-
dalgo et al. 2007) and the Ellison-Glaeser co-agglomeration index (Ellison and Glaeser (1999).

16



Table 2: Most similar location pairs, international trade, 2010

Location / Location I’ Location Similarity
SDN Sudan TCD Chad 0.867
CIV  Cote d’Ivoire CMR Cameroon 0.826
BGD Bangladesh KHM Cambodia 0.795
COD Congo, Dem. Rep. COG Congo, Rep. 0.788
COD Congo, Dem. Rep. ZMB Zambia 0.781
JPN  Japan KOR Korea, Rep. 0.780
CIV  Cote d’'Ivoire GHA Ghana 0.779
LTU Lithuania LVA  Latvia 0.765
CZE Czech Republic DEU Germany 0.747
FIN  Finland SWE Sweden 0.745

distributed around a peak greater than 0.5 (median = 0.724, mode at 0.74-0.75). Industry
similarity might have a higher than expected proportion of positive correlations because
the distribution of the underlying industry technology parameters (i;) could exhibit non-
random patterns (i.e. not uniform-random, as our model assumes)@ Incorporating such
a structure is a promising area for future research (though out of scope for this paper).
Moving forward, we are particularly interested in the best comparators for each in-
dustry or location. Figure|l|illustrates the distribution of each industry or location’s most
similar comparator, as well as its /N most similar industries or locations. In the left
panel, we see that each industry’s most similar comparator tends to be quite highly cor-
related with it. Values are similarly high when we extend the scope to each industry’s 34
most similar comparators (interquartile range (IQR) = 0.81 to 0.90). In the right panel, we
see that the most similar comparator locations tend to have somewhat lower similarity
values. This includes the top 11 comparators (IQR = 0.59 to 0.65). This suggests that our
CS density measure may underperform relative to the PS density measure. More gener-
ally, we can see much improvement to our set of comparators by limiting the scope to
the most similar subset of industries and locations. This illustrates our motivation for
including the nearest neighbor filters to remove poor comparators from consideration.

Having built our similarity indices, we can use them to recreate our density indices

from Equations (3.10| and [3.12} replacing the r;; with R;;. As before, we set the neigh-

32. Ona deeper level, this finding touches on the diversification versus specialization debate in the growth
and trade literature. If locations stay narrowly specialized as they industrialize — replacing old industries
with new ones — then we would expect to observe more negative correlations between industries” produc-
tion locations. Instead, there appears to exist a nested structure of industry cooccurrence (Bustos et al.[2012),
where new, more sophisticated goods are co-exported with more primitive ones (but not necessarily vice-
versa). Our result supports this view.
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Table 3: Most similar industry pairs, international trade, 2016

(a) All industry pairs

Industry i Industry i’ Similarity
8484  Gaskets and similar joints 8485  Ships or boats propellers and blades 0.982
6204 Women'’s suits, not knit 6206  Women'’s shirts, not knit 0.980
8479  Specialized machines, mechanical appliances 8514  Industrial or laboratory electric furnaces 0.977
3921  Plastic plates, sheets, film, foil and strip 7326  Specialized articles of iron or steel 0.976
9030  Instruments for measuring electricity 9031  Optical or specialized measuring instruments 0.976
8483  Transmission shafts 8515  Electric soldering machines 0.975
8481  Thermostatically-controlled valve appliances 8484  Gaskets and similar joints 0.975
8207  Drilling, pressing and milling tools 8208  Knives and cutting blades for machines 0.975
8543  Specialized electrical machines and apparatus 9031  Optical or specialized measuring instruments 0.974
8536  Plugs, sockets, relays, other protective apparatus 8538  Electrical switch or protection components 0.974

(b) Industry pairs from different HS chapters

Industry i Industry i/ Similarity
3921  Plastic plates, sheets, film, foil and strip 7326  Specialized iron or steel articles 0.976
8543  Specialized electrical machines and apparatus 9031  Optical or specialized measuring instruments 0.974
5911  Textile fabric for card clothing, technical use 3926  Specialized plastic articles 0.974
8208  Knives and cutting blades for machines 8466  Metalworking machine parts, accessories 0.974
7415  Copper nails, tacks and staples 8479  Specialized machines, mechanical appliances 0.972
7318  Screws, nuts, bolts, similar iron or steel articles 8466  Metalworking machine parts, accessories 0.970
8531  Electric sound or visual signaling apparatus 9031  Optical or specialized measuring instruments 0.970
8479  Specialized machines, mechanical appliances 9031  Optical or specialized measuring instruments 0.969
3921  Plastic plates, sheets, film, foil and strip 8419  Industrial heating and cooling machinery 0.967
8208  Knives and cutting blades for machines 8441  Machines making boxes, other paper products 0.966

borhood size to \/N; ~ 34 comparator industries and \/N; ~ 11 comparator locations
(though our results are robust to varying the number of comparators: see Appendix A.3).

These serve as our proxies for an industry-location’s implied comparative advantage.
Yy

5 Main empirical results

We can now apply our approach to international and subnational datasets, which cover
different countries, time periods and economic variables. We begin by constructing our
similarity and density indices, and showing their explanatory power at the cross-section.
Next, we study the growth rates of industry-location cells, which can only be defined for
cells that start with a nonzero output. We then explore the extensive margin of growth
by studying the appearance of industries that were not initially present in a particular
location and also disappearance of industries with low implied comparative advantage
values. For each analysis, we regress our measures of implied comparative advantage
against current output levels, and then use the residuals to conduct out-of-sample regres-
sions of either output growth or the appearance and disappearance of industries.
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Figure 1: Distribution of similarity values.
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5.1 Estimating implied comparative advantage

As argued above, density estimates an industry-location’s comparative advantage, given

the RpCA of its comparators. To see how well it fits, we estimate the following equation:

S 5IL
log(Rj1,) = & + Brlog (REH) + Br log (Rz{l ]> + &1t (5.1)
where ¢;; 4 is the residual term.

Table 4: OLS regression of international exports by industry-location, 1995

(1) () (3)
Observed Comparative Advantage
RpCA of Exports (log), 1995
Product Space density, 1995 (log) 0.973*** 0.774%**
(0.013) (0.017)
Country Space density, 1995 (log) 0.990*** 0.297***
(0.039) (0.019)
Observations 92,357 92,357 92,357
Adjusted R? 0.636 0.493 0.654
Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 4|shows that both the PS and CS density terms are highly significant (p < 0.001),
with coefficients very close to unity, since the values are using the same scale. As ex-
pected, the terms also explain a very large fraction of the variance of the country-product
export intensity, though the PS density generates a significantly higher R? values than the
CS density. When included in regressions together, both terms are still highly significant.

Table [5/shows the regressions for the US, India and Chile datasets. In all cases, both
PS and CS density are significant (p < 0.001 in all cases); interestingly, they also yield
coefficients that sum close to unity on average (from 0.75 to 1.1). As with the export data,
R? values are substantial, especially for establishments. These results validate our first
hypothesis: an industry-location’s current comparative advantage can be estimated with
some accuracy based on the values of similar industries and locations. However, as with
any estimation, errors are made. Are these errors just noise, or do they carry information

about the system’s evolution? We turn to this question in the next section.

Table 5: OLS regression of initial employment, payroll and establishments by
industry-location.

) @ ®) 4) ©)

USA, 2003 USA, 2003 India, 1990 USA, 2003 Chile, 2005
employees payroll employees establishments establishments
RpCA (log) log log

Product Space 0.516*** 0.370%** 0.508*** 0.344*** 0.165%**
density (log) (0.012) (0.026) (0.016) (0.010) (0.013)
Country Space 0.442%** 0.4071%** 0.590%** 0.510%** 0.572%**
density (log) (0.008) (0.026) (0.013) (0.011) (0.010)
Observations 278,670 89,175 49,594 278,753 49,502
Adjusted R? 0.275 0.368 0.403 0.795 0.697

Country-clustered robust standard errors in parentheses. Significance given as *** p < 0.01

5.2 Convergence of implied and observed comparative advantage

We have shown that our implied comparative advantage measures can explain much of
the variation in the current comparative advantage patterns observed in the world. How-
ever, our model also implies that the residual from this regression —i.e., the gap between
observed and implied comparative advantage — should be informative of future industry-
location growth. Formally, we test this by regressing the growth rate of the industry-
location on the residuals from the first stage introduced in the previous section@ We use

33. Our results improve somewhat if we include the implied comparative advantage value here instead
of the residual. But our goal here is to show that even the residual term is predictive of the future growth.
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the standard definition of the annualized growth rate of y;;:

. 1
Vi = F— log (yil,tl/ yil,t0> (5.2)

where tg and t; are the initial year and final year, respectively. However, there are many
industry-locations with an initial value of zero, for which we cannot define a growth rate.
Likewise, cases in which the final value is zero are problematic because they introduce a
hard boundary that would bias the estimates. We manage these issues by separately an-
alyzing the intensive and extensive margins. Here we first examine the intensive margin
by restricting our sample of industry-locations to those in which y;; ¢, # 0 and y;;,, # 0.
In Section we use a probit regression model to examine the probability of industry
appearance (i.e., growth from zero) and disappearance (i.e., collapse into zero).
Our growth regression takes the following form, based on Equation [3.14;

Vi =a+ lBgSilltO + yc; + 0d; + ej. (5.3)

where ¢, is the residual term of the regression from the first stage. Note that while Equa-
tion estimates the effect of implied comparative advantage minus current compara-
tive advantage, our residual term here is the opposite (current comparative advantage
minus a function of implied comparative advantage); we thus expect B, to take a negative
sign. The intuition is that if the current comparative advantage is above (below) what we
would expect given the implied comparative advantage, then we anticipate that the future
trend in observed comparative advantage will be negative (positive). We have also added
a constant term, and location and industry control variables. Finally, ¢;; is the error term.

