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Our current civilization is heavily dependent on nonrenewable
(exhaustible) resources. We use petroleum, coal, natural gas and
uranium-dependent nuclear power to create electricity, heat and
cool our homes, power our vehicles and manufacture our goods.
Products we use every day require minerals such as copper, gold,
silver, zinc and aluminum which we use up faster than the earth
can replenish them.
How long will such nonrenewable resources last? Are there optimal
ways to manage a dwindling supply?
We will illustrate how such questions can be approached using a
variety of models that can be successfully integrated into a range
of courses including college algebra, calculus of one and several
variables, differential equations, discrete dynamical systems,
computer simulation, and optimal control theory.









Limits To Growth, 1972
Beyond the Limits, 1992

Limits To Growth, the 30 Year Update, 2004



Graham Turner, A Comparison of the Limits to
Growth With Thirty Years of Reality, 2008

The observed historical data for 1970 - 2000
most closely matches the simulated results of
the Limits to Growth ”standard run” scenario

for almost all the outputs reported; this
scenario results in global collapse before the

middle of this century.
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What is a Nonrenewable
Resource?

Nonrenewable = Exhaustible



How To Compare Reserves
Units of Measurement

I Tons
I Pounds
I Troy Ounces
I Flasks
I Barrels
I Cubic Feet



Static Index



The Static Index s
How long will the resource last if we keep using it at

the current rate of consumption?

Assumptions:

I Known Reserve K of the Resource

I Constant rate C of Consumption

s = K
C



Example 1: Copper

Known Global Reserve: 340 million tons
Current Consumption Rate: 9.5 million tons per year
Static Index = 340

9.5 = 36 years

Example 2: Cobalt

Known Global Reserve: 4.8 billion pounds
Current Consumption Rate: 44 million pounds per year
Static Index = 4,800,000,000

9,500,000 = 110 years
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Exponential Index



Exponential Index
Measures How Long a
Resource Will Last if

Consumption Rate Grows
Continuously at a

Constant Percentage Rate



y(t) = Consumption Rate at time t
y(0) = C Current Consumption Rate

dy
dt = ry

Hence
Consumption Rate = Cert
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A(t) = Total Amount Consumed over a period of t
years

A(0) = 0
dA
dt = Cert

Hence
A(t) = C

r [e
rt − 1]



A(t) = Total Amount Consumed over a period of t
years

A(0) = 0
dA
dt = Cert

Hence
A(t) = C

r [e
rt − 1]



System of Differential
Equations
dy
dt = ry
dA
dt = y

y(0) = C ,A(0) = 0



Exponential Index T is time it will take to consume
the total known global reserve K :

A(T ) = K
C
r [e

rT − 1] = K
rK
C = erT − 1

erT = 1 + rK
C = 1 + rs

Hence
T = ln(1+rs)

r



Example 1: Copper

Static Index: 36 Years
Bureau of Mines: 2.7 percent growth rate in demand

Exponential Index is:
ln(36∗.027+1)

.027 = 25 Years

Example 2: Coal
Static Index: 2300 Years

Bureau of Mines: 4.1 percent growth rate in demand
Exponential Index is:

ln(2300∗.041+1)
.041 = 111 Years
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Comparing the Indices



A tabulation of exponential indices (in years) for different values of
s, the static index (also in years) and varying rates of growth r of

consumption.





Changes in
Known Global Reserves



Actual Total Reserve = n
Times Known Reserve

T =
ln(nsr+1)

r





Mineral Years Years Years Years
Lomborg Benchmark Diederen Latest

0% Growth 0% Growth 2% Growth 2.57% Growth

Iron Ore 215 78 46 42
Cobalt 320 91 57 46
Aluminum 230 137 63 58
Silver 15 23 10 18
Gold 18 21 13 16
Zinc 42 22 13 17
Tin 47 20 15 15
Copper 43 39 23 26
Nickel 117 52 28 32

Table : Years of Supply Left For Certain Minerals Based On Reserves and
Annual Production Using Data from USGS Mineral Commodity
Summaries, 20111



Price
Multiplier

Mineral 1989 2002 2008 2002 - 2008

Iron Ore $41.20 $23.50 $56.60 2.4

Cobalt $22,700 $15,500 $51,800 3.3

Aluminum $35.30 $18.40 $20.00 1.1

Silver $232,500 $134,000 $398,000 3.0

Gold $16,200,000 $9,060,000 $21,200,000 2.3

Zinc $2,380 $772 $1,480 1.9

Tin $15,100 $5,830 $18,900 3.2

Copper $3,800 $1,510 $5,330 3.5

Nickel $17,500 $6,130 $16,000 2.6

Table : Mineral Price Variation For Select Years; Prices in constant 1998
U.S. dollars/ton. From Mark Henderson, The Depletion Wall, 2012



