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Non-Renewable Resources
(Lynch book, Chapter 1, with additions)

If the resource is not sustainable, 
we must at least think of the future in some way…

The major questions facing us when dealing with exhaustible resources:

1. Are there any renewable substitutes?  Or, do we have the capability of 
recycling what we have previously extracted?

2. How can we stretch the extraction over time in a way that is fair to future 
generations?

Anticipated answers: - Price equity over time,
- Stretch for the long run or run out no earlier than 

when a substitute becomes available.

coal oil natural gas
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We do extract a variety of non-renewable (sterile) resources,
and the annual amount of extraction is increasing (~2%/year).

slope = 1/30 years

Rate of extraction (vertical) seems limited by amount of reserves (horizontal).
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Note that                      does not mean exhaustion in 30 years.

This is because, as exploitation reduces the remaining stock, 
the rate of extraction diminishes, too.

Mathematically:

30 years

S
X 

For             with T = 30 years, 

the resource is being depleted according to 

S
X

T


/
0

t TdS S
X S S e

dt T
     

At 30 years (t = T), the remaining amount is

1
0 0 0(30 years) 0.368 40% ofS S e S S  

Thus, at all times, it remains 40% of what was still there 30 years previously.

Market price is also related to scarcity (dilution in environment).
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←  Note the concern 
for future generations 
well before the word 
Sustainability was in 
use.

Hotelling’s Rule
(transposed in notation used in Lynch’s book)

X(t) = extraction rate (in tonnes per year)
P(t) = market price (in $/tonne)
r = discount rate,   dt = 1 year

at time t

Rent (= money earned) at time t in the future, discounted to put all years 
on comparable level, is

( ) ( )
( )

(1 )t

P t X t dt
R t

r




Hotelling showed that the socially optimal rate of extraction is the one for 
which the price increases at the discount rate:

0( ) (1 )tP t P r 

In that case, the rent is the same across years per unit extracted:

0( ) ( )R t P X t dt

Question: How to make this equitable across generations?

It can be shown that it also maximizes the total rent over the entire extraction time.

( )X t dt  amount extracted in year t
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Hotelling’s Rule is valid only under the following restrictions:

• No technological development over the years,

• Fixed stock of the exhaustible resource (no new discoveries),

• Constant market conditions,

• Totally competitive market (actors adjust their production until 
their marginal production cost + their opportunity cost* reaches 
the market price).

* Opportunity cost = loss of future earning due to extracting that portion today,
also called “scarcity rent”.

Obviously, many events and disruptions occur at various times, 
sometimes quite frequently (ex. volatility of oil price), but we may 
assume that Hotelling’s Rule holds during the stretches between 
consecutive events. 

What is meant by the word “Reserves”.

Distinction between Reserves and Resource Base:
Resource Base = All that there ever was minus what has been exploited to date
Reserves = Part of Resource Base that has been discovered 

and established as economically viable for extraction.
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Well… Let’s admit that the situation is a little more complicated.

X X

Fracking 
technology

US oil production in lower 48 states

Simple Modeling

Variables: S(t) = stock of the resource remaining
X(t) = extraction rate
P(t) = market price per unit production

Mass balance:                    (resource dwindles as it is being extracted)

Price-sensitive demand:                  (high price, low demand, low extraction)

Price evolution:                 (Hotelling’s Rule with continuous time, as default choice)

X
dt

dS


P

a
X 

rP
dt

dP


 

0

0

0
0

( )

( )

( ) 1

rt

rt

rt

dP
rP P t P e

dt
a a

X X t e
P P

dS a
X S t S e

dt rP


 








  

  

     

at time t

(Lynch, Section 1.1.1)

Solution:
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If you don’t like using differential equations, 
use discrete math on an Excel spreadsheet.

nnn
n

nnn XSS
P

a
XPrP   11 ,,)1( 

 0
0 0

( ) , ( ) 1r t r ta a
X t e S t S e

P rP
 

 
    

We note that, depending on the rate of extraction (and thus on the market price), 
the amount of resources can reach zero in a finite time or level off at a residual 
positive value.

Plotting of solution:

Hitting zero in finite time

Residual resource left untouched
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If end value is < 0, it means that the resource is exhausted in a finite time T

If end value is > 0, it means that there is a leftover that will never be extracted:

 0 0
0 0

( ) 1 ( ) 0  or 0?r ta a
S t S e S S

rP rP


  
        

1

0 0
0 0

( ) 0
a a

S S P
rP rS



 
 

       
 

0
0

0 Sr
P

a
X  

Terminal condition

 0
0 0 0

1
( ) 1 0 lnrTa a

S T S e T
rP r a rP S


   

  
        

0
0

( )
a

S S
rP

  

The optimal use of the resource is
because, if so, we use it all across all generations.