Table [ shows regressions of growth in international exports. The first three columns
show that residuals from PS density, CS density, and hybrid density (the residual from the
regression with both PS and CS density, i.e., column 3 of Table [4) are highly significant
predictors of industry-location growth (p < 0.01), and have the expected negative sign.
Next, we include the initial global size of the industry and the location in question; these
correspond with the industry-level and location-level components of the decomposition
in Equation Column 4 shows that these variables, on their own, are significantly
related to subsequent growth, as noted by Glaeser et al. (1992); however, Column 5 indi-
cates that they do not substantially affect the magnitude and significance of the density
residuals, and instead see their own significance decrease.

Next, we introduce controls that account for information beyond the base year, namely
the overall rate of growth for each location and each industry; we refer to them as the ra-
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dial growth variables. Following the same standard compound growth formula as before,
we calculate radial industry growth (b;) and radial location growth (b)) as:

- 1 Y Yilt - 1 Y.iYiL
b, = log | =" ]; b= log | =L 5.4
Tt B (Ez }/iz,t0> Tt 8 (Zi YiL t 64

These controls are an intuitive benchmark for our density indices, as they represent an

alternative theory of growth (balanced growth). In fact, radial growth would account for
all the variance in industry-location growth rates if all industries within a location grew
at the same rate, or if all locations maintained their global market share in industries.
Deviations from balanced growth thus mean that some industry-locations are increasing
or decreasing their revealed comparative advantage. Column 6 shows the effect of ra-
dial growth and initial size variables on subsequent growth. As expected, they are all
statistically significant and economically meaningful. Column 7 includes these variables
together with the density variables. The latter maintain their economic and statistical
significance, and increase the R? relative to column 6.

Our last specification captures all industry- and location-specific dynamics with fixed
effects, subsuming the size and radial growth control variables as well as any other source
of purely location-level of industry-level variation. Any additional explanatory power
after controlling for these fixed effects (and initial industry-location size) must come en-
tirely from industry-location interactions. Column 8 shows the baseline growth equa-
tion with location and industry fixed effects and initial location-industry size. Column 9
reintroduces the density residual and shows that its economic and statistical significance
is undiminished. It is important to again point out that the density residual uses only
base-year data and thus contains no information regarding future growth, while the co-
efficients on the fixed effects are calculated ex post. This means that our measures still
carry new information related to industry-location growth in the subsequent 21 years,
even after controlling for all possible industry and location effects.

Finally, we note that the robust and negative signs in the Columns 4-8 for initial
industry-location exports mirror Rodrik (2013)’s observation of unconditional conver-
gence at the industry level. But the significance of our density measures imply a richer
structure in locations” convergence patterns.

Next, we apply the same process to our US, Chile and India datasets, over the max-
imum period available (Table[7). The density residuals are highly significant predictors
of industry-location growth, both with and without controls (p < 0.01 for all cases). Put
together, this suggests that our theoretical model — connecting implied comparative ad-

vantage to industry-location growth —is supported in a variety of contexts.
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Table 6: OLS regression of export growth of an industry in a country (1995-2016)

1 (2) ) (4) ©) (6) ) (8) ©)
Growth in exports (log), 1995-2016

Residual, Product Space ~ -0.023***
Density, 1995 (0.001)
Residual, Country Space -0.019***
Density, 1995 (0.001)
Residual, Hybrid -0.024*** -0.024*** -0.019*** -0.024***
Density, 1995 (0.001) (0.002) (0.001) (0.001)
Industry-location exports -0.017%* 0.000  -0.019** -0.005** -0.021*** -0.002**
1995 (log) (0.001)  (0.002)  (0.001)  (0.001)  (0.001)  (0.001)
Location population 0.020*** 0.000 0.024***  0.008***
1995 (log) (0.003)  (0.003)  (0.002)  (0.002)
Global industry total 0.018**  0.002  0.020***  0.007***
1995 (log) (0.001)  (0.002)  (0.001)  (0.002)
Mean location RpCA 0.013*** -0.010**  0.026***  0.007**
1995 (log) (0.003)  (0.003)  (0.002)  (0.003)
Radial industry growth 0.993***  0.989***
1995-2016 (0.018)  (0.018)
Radial location growth 1.118**  1.015%**
1995-2016 (0.132)  (0.132)
Observations 92,357 92,357 92,357 92,357 92,357 92,357 92,357 92,357 92,357
Adjusted R? 0.150 0.153 0.161 0.137 0.185 0.299 0.328 0.412 0.439
Industry FE Yes Yes
Location FE Yes Yes

Country-clustered robust standard errors in parentheses.

Significance given as *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 7: OLS regression of employment, payroll and establishments growth by industry-location.

(1) (2) 3) ) ®) (6) ) (®) ©) (10)
USA, 2003-2011 Chile, 2005-2008 India, 1990-2005
Employment growth  Establishments growth Payroll growth Establishments growth Employment growth
Residual, Hybrid -0.045%*  -0.042%*  -0.031**  -0.026***  -0.048***  -0.050*** -0.055%*  -0.044*** -0.320%**  -0.177***
Density (0.000) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.005) (0.008)
Initial Level -0.004*** -0.004*** -0.004*** -0.009*** -0.172%**
(log) (0.001) (0.000) (0.001) (0.002) (0.007)
Initial Industry, -0.003*** 0.002*** -0.007%*** 0.008*** 0.147**
Total (log) (0.001) (0.000) (0.002) (0.001) (0.011)
Initial location, 0.002*** 0.001** -0.002* 0.014** 0.194%*
Total (log) (0.001) (0.000) (0.001) (0.001) (0.008)
Mean Location RpCA 0.004*** - 0.006** - 0.140%*
(log) (0.001) (0.001) (0.010)
Radial industry 0.857*** 0.754*** 0.889*** 0.698*** 1.035%**
growth (log) (0.009) (0.008) (0.010) (0.013) (0.010)
Radial location 0.721%* 0.628*** 0.544** 0.486*** 0.533***
growth (log) (0.032) (0.022) (0.032) (0.045) (0.075)
Observations 278,670 278,670 278,753 278,753 89,175 89,175 49,502 49,502 49,594 49,594
Adjusted R? 0.152 0.220 0.098 0.231 0.149 0.345 0.064 0.327 0.187 0.428

Location-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, * p < 0.05,* p < 0.1



5.3 The extensive margin: Discrete appearances and disappearances

In previous sections, we analyzed the growth of industry-locations that already exist (i.e.,
with non-zero exports, employment, establishment counts or payroll). In this section,
we focus on the extensive margin, studying the appearance and disappearance of industry-
locations. In particular, we expect that our measures of implied comparative advantage

contain information on the overall fit of an industry in a location.

To do this, we first need to establish which industry-locations are likelier to be “present.

The case is simple when using the US and Chilean data because they report the number of
establishments. In these cases, an industry-location is present if at least one establishment

is there. Formally, we capture this signal with the binary presence variable M;;:

Ty =1

M1, =

(5.5)

where, as before, y;;;, is the number of establishments in industry i and location [ in
year tp. In this notation, we refer to an industry location as present when M;;;, = 1 and
absent when M;;;, = 0. Likewise, an appearance between years ¢y and t; is defined as
M1, = 0 — M, = 1, while a disappearance is defined as M;;;, =1 — M, = 0.

To study the extensive margin in the international trade dataset we need to decide on
an equivalent definition of presence and absence. The simplest definition would be to
define any nonzero export flow as an industry-location presence. In practice, however,
trade data is full of one-time nonzero flows due to small re-exports, sales of used goods,
or clerical errors; none of these would represent a present export industry in a meaningful
sense. For this reason, we define an industry-location to be absent if R;; ;, < 0.05, meaning
that exports are less than 1/20th of the “expected” level. We consider an industry to be
present if R;; > 0.25. As before, an appearance is a change from absent to present, and
a disappearance is a change from present to absent. Thus, our definition of extensive
margin change represents a fivefold relative increase or decrease See Tables |8 and @ for
the number and rates of presences, appearances and disappearances in each dataset.

We can now use our implied comparative advantage proxies to explain the appear-
ance and disappearance of industries by location. First, a probit model estimates the
probability of an industry-location presence based on PS and CS density:

PM;=1)= (tx + Brlog <ﬁl[l” + c) + B log (ﬁl[lu + c>> (5.6)

34. While these thresholds are somewhat arbitrary, we obtain similar results using lower thresholds (a
ceiling of 0.1 for absences and a floor of 0.1 for presences), or using the simple zero-nonzero definition.
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where @ is the Gaussian cumulative distribution function, and ¢ is a constant (0.001)
added to retain zero Values@ As before, Equation uses only information from f.