A Simulation Model

Assume:

I per capita usage remains
constant

I Population grows logistically

I Recycling occurs



A STELLA Simulation Model



Some Details

I Resource: Copper

I Reseve: 340 million tons

I Current Population: 7 million

I per capita usage: 9.7 million/ 7 million

I Carrying Capacity: 10 million people

I Natural Growth Rate: 2 percent

I 2 percent of consumption is recycled



Population(t) = Population(t - dt) + (PopulationGrowth) * dt
INIT Population = 7
INFLOWS:
PopulationGrowth =
NaturalRate*Population*(1-Population/CarryingCapacity)
Reserve(t) = Reserve(t - dt) + (Recycling - ConsumptionRate) *
dt
INIT Reserve = 340
INFLOWS:
Recycling = .03 *ConsumptionRate
OUTFLOWS:
ConsumptionRate = (9.5/7) *Population
CarryingCapacity = 10
NaturalRate = 0.02





Harold Hotelling
1895-1973





”The Economics of Exhaustible Resources”
Journal of Political Economy, 1931

Contemplation of the worlds disappearing supplies of minerals,
forests, and other exhaustible assets had led to demands for

regulation of their exploitation. The feeling that these products are
now too cheap for the good of future generations, that they are

being selfishly exploited at too rapid a rate, and that in
consequence of their excessive cheapness they are being produced

and consumed wastefully has given rise to the conservation
movement. -



A Simple Optimal Control Model

Xt = amount of resource in period t
X0 = initial stock
Yt = ”harvest” level
F (Xt) = net growth rate (through recycling or exploration)
πt = π(Xt ,Yt) = Net benefits in period t
δ = discount rate
p = 1

1+δ = discount factor

Problem: Find the harvest schedule Yt which will
Maximize π =

∑T
t=0 p

tπ(Xt ,Yt)
Subject to Xt+1 − Xt = F (Xt)− Yt
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Form Lagrangian
L =

∑T
t=0 p

t{π(Xt ,Yt) + pλ[Xt + F (Xt)− Yt − Xt+1]}

Necessary Conditions For Maximum:
∂L
∂Yt

= pt{∂π(Xt ,Yt)
∂Yt

− pλt+1} = 0
∂L
∂Xt

= pt{∂π(Xt ,Yt)
∂Xt

+ pλt+1[1 + F ′(Xt)]} − ptλt = 0
∂L

∂[pλt+1] = pt{Xt + F (xt)− Yt − Xt+1} = 0
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More Complex Models

I Demand Functions

I Reserve-Dependent Costs

I Pollutants (Degradable and Nondegradable)

I Recycling

I Risky Development



Cambridge University Press; 2010
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A model assuming that a sufficiently high price, p, a substitute will
become available.

Example: Solar energy might substitute for fossil fuel

p(t) = price of the resource at time t
q = f (p) is the demand function: the quantity demanded

at a price p
p̄ = price at which substitute completely replaces the resource.
c = G (q) is the cost function

Q(t) = the available stock or reserve of the resource at time t,
Q(0) = Q0 > 0

r = social discount rate; r > 0
T = the horizon time: the latest time at which the substitute

will become available regardless of the price of the natural
resource, T > 0



Assumptions
Demand function:

I f ′ ≤ 0

I f (p) > 0 for p < p̄

I f (p) = 0 for p ≥ p̄



A Typical Demand Function



Assumptions
Cost function G (q) (q is demand)

I G (0) = 0

I G (q) > 0 for q > 0

I G ′ > 0 and G” ≥ 0

I G ′(0) < p (producers can make positive profit at a price p
below p̄ )



Let c = G (q) = G (f (p)) = g(p)
Note: g(p) > 0 for p < p̄ and g(p) = 0 for p ≥ p̄
Let π(p) = pf (p)− g(p) denote the profit function of the
producers.
π is called producers’ surplus
Let p be the smallest price at which π is nonnegative.
We assume π(p) is concave in interval [p, p̄]
Consumer Surplus:

ψ(p) =

∫ p̄

p
f (y)dy



Maximize

J =

∫ T

0
[ψ(p) + π(p)]e−rtdt

subject to

Q ′(t) = −f (p),Q(0) = Q0,Q(T ) ≥ 0

and

p ∈ [p, p̄]