This occurs for the initial production rate
1

30 years
r 

Revenue

Rate of revenue = unit price times the number of units produced:

Cumulated over time, with proper discounting:

Value:

P X

0

rtR e P X dt
  

0 0 00 0

max 0 0

( )rtR e P X dt P X dt P S S

R P S

 
   



 

This is called the Rent.

(initial price times total amount extracted)

when nothing left at the end

0P
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Of course, it is hard to achieve this optimal situation because
1. We don’t know how much is there to begin with, and
2. We don’t control the price; the market does.

So, we very much act in the dark.

In many situations, an external pressure not related to near exhaustion 
comes to change the dynamics.

Examples:
- Coal extraction much decreased when petroleum became available; 

it was just a matter of convenience 
(a liquid is more convenient than a solid);

- We are about to switch away from petroleum not because we are 
running out but because of the climate impact of carbon dioxide.

- We may be running of rare-earth minerals (needed for electronics) 
but, if we do, we can switch from mining new minerals to recycling 
our old electronics.

Effect of a maximum price: (Lynch, Section 1.1.2)

Consider the case when a high price causes buyers to switch to an alternative.

Extraction X ceases when the price P reaches a maximum Pmax , which is the 
price of the alternative.

Assume that this maximum price is known all along.  
Thus, to optimize rent (income), producers seek to exhaust the resource 
by the time T when the price P reaches the maximum Pmax:

 
max 0 0 max

0
0

0 ( ) 1

rT rT

rT

P P e P P e

a
S T S e

rP

  








  

   
0 max

0 max

1

1
ln 1

rTrS P
e

a

r S P
T

r a











  

 
  

 

0 0
0 max max

rTa a a
X e rS

P P P


     

Corresponding initial extraction rate: 
Hence, we extract 
more now if we know 
that we will have to 
stop at some point.



10

The preceding expressions were under the assumption that the maximum 
price was known since the beginning of the exploitation.

Should this not be the case, that is, if an alternative emerges at one point 
along the way, then simply consider the current values as new starting values.

Thus,
max

1

max

max1
ln 1

a
X rS

P

a
P

a
rS

P

rS P
T

r a
















 

 
 
 
  
 

 
  

 

adjusted optimal rate of extraction

time remaining

Under these conditions, the rent is:

0000000
)0( SPSPdtXPdtXPeR

TrtT
  

unchanged since the entire resource is still produced equitably across the 
now-finite number of generations (until time T ).

adjusted current price

End of Part 1
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Consumer’s Surplus:  (Lynch, pages 7-8)

The selling price is P, but consumers may value the resource at value V, 
higher than P : V > P, up to Pmax the price of an alternative.

Now, V would be set by a supply-demand curve, as on the graph. 

The consumer pays P but 
was ready to pay up to Pmax.  
Thus, the consumer’s surplus 
is Pmax – P at any given time.

The cumulated surplus is 
obtained by integration of 
sale over price (yellow area).

Effect of discovery (Lynch, Section 1.3)

Imagine that the market prompts an effort to discover additional reserves.

Denote the rate of discovery by D and the remaining still undiscovered 
resources by U .  The pertinent mass-conservation equations are:

D
dt

dU

DX
dt

dS



 These equations state that D takes 
away from U and adds to S, the 
known amount resource 
(zero-sum because of no creation).

Now, we need to say what controls the rate of discovery.  
The reasoning is that it is easier to discover the resource if there is still more 
of it “out there.”  Thus, the rate D may be taken proportional to the 
undiscovered amount U:

The coefficient  represents the ease (high ) or difficulty (low ) 
with which new discoveries occur for a given undiscovered stock.  It is a 
function of existing technology and proclivity to invest in a discovery effort.

UD 
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UD 

teUUUD
dt

dU   0

With             , the remaining undiscovered amount U is dwindling according to:

dD
D U D

dt
    Since

tracking D(t) over time permits the estimation of the parameter .

Obviously, U0 remains a major unknown because we still don’t know 
how much was “out there” as we are still in the process of discovering 
some of it.