Going forward, we use the residual from [5.6{to quantify the gap between the world’s
current structure and its implied comparative advantage structure. As before, we hypoth-
esize that there should be a significant association between this gap and future changes
in structure (i.e., appearances and disappearances). In particular, large positive residuals
signify an “unexpectedly present” industry-location, and should thus predict disappear-
ances, while large negative residuals signify an “unexpectedly absent” industry-location,
and should thus predict appearances@ Finally, we include the total number of presences
in a location (“diversity”) to test whether a Yule-like process is driving our appearance
and disappearance results; in our context, this would mean we expect higher appearance
rates from locations with higher diversity@

In addition to the pseudo-R? statistic, we evaluate these predictions using the area
under the receiver-operating characteristic curve (AUC). The AUC is equivalent to the Mann-
Whitney statistic, expressing the probability of ranking a true positive ahead of a false
positive. By definition, a random prediction will find true positives and false positives at
the same rate, and hence will result in an AUC = 0.5. A perfect prediction, on the other
hand, will find all true positives before any false positive, resulting in an AUC = 1.

Table |8 applies our probit regression model to the US and Chilean establishment data
and international export data, for the first year of each. Our PS and CS densities combined
explain one half of the variance in industry-location; AUC values are also very high (close
to 94% for hybrid models). Likewise, all coefficients are positive and highly significant,
meaning that a high value for density is strongly indicative of an industry’s presence.

Next, we use the residual term from these regressions to predict industry-location
appearances and disappearances (Table [9). For all cases, the coefficients are highly sig-
nificant, and have the expected sign. This means that unexpectedly absent industries tend
to preferentially appear over time while unexpectedly present industries tend to disappear.
This supports the hypothesis that industrial structure tends towards the deeper match be-
tween industries’ requirements and locations” endowments (as captured by our proxies).
Finally, we see diversity is significant, with the expected positive sign (or negative for

disappearances); thus, a Yule process may also contribute to extensive margin dynamics.

35. This constant is approximately equal to the 2" percentile for international trade-based density. We
obtain the same results adding a constant of 0.01.

36. These predictions are easier to comprehend if we compress and rearrange Equationas g = M —
M;;, where ¢;; is the residual and M;; is the expected presence probability (based on density).

37. In ecology, a Yule process means that each single organism has the same probability of giving birth,
resulting in larger groups dominating future populations. Thanks to an anonymous referee for the idea.
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Table 8: Probit regression of industry-location extensive margin, US, Chile and International

Product Space
density, initial year
Country Space
density, initial year

Observations
Present industries
Presence rate

Area Under the Curve
Pseudo R?

(2) ) (4) ®) (6) 7) (8) ©)
USA (establishments) Chile (establishments) International (exports)
Industry presences in 2003 Industry presences in 2005 Industry presences in 1995
0.617*** 0.942%** 0.422%** 1.327%** 1.027***
(0.014) (0.007) (0.016) (0.034) (0.033)
1.498***  1.150*** 1.072%**  0.891*** 1.210%**  0.427***
(0.010)  (0.014) (0.015)  (0.016) (0.053)  (0.030)
768,888 227,454 138,754
324622 55347 44085
0.422 0.243 31.80%
0.925 0.934 0.856 0.929 0.936 0.932 0.898 0.936
0.477 0.515 0.288 0.465 0.495 0.507 0.399 0.525

Location-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05,* p < 0.1
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Table 9: Probit regression of changes in industry-location extensive margin, US, Chile and international

@ @ ®) @) ®) (6) @) ®) ©)
USA (establishments) Chile (establishments) International (exports)
Industry appearances, 2003-11 Industry appearances, 2005-08 Industry appearances, 1995-2016
Residual, Product -1.694*** -1.780*** -0.685***
Space density (0.028) (0.039) (0.249)
Residual, Country -2.451%** -2.284%** -1.137***
Space density (0.020) (0.033) (0.198)
Residual, Hybrid -2.385%** -2.327*** -0.959***
Space Density (0.022) (0.034) (0.220)
Location diversity, 0.048 1.190%**  0.442%** 0.457***  1.082***  0.660*** 0.698***  0.729*** 0.637***
initial year (log) (0.030) (0.029) (0.029) (0.029) (0.031) (0.029) (0.180) (0.147) (0.168)
Initially absent 444,266 172,107 77,560
Industry appearances 37681 11496 7063
Appearance rate 0.0848 0.0668 0.0911
Area Under the Curve 0.750 0.827 0.827 0.762 0.814 0.820 0.743 0.776 0.752
Pseudo R? 0.0902 0.203 0.195 0.109 0.173 0.178 0.107 0.130 0.113
(10) (11) (12) (13) (14) (15) (16) 17) (18)
USA (establishments) Chile (establishments) International (exports)
Industry disappearances, 03-11 Industry disappearances, 05-08 Industry disappearances, 1995-2010
Residual, Product 2.992%** 1.800*** 1.125%*
Space density (0.020) (0.046) (0.177)
Residual, Country 2.524*** 1.801*** 1.258***
Space density (0.016) (0.033) (0.119)
Residual, Hybrid 2.497*** 1.757%** 1.277***
Space Density (0.019) (0.033) (0.157)
Location diversity, 0.988***  -1.018*** -0.305*** 0.342**  -0.369***  -0.004 -0.680***  -0.924*** -0.618***
initial year (log) (0.032) (0.029) (0.031) (0.041) (0.046) (0.045) (0.117) (0.088) (0.108)
Initially present 324,622 55,347 44,085
Industry disappearances 45108 4762 3187
Disappearance rate 0.139 0.086 0.0723
Area Under the Curve 0.813 0.848 0.848 0.690 0.766 0.764 0.800 0.815 0.808
Pseudo R? 0.192 0.235 0.229 0.0614 0.117 0.113 0.164 0.183 0.175

Location-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05,* p < 0.1



6 Robustness Exercises

6.1 Using the least similar comparators

Up until this point, we have built the density functions using the most similar compara-
tors for each industry or location. Yet our model implies that there is information in the
least similar comparators as Wellﬂ The intuition is that if we can find industry or location
pairs with a strong negative correlation, then a high comparative advantage in one would
imply a low comparative advantage in the other@ Then as before, the residual between
observed and implied comparative advantage should be negatively associated with growth.

Looking at the similarity distributions (Figure [I), we would expect this relationship
to hold for location pairs: location similarities are distributed close to 0.5 (random), with
nearly as many negatively correlated pairs (under 0.5) as positively correlated (over 0.5).
For industries, however, there is an ominous lack of negatively correlated pairs. Going
forward, we build density as before, but using the v/N least similar comparator locations
and industries for each industry-location.

In stage 1 regressions (top half of Table [I0), least-similar CS density performs as ex-
pected: its sign is negative, highly significant, and comparable in magnitude to that of the
traditional CS density (though with a lower R?). On the industry side, the signs are as ex-
pected for nearly all datasets. The exception is world trade (column 4), where least-similar
PS density has a positive sign. This may be due to industries” tendency to follow a pattern
of nestedness (Bustos et al.2012) rather than traditional Ricardian specialization (Hidalgo
and Hausmann 2009); see our discussion of Figure(l{above. Indeed, when we control for
industry and location fixed effects (column 5), the intended negative coefficient appears.
Finally, when raw establishment counts are used (columns 6 and 7), we also control for
industry and location fixed effects to counteract the lack of RpCA normalization. With
this correction, the coefficients are negative as expected.

Next, we use residuals from our stage 1 regressions to explain industry-location growth,
as before. In bottom half of Table [10, the least-similar density residuals perform as ex-
pected: both CS and PS have negative signs, are comparable in magnitude to the original
densities, and are highly significant (p < 0.001 in all cases).

38. Thanks to two anonymous referees for suggesting this test.
39. For example, the lowest similarity value we observe is between China and the US (¢cping,u1s4 = 0.326);
this is far below random (0.5), meaning that we can expect one country to export what the other does not.
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Table 10: Building density with least similar comparators.

W) @) ®) 4) ©) (6) 7)
USA USA India Int’l Int’l USA Chile
employment payroll employment exports exports  estab. estab.

Cross-Section (Stage 1)

Least-similar PS -0.5971*** -0.194*** -0.126*** 0.267**  -0.949*** -0.156*** -0.268***
density, 1995 (log) (0.011) (0.010) (0.021) (0.105) (0.039) (0.005) (0.015)
Least-similar CS -0.549*** -0.4171*** -0.607*** -0.921***  -0.598*** -0.410%** -0.397***
density, 1995 (log) (0.024) (0.015) (0.019) (0.049) (0.032) (0.013) (0.015)
Ind. & Loc. FEs No No No No Yes Yes Yes
Growth (Stage 2)

Residual, PS -0.038*** -0.038*** -0.220%** -0.015***  -0.023*** -0.030*** -0.038***
density (0.000) (0.001) (0.006) (0.001) (0.001) (0.001) (0.002)
Residual, CS -0.038*** -0.040*** -0.226*** -0.012*%**  -0.022*%** -0.033*** -0.041***
density (0.000) (0.001) (0.005) (0.001) (0.001) (0.001) (0.002)

Note: Each entry on this table represents the coefficient of a separate regression: the first row looking at PS
density alone, and the second row looking at CS density alone. The residual from Stage 1 regressions (row
1 or 2) are used to predict the export growth in the same column of Stage 2 (row 3 or 4). Location-clustered
robust standard errors in parentheses. Significance given as *** p < 0.01, ** p < 0.05,* p < 0.1.

6.2 Effect of time horizon

According to our theoretical model, the implied comparative advantage variable should be
a better predictor of trends in observed comparative advantage over longer time-frames. In
our growth regression models above, we chose the longest time interval possible for each
dataset; Figure 2 shows adjusted R? values for international trade regressions (including
base-year controls) over all possible year combinations. Each regression explains a sizable
portion of the variation, with the lowest adjusted R? exceeding 8.5%, and a mean R? of
14.6%. Explanatory power generally improves as the interval increases (barring a possible
continuity break between 1999 and 2000). This indicates that our measures capture a
longer-term shift in economic structure, rather than a short-term mean reversion effect.
This makes sense looking back at our theory: we had modelled the difference between
true and observed comparative advantage as a shock that diminished over time; longer
periods of time would thus yield more accurate predictions.

6.3 Testing the effect of the classification system

Could our results be an artifact of how industries are defined? If a classification system
arbitrarily splits a single activity into two categories, then we would expect to see them

in similar intensities. In the trade data classification, for example, we can see that HS6101
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Figure 2: Heat map of out of sample predictions of export growth, hybrid density model.

contains “Men’s overcoats” whereas HS56102 contains “Women’s overcoats.” In fact, in
the top panel of Table 3, 9 out of 10 product pairs have the same 2-digit HS codes. To
explore the possibility that our results are driven by such trivial cases, we calculate an
adjusted PS density that excludes comparators from the same 2-digit HS categories.

For balance, we can also test the explanatory power of taking the mean RpCA values
for other products in the same 2-digit category (within the same location). Such a metric
essentially captures the information from classification system itself, since it relies on the
designation of which products are similar enough to have the same first two digits. (Our
measure, by comparison, takes no information from the classification system.)

Table[1T]present the results of these exercises, for the first and second stage regressions;
we also repeat our main results for ease of comparison@ We can see that the results are
essentially the same in these new specifications, with no major change in significance,
sign, or explanatory power. Thus, our results are not artifacts of the classification system,

and that our measure captures at least as much information as the classification provides.

6.4 Using other similarity matrices to build density

We have thus far shown evidence that the nature of an industry-location can be proxied

using highly similar industries or locations — its implied comparative advantage. We are

40. Panel (b) of Table [3|also gives the most similar industry pairs outside of the same HS chapter. These
too appear quite related, despite coming from distinct sections of the classification.
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somewhat agnostic to the exact functional form for our proxy: we do not claim that our
similarity or density formulae are more accurate than other measures, but rather that ours
can be derived from a Ricardian-inspired model of the world. We show that predictions
from our theoretical model are also supported by other density measures.

Specifically, we test the original product space density proposed by Hausmann and
Klinger (2006) and the taxonomy measure proposed by Zaccaria et al. (2014). HK density
uses the binary presence-absence matrix to calculate a similarity measure based on co-
production probabilities. Their density variable is calculated using all information in the
matrix; the results to not substantially change when we limit the calculation to the top
34 most similar products. Taxonomy, on the other hand, starts from the same presence-
absence matrix but uses a different normalization factor. Then, from the similarity matrix,
it selects the most important contributors to an industry. We again use the top 34 entries,
to match the number used in our measure; however, the results are robust to using only
the top-most entry. Finally, both measures typically base their presence-absence matrix on
RCA; here we report versions calculated using RpCA (to match our own), though results
are virtually unchanged when using RCA instead. We expect these measures to perform
similarly to ours. However, their use of the binary presence-absence matrix rather than
continuous RpCA values may result in a loss of explanatory power. We also no longer
expect the coefficient of HK density to approach unity, since its scale is not the same as
the dependent variable; the coefficient should still be positive, however.

Table (11| shows the results for both stages. As expected, all first-stage terms are pos-
itive and highly significant. We also find little effect of these adjustments in the second
stage: the residual term is always negative (as expected), highly significant, and with
a similar magnitude to that of our original density formula. This appears to reject the
possibility that our findings are an artifact of the exact similarity or density formula used.

7 Conclusions

In this paper we present and test a model showing that the observed comparative ad-
vantage of an industry in a location follows a pattern that can be discerned from related
industries in that same location (product space density) or the same industry in related
locations (country space density). Moreover, we present evidence supporting our model’s
prediction that the error term in the predicted pattern is not pure noise, but instead carries
information regarding the future trend of that industry-location. These dynamics include
components that are orthogonal to pure industry or location effects, but instead capture

industry-location interactions. These results can be found using international trade data,
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Table 11: Building densities from other industry similarity matrices.

Stage 1 Stage 2

coefficient R?  coefficient RZ

*4% _ EE )
Product Space density (log) 0((?(7)2 3) 0.636 ((]603(5);1) 0.325
PS density, excluding same 0.956*** -0.018***
2-digit industry (log) ©0014) %07 0001y 9320
Mean RpCA of others in 0.933*** -0.014%**
same 2-digit category (log) (0.006) 0.610 (0.001) 0.322
Taxonomy (log) 1(%;3) 0.476 '(()(')(_)381) 0.308
*kt ~ *4%
PS Density, HK method (log) 1('5%)563) 0.485 ((’(')0533) 0.318

Note: Each entry represents a separate regression, over a consistent sample (N=91,828). The columns
associated with Stage 1 replicate Table[d] with different PS densities; each row tests a different density
specification using only 1995 data. The residual from Stage 1 regressions, along with controls in Table [6|are
used to predict the export growth in Stage 2; coefficients from controls not reported. Country-clustered
robust standard errors in parentheses. Significance given as *** p < 0.01, ** p < 0.05,* p < 0.1

as well as subnational data for the US, India and Chile. We show evidence that they oper-
ate at the intensive and extensive margins, that they can be produced using least similar
(negatively correlated) comparators, that they are not artifacts of the classification system
used, and that they operate most intensely at longer time horizons.

An important question is why would our measures carry information about the growth
of an industry-location, even after controlling for location and industry effects (including
their overall growth rates). The interpretation we model is that each industry-location is
affected by a shock that causes a deviation of its output from their "true” comparative ad-
vantage levels. In this interpretation, since over time the expected value of shock is zero,
the underlying fundamentals are increasingly expressed over time, and are predicted by
our measures. An alternative interpretation is that the similarity measures we use are cap-
turing inter-industry spillovers, such as Marshallian and /or Jacobs externalities (Glaeser
et al. [1992; Ellison et al. 2010; Beaudry and Schiffauerova 2009). In this case, the pro-
ductivity of an industry-location is affected by the presence of related industries through
spillovers. The fact that these take time would explain why our predictive power peaks
at periods of a decade or more. From a Ricardian viewpoint, on the other hand, the con-

jecture would be that mastery of specific technologies affects the productivity of related
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industries, a feature not incorporated into current Ricardian models. Efforts to improve
one industry’s productivity may spill over into related industries. Unexploited aspects of
technological relatedness are reflected in the difference between a country’s structure and
the international norm. These differences diminish over time as firms exploit technologi-
cal spillovers. Future research could test these rival hypotheses.

One salient feature of the similarity metrics we use is their symmetry. In reality, we
expect a directionality among industries: as the countries climb the development ladder,
they move into more sophisticated products (Hausmann et al. 2014). For example, we
might observe that all countries exporting pharmaceuticals also export chemical prod-
ucts, but not all chemical exporters are pharmaceutical exporters; in other words, one
industry could be a prerequisite for another. This idea is present in Hirschman (1958)’s
seminal work, where he differentiates the importance of backward versus forward link-
ages in a development strategy Future studies could incorporate this asymmetry.

The results in our paper may be important for policymakers developing strategies
for growth. First, they allow policymakers to estimate potential comparative advantage,
even for industries currently absent from their area. Second, they can help identify over-
or under-performing industries depending on other industries present in the location;
this in turn may help estimate the growth potential of local industries. Finally, our model
might also help identify pervasive failures and obstacles, using historical data to identify
which industries had the predicted potential to grow and why this potential was not
realized These issues might then be addressed, if policymakers so choose.

41. See Maurseth and Verspagen (2002) and O’Clery et al. (2018) for recent uses of asymmetric metrics.

42. For example, Japan’s largest negative residual is for HS 9306: “Munitions of war.” The interpretation
is that Japan’s weapons export industry is “unexpectedly absent,” given its export of similar products. This
makes intuitive sense, since Japan’s reasons for not producing those goods are historical, not technological.
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A  Appendix

A1 Connecting Similarity Coefficients To Underlying Requirements

and Endowments
A.1.1 Proof of general case with n-dimensional sphere and arbitrary functional form.

Instead of our specific choice of circle space and the functional form, we will present a
more general case below. Again, we will assume that the efficiency with which industry i
functions in location / depends on the distance between the requirements of industry i and
endowments of location [. Suppose the requirements of the industry i are characterized
by a parameter ;, which is a point on the unit sphere in IR” denoted by S. The choice of
unit sphere in arbitrary dimensions will make the calculations easy but it is not critical.
Because of the symmetry of the surface of the sphere, there is no special points on the
sphere if every attribute is uniformly distributed. Similarly, the endowments of location
| is characterized by a parameter A;, also on 5. The output intensity of industry i in
location | will depend on the congruity between the requirements of the industry, ¢;, and

the endowments of the location, A;. More concretely,

ri = f(d(gi, Ap)) (A.1)

where d is the distance on S, and f is a differentiable, decreasing function of the distance,
such that f(0) = 1 and f(1) = 0 (After normalizing the maximum distance on the sphere
to 1, hence the name unit sphere). As can be observed, output intensity will be maximized
when ¢; = A;; in the opposite case, where ¢; and A; are furthest away from each other,
output would be close to zero. I

Again, we define as the product space similarity matrix ¢;7 between two industries i

and i’ as the scaled Pearson correlation between r; and r; across all locations:
¢ir = (14 corr{r;,ri})/2 (A.2)

where corr is defined as

Y (rig — 7)) (ri —7r)
VX (rip = 7)2 X (rin — 7r)?

Since each ¥; and A; are independently and uniformly distributed, using law of large

corr{r;, ry} =

numbers, the sums in the correlation expressions can be converted to expectation values,
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ly:
- El(ra — 7)(rin — ) 9,
VE[(ris — 7)) 2| E[(rin — 7ir)?|9ps]

Since i;and ¥ are identical independently distributed variables, the correlation becomes:

corr{r;, 1y} =

E[(riy — i) (rig — 7o) |9i, ¥y A3
E[(riy —7:)?|i] -

Let’s first start with the denominator. The denominator can be written as:

corr{r;, ry} =

El(rq — 7:)*[¢i] = Elriilwi] — (E[ralgi])®

Using the functional form in[A.1} we can calculate:

Ele] = [ (Flp M) dn

/\IES

Elralg) = [ £l M),

AES

Similarly, we can write the numerator in [A 3| as:

El(ryy —7i) (rin — ) 190, i) = Elririn| i, ] — (Elrir|9i])?

with:
Elririn|wi, ¢pr] = /f(d(’ubir/\l))f(d(l/’i’//\Z))d/\l

AES

Using Equation [A.3) we can write:

E[r3|$i] — Elryral i, ]
E[r3|$i] — (E[rali])?

1 —corr{r;,rs} =

Denominator of this expression does not depend on particular choices of ¢; and ;. For

the sake of brevity, we will call it c>. We can write the numerator as:

Elri|$i] — E[ruri| i, o] = / (F(d(gi, Ar))) 2 dA; — /f(d(%bi,/\l))f(d(lPi//Az))d/\z

A €ES A ES
= [ £ 2) [Fi A1) — £, A)] A
A ES

41



Let’s move the origin to ¢; and define ¢y = 1; + A;». Hence, the expression above can be
written as a function of A;; asﬁ

g(i) = [ F(@(0,)) [£(@d(0,A)) = Fd(bip, )] Ay

/\[ES

For a small increase, J;, then we obtain:

g+ i) = [ F@(0,A)) [F(@(0,11)) = F(@(Bip + 8, M))] A
AE€S

Hence:

§(Bi+0i) —g(Bir) = [ F(0,0)) [F@Bip + 81, M) = £ (i, A)] Ny
MES

If we divide both sides with J;, we get:

g(Aii"{"SZ{.)_g(Aii’): /f(d(ol/\l))f(d(Aii’+5ii’r)\i5)“)_f(d(Aii’r/\l))d/\l

AES

The left hand side is the definition of derivative. Because of the symmetry in the distance
function, we can rewrite the fraction under the integral as:

di(AA”l/l’) _ / f(d(O, /\l))f(d(Aii’rAl - 51'123 _f(d(Aii’/ Al))d/\l

—— [ slao,ny P gy,

d(A;ir, A;) increase as A; increase in the direction of A;y. Since f is a strictly-decreasing
function, the derivative within the integral is negative. Since all other terms are positive,

the integral becomes negative. And because of the negative sign in front of the integral,

dg(Ar)
dh,

we obtain:

> 0.

43. Note that, for the one-dimensional circle with circumference 1, this function is:

s(8i) = 7 (8 —A3)"
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Following Equation the similarity measure is:

g(Aiir)
202

Pir =1 —

Therefore, we prove that the ¢;; strictly decreases as the distance between ¢; and ¢y
increases. This result implies that our similarity measure captures the distance, since this

measure is a strictly decreasing function of the distance.

A.1.2 Proof of simple case on unit sphere and a specified functional form.

In this Technical Appendix, we will derive the expected similarity coefficient between
two locations (products) given that the revealed comparative advantage of industry i in
location [ is:

ri =1 —4d*(y;, Ay)

where d is the shortest distance between independent and uniformly distributed ¢; and
A; parameters on a circle of perimeter 1. We can define the similarity ¢;7 between two

industries i and i’ given by:
¢ir = (1 + corr{r;,ri})/2

where corr is defined as

corr{r, 1y} = Yy (ri — 7)) (rin — 7)

o )R (rg — )2

Since each 1; and A; are independently distributed, using law of large numbers, the sums

in the correlation expressions can be converted to expectation values, namely:

E[(ry —7;)(rin — 7)) i, Y]
VE[(rit = 7)2[Gi] E[(rin — 7ir) |9y ]

Since y;and ¢ are identical independently variables, the correlation becomes:

corr{r;, rs} =

E[(ry —7;) (i — 73r) |9, ] A4
El(ra — 72719 (A4

corr{r;, rs} =
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To make the calculations more tractable, if we use 7;; = (1 —r;;) /4 = d*(¢;, A;) instead of
ri1, the similarity measure will remain the same. Using the identity:

E[(Fy — 7i)*|wi] = E[Fglwi] — E*[Falwi]

We can calculate the denominator in Equation using these separate terms. First,

1 1/2
E[fqlyi] = /dz(llii/}\z)d)\l =2 / yAdy = 2[y° /32 =1/12
0 0
and
1 1/2
Alpl = [ a0 —2/y4dy—2[y /512 = 1/80,
0

Hence, the denominator in Equation[A.4becomes:

. 1 1\ 1
E[(Fa = 7)) = g5 - (E) = 180

We can write the numerator in Equation[A.4as:

1

Bl =)0 =l vl = [ (@020 = 35 ) (#0040 - 35 ) an
0 (A.5)

1
1
- oo oron-
0

To calculate the integral, we will measure all the distances on the circle relative to ;. Let’s
define A;; = d(¢;, ;). We can write the integral in Equation[A.5]as:

1 1/2
/ (i, M)A (i, Ap)|PdA; = /[y(y_Aii’)]zdy
0
’ 1/2+Aii’
+ [ [a-yp-s)Pay (A6)
1/2

1
+ [ [a=pa—y+s)Pdy
1/2+4A;
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The first integral in Equation [A.6]is:

1/2
20A%, — 15A;4 + 3
— Ay 2 — it 1

The second integral in Equation[A.6|is:

Ve 16A2, — 80A%, + 160A3, — 120A2, + 30A
- — A Pdy = i’ i’ il i’ i’
[(1—y)(y — Aw)]"dy 180

1/2
Finally, the third integral in Equation[A.6]is:

; | —16A3, +200%, — 15A; +3

(- y)(1 -y + APty = 200 200
1/2+Aﬁ/
Hence:
/ L. —80A% +160A3, —80A2, +6 1 1 22
. " = il i’ i’ — — — s — N\
[l Apd(ps, ADPan, . 1L (ay-a3)
0

Plugging back calculated numerator and denominator into Equation [A.4} we obtain:

1/180 — (A — A? ? 6
E(ris —7i) (rin — i) [, ] _ / _< W iil) /
E[(ry —7:)?|¢i] 1/180

—1-30 (Aii/ — A%i,)z —1-30 <d(¢i/¢i’) — d* (¢, 'Pi’))z

corr{r;, ry} =

Then the expected similarity between industries i and i’ is:

pir = (Ut core{r, 1)) /2= 1= 15 (d(yi, 4) — (93, 9)) (A7)

A.1.3 Simulating the similarity distribution with noise.

We tested the validity of expression in Equation[A.7]for different noise-to-single levels. As

shown in Figure when the noise level is 0, we have two peaks, one at 1/16 (minimum

value) and 1 (maximum value). As the amount of noise increases, the peaks become closer

and closer, and finally merge to form a single peak around 0.5. This is expected because
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Figure A.1: Simulated similarity distributions for different noise levels.

the coefficients of correlating pure uniform noise would eventually take on a normal dis-
tribution as the noise term (which is normally distributed) becomes larger compared to
the signal term.

A.2 Additional Empirical Results

A.2.1 Additional tables for empirical results described in main text.
A.2.2 Cross validation

In order to calculate our density variables (measuring implied comparative advantage),
we exclude the location or industry being proxied from the weighted average. However,
other information regarding that location or that industry is also used in the calculations
of the similarity matrices. This may create some concerns regarding endogeneity. We
can address this issue by splitting our data into a training set and a testing set, a pro-
cess referred to as cross validation in the machine learning literature. In this approach,
we build the density indices using only information found in the training set. For the
product space, we estimate the similarity between industries using half of the locations.
Likewise, for the country space, we estimate the similarity between locations using half
of the industries. This approach leaves one quarter of the industry-location observations
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completely outside of the sets we used to build our similarity indices. Finally, we use
these similarity indices to build density indices for the testing set. Having built our out-
of-sample predictors, we can repeat the regressions using only the testing data.

Table applies this process to our international trade dataset. We find that the
explanatory power of our out-of-sample hybrid model is comparable to that of the in-
sample model (R? values are 62.2% and 55.7% for regressions of current export levels,
and 18.7% versus 18.5% for regressions of export growth). Furthermore, adding the in-
sample density terms to the out-of-sample dataset yields a negligible marginal contri-
bution to R?. Finally, combining the in-sample and out-of-sample predictors shows a
marginally higher R? but with drastically reduced significance, indicating a high degree
of co-linearity between the two types of variables. This suggests that endogeneity is not
driving our results.
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Table A.1: Cross-validating OLS regression of international exports and export growth
by industry-location.

) @) ®) 4) ) (6)

Observed Comparative Advantage Growth in exports (log)
RpCA of Exports (log), 1995

Product Space density 0.916%** 0.940***

out-of-sample, 1995 (log) (0.025) (0.065)

Country Space density 0.150*** 0.063

out-of-sample, 1995 (log) (0.038) (0.046)

Product Space density 0.830*** -0.035

in-sample, 1995 (log) (0.029) (0.066)

Country Space density 0.357%** 0.121**

in-sample, 1995 (log) (0.049) (0.053)

Residual Product Space density -0.012% -0.006***
out-of-sample, 1995 (0.002) (0.002)
Residual Country Space density -0.014% -0.009**
out-of-sample, 1995 (0.002) (0.004)
Residual Product Space density -0.012%*  -0.006***
in-sample, 1995 (0.002) (0.002)
Residual Country Space density -0.014**  -0.006
in-sample, 1995 (0.002) (0.003)
Observations 23,794 23,794 23,794 23,794 23,794 23,794
Adjusted R-squared 0.622 0.557 0.622 0.187 0.185 0.189

Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05,* p < 0.1

A.2.3 Product and Country Groups

We can also ask if this theoretical framework is more powerful within certain subsets of
industries or locations. We begin by calculating the similarities and densities as before,
using the full set of the 1995 export data. Next, we calculate the stage one and two regres-
sions as before (and with the base-year and radial growth controls), but restricted only
to the subsamples. We then report the resulting adjusted R2. That is, our results for the
wood products subsample measures how well our standard density variables can predict
export growth for goods in the wood products category alone.

Table shows the results. For product subsamples (based on the HS chapters), it
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Table A.2: Cross-sectional Regressions for Product and Country Groups.

Products Countries
HS Chapter Adjusted R? By Income Adjusted R®
Plastics & Rubbers 0.231 Upper middle income 0.212
Processed Metals 0.201 Low income 0.201
Electronics, Machinery 0.200 Lower middle income 0.186
& Equipment High income 0.137
Automotive, Planes, 0.193
Ships & Related
Agricultural Products 0.188 By region Adjusted R®
Medical, Consumer & Other 0.186 Europe & Central Asia 0.211
Chemicals & Related 0.185 South Asia 0.187
Processed Foodstuffs 0.179 Middle East & North Africa 0.183
Wood Products 0.171 East Asia & Pacific 0.180
Processed Stone & Glass 0.168 Sub-Saharan Africa 0.169
Extractives 0.152 Americas 0.167
Apparel & Textiles 0.140

appears that the most easily-explained categories are high-tech goods like electronics or
medical devices. The worst predictions are in the extractives and agricultural categories;
this makes sense, since shifts in these commodities may have more to do with geographic
luck (e.g., oilfield discoveries) than shared technological requirements.

Next, we can divide countries by income level (according to World Bank Group clas-
sifications): the groups are relatively close to each other, though low-income countries
are the most predictable under our framework (possibly because they are less likely to
shift their comparative advantage over the period). Finally, the results by region appear
to fall roughly in order of (non-oil) income (unlike looking at income directly); this would
make Latin America and the Caribbean somewhat less predictable than expected based

on income alone.

A.24 Using RCA

For each dataset, we build the similarity and density indices for measuring implied com-
parative advantage, as described above. Our first step is to normalize the export, employ-
ment and payroll data to focus on the observed comparative advantage of each industry-
location, and to facilitate comparison across location, industry and time. In most cases,

we use Balassa’s revealed comparative advantage (RCA) index (Balassa 1964) of location
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[ in industry i in year to:
Yitty/ i Vil g
Y Yire,/ i i Vi,

where y;; 4, is the export, employment or payroll value. We do not normalize the number

Ril,i’o = (AS)

of establishments. Note that for some industries, these R values can get quite high (in
the thousands); these rare cases can have an outsize impact on our similarity correlations.
For this reason, we cap RCA at 5 and establishments at 100 when building our similarity
indices (Equations 3.4| and 3.5| above); these caps correspond with the 97th to 99th per-
centile, depending on the dataset used@ These caps only directly affect the similarity
indices; the density index still uses uncapped RCA or establishments (weighted by the
similarity indices).

Table shows that both the PS and CS density terms are highly significant (p <
0.001), with coefficients very close to unity. As expected, the terms also explain a very
large fraction of the variance of the country-product export intensity, though the PS den-
sity generates a significantly higher R? than the CS density. When included in regres-
sions together, both terms are still highly significant (indicating some non-overlapping
information, as expected), and they explain nearly two thirds of the variation in export
intensity. However, compared to RpCA in Table {4}, we observe lower R? values overall.

Table A.3: OLS regression of international exports by industry-location, 1995

ey () (3)

Observed Comparative Advantage
RCA of Exports (log), 1995

Product Space density, 1995 (log)  0.981*** 0.826***
(0.020) (0.021)
Country Space density, 1995 (log) 0.741%* 0.231%*
(0.023) (0.014)
Observations 92,355 92,355 92,355
Adjusted R-squared 0.420 0.260 0.435

Country-clustered robust standard errors in parentheses.
Significance given as *** p < 0.01, ** p < 0.05,* p < 0.1

Table shows a set of growth regressions using our international export data. The

44. Our main results are robust to using uncapped RCA, or using logs (plus a constant) instead of a cap.
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dependent variable is the growth rate in the industry-location cell. The first three columns
in Table use as independent variable the error terms from the three regressions in
Table They show that the residual using both product space and country space den-
sities, as well as both of them combined are highly significant predictors of growth and
explain between 15 and 18 percent of the variance of growth between 1995 and 2016. The
residual terms for PS and CS density explain equal proportions of the variance; yet as be-
fore, the highest R? value comes from both terms together, suggesting that their residuals
also contain non-overlapping information. Both terms have the expected negative sign,
and are significant at p < 0.001.

We now look at the robustness of these equations with respect to the inclusion of other
relevant industry and location variables. Column 4 shows that these variables, on their
own, are significantly related to subsequent growth; however, Column 5 indicates that
they do not substantially affect the magnitude and significance of the density residuals,
and instead see their own significance decrease. Column 6 shows the effect of radial
growth and initial size variables on subsequent growth. As expected, they are all sta-
tistically significant and economically meaningful. Column 7 includes these variables
together with the density variables. The latter substantially maintain their economic and
statistical significance while they increase the R? relative to column 6 by over nine per-
centage points. Column 8 shows the baseline growth equation with both location and
industry fixed effects as well as the initial location-industry size. Column 9 reintroduces
the density variables and shows that their economic and statistical significance is undi-
minished.

Finally, in Table we show the results with density variables built with the least

similar industries or locations. Here, all the coefficients are negative as expected.
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Table A.4: OLS regression of export growth of an industry in a country (1995-2016)

(1) () (3) (4) (5) (6) 7) (8) ©)
Growth in exports (log), 1995-2016

Residual, Product -0.024*** -0.016*** -0.016*** -0.014*** -0.016***
Space Density, 1995 (0.001) (0.002) (0.002) (0.001) (0.001)
Residual, Country -0.020%*  -0.008*** -0.005** -0.006*** -0.009***
Space Density, 1995 (0.001)  (0.002) (0.002) (0.001) (0.001)
Industry-location -0.017***  -0.003**  -0.018*** -0.005*** -0.021*** -0.003***
exports, 1995 (log) (0.001)  (0.002)  (0.001)  (0.001)  (0.001)  (0.001)
Location total 0.016**  0.000  0.025***  (0.010***
1995 (log) (0.002)  (0.003)  (0.002)  (0.002)
Industry total 0.018**  0.006***  0.020***  0.008***
1995 (log) (0.001)  (0.002)  (0.001)  (0.001)
Mean location RCA 0.023**  0.010  0.017**  0.006
1995 (log) (0.007)  (0.007)  (0.005)  (0.005)
Radial industry growth 0.991***  0.998***
1995-2016 (0.018)  (0.018)
Radial location growth 1.116%**  1.087***
1995-2016 (0.113)  (0.110)
Observations 92,355 92,355 92,355 92,355 92,355 92,355 92,355 92,355 92,355
Adjusted R-squared 0.148 0.131 0.155 0.133 0.165 0.300 0.328 0.412 0.440
Industry FE Yes Yes
Location FE Yes Yes

Country-clustered robust standard errors in parentheses.

Significance given as *** p < 0.01, ** p < 0.05,* p < 0.1



Table A.5: Regressions with Least Similar Industries.

USA USA India Int’l

employment payroll employment exports

Cross-Section (Stage 1)

PS Density, (log) -0.601*** -0.274%** -0.646*** -0.902***
(0.010) (0.005) (0.073) (0.038)

CS Density (log) -0.535%** -0.123*** -0.549*** -0.644***
(0.027) (0.014) (0.017) (0.048)

Growth (Stage 2)

Residual, PS Density -0.037*** -0.034*** -0.255%** -0.016***
(0.000) (0.001) (0.008) (0.001)

Residual, CS Density -0.037*** -0.031%** -0.250*** -0.017***
(0.000) (0.001) (0.005) (0.001)

Note: We calculate the PS and CS densities using 34 least similar industries and 11 least similar countries,
respectively, instead of most similar ones. Each entry on this table represents the coefficient of a separate
regression with the corresponding PS density. In rows associated with Stage 1 replicates Table [d] with
different Product Space densities. The residual from Stage 1 regressions are used to predict the export
growth in Stage 2. Location-clustered robust standard errors in parentheses. Significance given as ***

p <0.01,*p <0.05*p <0.1

A.3 Modeling and Testing the Optimal Number of Comparators

In our Theory section, presented arguments for incorporating multiple comparators into
our measure of comparative advantage. However, we should also note that we expect
a tradeoff to arise. As we cast a wider net — e.g., moving from a location’s 10 most sim-
ilar locations to its 50 most similar locations — the additional comparators will become
increasingly dissimilar from the original location, diminishing the accuracy of the implied
comparative advantage measure. Thus, we would expect to see an inverted U-shaped re-
lationship between the number of comparators used (k) and the accuracy of our weighted
average.

We can explore this expectation using our simulation. Normally, the simulation had
fixed k (the number of comparators used to build the density variable) equal to v/N (recall
that we had set N = 100). We now relax this constraint, in order to see what happens as

k varies. Figure |A.2| presents the results, across three levels of noise. As expected, we find

53



Figure A.2: Observed vs. Implied Comparative Advantage for Different Noise Levels
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an inverted-U shaped relationship between k and the correlation between true and implied
comparative advantage: the correlation grows stronger as we include more comparators,
then quickly peaks around the lower-middle range, k = 8 to 35 (depending on the level of
noise). After that, adding more comparators gradually weakens the correlation. Reassur-
ingly, we can also note that R? values are relatively stable across the intermediate k range
(i.e., the curves are flat in the middle); this suggests that our results will not be sensitive to

small changes in k, as long as we stay in that lower-middle range (including our default

k=N setting).

Hypothesis A1l: When constructing the density variables, we can expect an
inverted U-shaped relationship between the number of comparators used (k)
and the explanatory power of the regressions; that is, using an intermediate
number of comparators (close to the geometric midpoint) should result in the

strongest relationship between implied and true comparative advantage.

Does this hypothesis bear out empirically? In the international trade data regressions
above, we constructed the PS and CS density measures using the top 34 most similar
industries (k = +/N;) and the top 11 most similar locations (k = /Nj), respectively. We

can now examine the impact of letting k vary.

Figure A.3: Changing Number of Comparators.
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Figures |A.3a| and [A.3b| show the results, looking at how the number of comparator

industries used to construct PS density affects its explanatory power, in stage one and
stage two regressions, respectively. In both cases, we find a relationship quite similar to
our simulations (Figure — see especially the high noise results): the R? values peak near
the geometric midpoint (at k=34 industries), then decrease as more comparator industries
are added. We also found a similar pattern for CS density (not shown), with R? peaking
near k = /N;. Thus, we can confirm that our density measures perform as expected
based on the theoretical model. Finally, we note that the R? values are fairly consistent in
the (logarithmic) middle range of k values (as expected); this verifies that our results are

robust to the choice of k value (within a wide intermediate range).
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B Motivation Based on Factor Content of Production

Our Ricardian-inspired model can essentially be seen as a reduced form of a more struc-
tural model that determines the productivity parameter of the labor inputs. One such
model is a factor-based explanation given by Heckscher-Ohlin and later extended by
Vanek (1968) where, implicitly, the labor productivity parameter is the consequence of
the availability of an unspecified list of other factors of production. Here, we show that
the essential results and reduced form equations of our approach can be derived from
this setting as well. With a factor-based interpretation, the comparative advantage of a
location in an industry can be inferred from its comparative advantage in industries that
have similar factor requirements or locations that have similar factor endowments. Inter-
estingly, our results can be derived without information regarding production functions

or factor endowments.

B.1 Relation to the Heckscher-Ohlin Model

This paper is related to the controversy surrounding the Leontief Paradox which has been
seen as a major handicap of the Hecksher-Ohlin trade models. For analytical tractability,
economic models are often written with few factors of production and are then extended
to see if the theorems derived in the simpler setting hold for an arbitrary number of fac-
tors. But to test theories empirically, it has been necessary to take a stand on the relevant
factors of production in the world. In his seminal papers, Leontief found evidence against
the Heckscher-Ohlin prediction that the basket of exports of a country should be intensive
in the relatively more abundant factors (Leontief 1953, (1956). He did so by decomposing
the factor content into two factors: capital and labor. Testing a multi-factor world required
an extension of the Heckscher-Ohlin model, derived by Vanek (1968).

The question then moved onto which factors to take into account when testing the
theory empirically. This opened up a long literature on the relative factor content of trade
(Antweiler and Trefler 2002; Bowen et al. |1987; Conway 2002; Davis et al. 1997, Davis
and Weinstein 2001; Deardorff1982; Debaere 2003; Hakura 2001; Helpman and Krugman
1985; Leamer [1980; Maskus and Nishioka 2009; Reimer 2006 Trefler (1993} 1995; Trefler
and Zhu 2000} 2010; Zhu and Trefler 2005). For example, Bowen et al. (1987) test it with 12
factors. Davis and Weinstein (2001) argue that HOV, “when modified to permit technical
differences, a breakdown in factor price equalization, the existence of nontraded goods,
and costs of trade, is consistent with data from ten OECD countries and a rest-of-world
aggregate (p.1423). Clearly, all of these modifications can be construed as involving other
factors, such as technological factors causing measured productivity differences, factors
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associated with geographic location and distance that affect transport cost, or factors that
go into making nontraded goods that are used in the production of traded goods. Trefler
and Zhu (2010) argue that there is a large class of different models that have the Vanek
factor content prediction meaning that a test of the factor content of trade is not a test of
any particular model.

In most cases, it was not possible to list all factors related to the production and the
tests were limited to the factors that can be measured. But these models have implications
about the world that need not take a stand on what are the relevant factors of the world
but can eschew that issue. The thought experiment above illustrates this idea. Products
that have similar production functions should tend to be co-exported by different coun-
tries with similar intensities. Countries with similar factor endowments should tend to
have similar export baskets. We can use these implications of the HOV model to estimate
the missing data in our thought experiment.

In the HOV tradition, the factor endowments of a location determine which indus-
tries will be present there. To set up this model, we will make following standard HOV

assumptions:
1. There is full employment of all factors in each location.
2. Factor prices are equalized across all locations.
3. All locations have access to the same technologies for all industries.

4. Production technologies exhibit constant returns to scale. Note that requirements 2-
4 imply that there would be a fixed optimal combination of factor inputs to produce
each output.

With these assumptions, we can write the full employment condition for all factors in

all locations as a linear function:
AY =F (B.1)

where

e A = Ny x N; is a matrix of factor inputs required to produce one unit of output in

each industry.
e Y = N; x Nj is a matrix where r; | represents location I’s output in industry i.

e [ = Ny X N is a matrix where Fy represents location I’s endowments of factor f.
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From an empirical point of view, we can only observe Y is the matrix of industry-
location outputs. Empirically, we do not observe either the factor requirements of each
industry A or factor endowments of each location F. In fact, we do not even have an
exhaustive list of all factors. Following Equation 2.4 of Feenstra (2003), it is convenient to
put the observable Y matrix on the left and leave the unobservable matrices on the right.
In order to achieve this, we assume that N; = Ny and the A matrix is invertible. We define
B=A"lsuchthatBx A = INf, where INf is the Ny x Ny identity matrix. The B matrix
indicates how much output is generated by the employment of each factor in an industry.
If we multiply both sides of Equation [B.1|by the B matrix, we obtain:

Y = BF (B.2)

What can be inferred about the B and F matrices given that we can only observe matrix
Y? Obviously, we will not be able to get information about individual elements of these
matrices. Yet, we will show that the similarities in the factor requirements of two indus-
tries or the similarity between the factor endowments of two locations can be obtained
from the information in the Y matrix. In subsections below, we first develop similarity
measures between the factor requirements of pairs of industries and between the factor

endowments of pairs of locations. This will prove instrumental for our purposes.

B.2 Similarities between the factor requirements of two industries

We will now derive a measure of input similarity of two industries, using Equation
We will assume that two industries, i and 7/, are similar if their associated row vectors in
the B matrix, namely B; and By, are similar. Each element of the Y matrix can be written

as:

rig = ZBifPfl (B3)
f

If we denote r; and B; as the row vectors of Y and B matrices, this equation can be rewrit-

ten in vector notation for all locations as:
ri = BZP (B4)

We will now calculate the covariance across all locations of a given industry. For this
we first need to calculate the average production of each industry. Given Equation
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average production of industry i can be calculated as:

~ Lt 2 Fy -
ri==—=)_B; =) BifF B.5
N ; N, ; 7Fy (B.5)

where ff is the average presence of factor f across all locations. Subtracting the last two
expressions from one another, we arrive at:

r; — 71' = BZ(F — ?) (B6)

where F isa N r X N; matrix that repeats in each row f the average endowment of the
world in that factor F. Using Equation we can relate the observed covariance of the
rows of the Y matrix to those of the unobserved B matrix:

(7’1' — 71')(1’1‘/ - 7i/)t = Bi(F - F)(P - F)th’ (B.7)

C = (F — F)(F — F)" matrix is the covariance matrix of rows of F matrix and, by definition,

it is a square and symmetric matrix. The C matrix can be written as:
C = uzu (B.8)

where U is a unitary matrix formed by the eigenvectors of C and X is a diagonal matrix

whose elements are eigenvalues of C. If we define B; = B;U, then we can write the right
hand side of Equation [B.7]as:

(7’1' — 71')(1’1-/ — 7i/)t = ;Bzfgf’faf (B,9)

where 0y is the f th (largest) eigenvalue of the covariance matrix, C. In one extreme, we
can assume 0y = ¢ for all f. This would happen, for instance, If all rows of the F matrix
are independently and identically distributed (i.i.d.). An interpretation of this assump-
tion is that locations accumulate factors separately and independently. This assumption
is unlikely to be true about the world but it simplifies our proof considerably; we give
evidence of the generality of this approach in our simulations. Using this assumption,
the right hand side becomes:

)_BiBjijoy = 0B;B; = oBUU'B; = 0BiB; (B.10)
7
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Dividing both sides of Equation by the standard deviation of r; and r;, we can
relate the correlation of the rows of the Y matrix to elements of the B matrix:

(ri=7)(rv —7) @
(TTZ' Uri/ Ur,- Uri/

corr{r;, 1y} = B;B!, (B.11)
where corr represents the Pearson correlation between vectors. Since this is a variable
with a range (—1,1) we renormalize it to build a similarity metric between 0 and 1.
Hence, we can estimate a measure of the similarity between the factor requirements of
two industries, i and '

¢ir = (14 corr{r;,ry})/2 (B.12)

Following Hausmann and Klinger (2006) and Hidalgo et al. (2007), we refer to this

industry-industry similarity matrix as the product space.

B.3 Similarities between factor endowments of two locations

To quantify the similarities between the factor endowments of two locations, we will
use an analogous approach. For two locations I and I’, we would like to measure the
similarity between their factor endowment vectors, F; and Fy. If we denote r; and F; as
the I column vectors of Y and F matrices respectively, the output of a location is related
to its factor endowments by:

r; = BF, (B.13)

Note that our calculations in Section 2.1.1 can be replicated here because if we take
the transposes of both sides in Equation we will arrive to an expression similar to
Equation Assuming that the columns of B matrix are independently and identically
distributed, we can write (akin to Equation B.T1):

corr{r,ry} = (rn —7)' (ry —7) ~ il F'Fy (B.14)

07, 0ry 07,0,y
where 7; is the average production of location /, 0y, is the standard deviation of r;, ¢’ is
the diagonal of the covariance matrix ((B — B)(B — B) ~ ¢'Iy,). We renormalize the
correlation to build a similarity metric between 0 and 1 by adding 1 and dividing by 2.
Hence, we can estimate a measure of the similarity between the factor endowments of

two locations, [ and !’ as:
(Pl[’ == (1 + COI'I'{VZ, 7‘1/}) /2 (Bl5)

where corr represents the Pearson correlation between vectors, r; and r;. Following Bahar
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et al. (2014), we refer to this location-location similarity matrix as the country space.

B.4 Scaling the matrices

Locations and industries differ greatly in size. It is often useful to normalize each location
and each industry using, for example, the revealed comparative advantage (Balassa 1964)
or location quotient or the relative per capita output of each industry in each location.
We can show that the correlations calculated over the normalized data have the same
information regarding the input similarity of industries or the endowment similarity of
locations. To show this, let us assume that we divide each industry by its relative size, s;,
and each location by its corresponding size, s;. We define the 7, A and F matrices such
that7;; = r;/ (sis1), gﬁ- = s;Af; and I?ﬂ = Ff1/s; then:

A7 =T (B.16)

All the previous results will follow in this re-normalized space.

Unfortunately, for the world as a whole we do not have the production data for each
industry in each country. The closest data source that we can readily obtain is data on
country exports. Here we will show how by using the normalized version of the export
dataset we can obtain a very good approximation to their production correlation coun-
terparts. Production is the sum of locally consumed and exported portions of outputs of
industries in that location. Mathematically, we can write this as:

rig = X5+ Cy (B.17)

where Xj; represents net exports and C;; represents local consumption. Subtracting the

mean output of the industry i in all locations we obtain:
ri—7i=(Xi — Xi) + (C;i = Cj) (B.18)

Assuming homothetic preferences worldwide, and normalizing each industry element
by its size, we can assume that C; = a. Therefore, correlations of columns of Y can be
inferred from correlations of columns of X. Similarly, we can also look at the column

vectors of Y and X:
n—7=(X—-X)+(C—-C) (B.19)

Again, assuming homothetic preferences worldwide, and normalizing each location by its
size then each country would consume the same share of products, implying that C; = C.
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Consequently, correlations between the columns of Y can be inferred from the correlations
between the columns of X.

B.5 Simulating the estimators on an HOV toy model

We test the effectiveness of our estimators of r;; by creating a surrogate dataset using a
toy model based on our HOV model. First, we verify that our industry similarity index
captures the distance between the factor requirements of industries, and that our location
similarity index captures the distance between the factor endowments of locations. Next,
we estimate how well our density measures predict the output of each industry-location.
We will then study the impact of different neighborhood filters at different levels of noise.

To create our surrogate dataset, we set the number of industries N; and the number of
locations N; both equal to 200. We also set the number of factors Ny equal to 200 to ensure
that the A matrix is invertible. We then populate the A and F matrices using a uniform
random distribution with values between zero and one. From these factor requirement
and endowment matrices, we can produce a 200 by 200 matrix of output values r; using
the equation Y = A~!F.

We can now explore whether the correlation between pairs of Y rows is related to the
correlation between pairs of A~! rows, meaning that the similarity of production or ex-
port intensity of products across all locations carries information about the similarity of
their factor requirements, as indicated by Equation We randomly select 5,000 A1
and F matrices and test the validity of this equation. We note that the random selec-
tion of both matrices simultaneously puts no inherent structure into these matrices and
in reality we expect to observe more structures matrices. Even in the random case, the
correlation between the actual and estimated numbers exhibit is 0.532 F 0.014. We also
test whether the correlation between pairs of columns of Y is related to the correlation be-
tween the corresponding columns of factor endowments F as suggested by Equation [B.14]
and obtained the same correlation coefficient. These results confirm that the correlations
of rows (columns) in the Y matrix are informative about the correlation between rows in
the A~! matrix (columns in the F matrix). When we put more structure into the model by
introducing higher order correlations in the A~! matrix or the F matrix, our correlation
coefficients increase significantly.

Next, we use our density index to estimate the intensity of output of each industry-
location cell. To do this, we estimate the product space density of industry i in location
[ by calculating the weighted average of the intensities of the k most similar products in
location [ with the weights being the similarity coefficients of each industry to industry
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i. We also calculate the country space density of industry i in location / by estimating the
weighted average of the intensity of industry i across the k most similar locations. Setting
k = 50 and iterating the simulation through 5,000 trials, we find that our hybrid density
model (i.e., a regression including both industry density and location density) is a power-
ful predictor of industry-location output (mean R? = 0.784, with 95% confidence interval
of [0.7150.853] across all simulations). However, we need not fix the neighborhood filter
at k = 50. In Figure 4, the uppermost line shows the effect of neighborhood size on the
R2. We see that the highest R? value is found at k = 4.

o
CD. -
o
g
o ©
€5
P
‘»
C
(0]
©
RS
S o
> 0
< o
o Error term size
None
Small (sd=1) =====
Medium (sd = 2) ===
c?.,_ | Large (Sd = 4) mm—
o T T T T T
0 50 100 150 200

Neighborhood size (k)

Figure 4: Simulation of association between underlying output and hybrid density model, by
size of neighborhood and noise level.

Finally, we can extend our simulation to examine the effect of noise in the observed
output. Beginning with the Y = A~!F used above, suppose that observed output, 7, is

affected by a random error term, ¢;;, with a normal distribution around a mean of zero:

?il =T + Ejl (B.ZO)

Because the error term is not correlated across location or industry, we can expect that
averaging our density index over several neighbors will reduce the effect of noise on our
results. That is, we can achieve a better estimate of the noise-free output r;; by averaging

the observed, noisy output 7;; of the most similar industries and locations, since the error
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in their output levels might cancel out. Our simulations confirm this hypothesis. We
test three levels of noise in the output. Given that the standard deviation of r; in our
surrogate data is 1.994 (median value from 5,000 trials) we use assign the noise term
standard deviations equal to 1, 2 and 4, which are approximately half, equal to and double
the standard deviation of r;;, respectively.

In Figure [ we see the effect of increasing the size of the error term on the correlation
between the density variables and the actual product intensity. First, we note that, as
expected, a larger error term does reduce the R? of our estimates, though the decline is
relatively small. Second, as noise increases, the R? peak tends to move toward mid-range
k values, suggesting that the tradeoff between focusing on more related industries and
averaging over a broader set of observations moves in favor of the latter. At the same
time, the relationship between k and R? levels out as noise increases. For example, with a
noise level of 2, the R? curve is fairly flat with predictive power roughly equal between k
values of 4 and 150. This result suggests that finding the optimal neighborhood size may

not be a first-order concern for our empirical tests.

B.6 Conclusions related to HOV

Ricardian models are reduced-form models, where other elements are subsumed in the
labor productivity parameters. Here, we show that we can motivate our approach also
with a model with an indeterminate number of factors of production. From a factor based
model point of view, the intensity of output in an industry-location cell should be related
to the adequacy of the match between the factor requirements of the industry and the
factor endowments of the location. Industries with similar factor requirements should be
similarly present across locations while similarly endowed locations should host a similar
suite of industries. Hence, the correlation between the intensity of presence of pairs of
industries across all locations is informative of the similarity of their factor requirements
while the correlation between output intensity of pairs of locations across all industries is

informative of the similarity in their factor endowments.
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