0
tD U U e    To                              , we now add the remaining dynamics with the existence 

of a maximum price at which production will cease:

 
maxP

a
Sr

P

a
X 

teU
P

a
Sr

dt

dS
DX

dt

dS 
   0

max

(...) (...) (...)t r tS e e    

The algebra to obtain the analytical solution is very cumbersome, 
but clearly the solution should look like:

positive contribution due to 
discovery, but slowing down 
over time as it gets harder to 
discover more

negative contribution due to 
gradual exhaustion caused by 
extraction, like in basic model
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For all cases:
r = 0.10

 = 0.5
No price limit

S0 = 10
U0 = 10
 = 0.10

peak production at t = 5.75
with Smax = 11.25

S0 = 10
U0 = 50
 = 0.10

peak production at t = 11.96
with Smax = 30.26

Same as above but with 
slower rate of discovery 
 = 0.04

No peak production

“peak oil”

Production with 
discovery and effort
(Lynch, Section 1.3.4)

Effort of exploration E is modeled as


dt

dE

Coefficient of 
proportionality

Profit earned on 
production

ED (...)(...) 
Rate of 
discovery

Effort

Rationale: 
Income attracts effort to discover

*

E
D U

E
 Discovery D proportional 

to effort E
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Varying Demand (Lynch, Section 1.1.4)

We now consider the fact that the production rate X may be a function 
of more than only price P.  In particular, it may also depend on customer 
factors unrelated to price, such as availability of alternatives, changing 
tastes, or new technologies (ex. less need for gasoline when electric 
cars get on the market).

The way to model this is to include a time variation in the numerator of 
the expression linking price to production:

With price as before:

P

ta
X

)(


trrt e
P

ta
XePP 




0
0

)(

An interesting case is that of linear growth in demand (Lynch, pages 12-14).

In this case, we take:

The mathematics give sequentially:

  trtrtr

tr

teaeaa
Pr

StSe
P

taa
X

dt

dS

e
P

taa
tX























110
0

0
0

10

0

10

1)(
1

)(

)(

taata 10)( 

The interesting aspect is the initial behavior of the production:

  tre
P

taara

dt

dX 


 


0

101

X
dt

dX
ara

X
dt

dX
ara

t

t

,0

,0

0
01

0
01











 grows initially

always decays
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Costly Production  (Lynch, Section 1.2.2)

If we denote the cost of extraction per unit produced as C, 
then the profit to the producer is P – C per unit produced.

The rent is likewise adjusted downward:

Generally, the cost of extraction is related to the abundance of the 
resource: The more there is (larger S), the easier and cheaper it is to 
extract some of it, and the cost increases as the resource becomes 
more scarce (C when S).  Thus, C = C(S), a decreasing function.

 
0

( )
t r tR t e P C X dt 

Consider a time interval t, such as one quarter (3 months) or one year.
The present contribution to rent plus that of the next consecutive period t is:

   
tX

tr

SCP
tXSCPRRR 




 2
22

1112112 1

)(
)(

The producer may ask: 
What if I anticipate a small portion X of production from period 2 to period 1?

To answer this question, we consider the change in the above income when

1 1 2 2 2 2

2 2

, ,

                                                         ( ) ( )

X X X X X X S S X t

dC
C S C S X t

dS

      

   

Some algebra shows that the change to the two-period rent above is:

    2
2

22
1112 )(

1

1

1

)(
)( tXXX

dS

dC

tr
tX

tr

SCP
tXSCPR 








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The point of indifference corresponds to no net change in rent:

   
0)(

1

1

1

)(
)(

0

2
22

11

12












tXX
dS

dC

trtr

SCP
SCP

R Higher-order differential

Re-arranging, we obtain sequentially:

   

      211
1122

21122

)(
)()(

)()1()(

X
dS

dC
SCPr

t

SCPSCP

tX
dS

dC
SCPtrSCP








In the limit of a short time interval:

    X
dS

dC
SCPr

dt

SCPd



)(

)(

Time discounting (inflation)

called “stock” effect

Finally, recalling the mass balance

we have

and the point of indifference corresponds to:

This is the decision rule under costly production.

We note that the cost of production C slows down the rate of price increase.

dt

dC

dt

dS

dS

dC
X

dS

dC


X
dt

dS


   

 )(

)(
)(

SCPr
dt

dP
dt

dC
SCPr

dt

SCPd





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Closing remarks
(Lynch, page 42)

The only possible fate of a non-renewable resource is EXHAUSTION.

But exhaustion may take three different forms:

1. Physical exhaustion – We just run out of the resource.

2. Economic exhaustion – The resource can no longer be produced economically.

3. Political exhaustion – Extraction of the resource has been made illegal.

More closing remarks for Chapter 1
(Lynch, page 32)

A sterile resource, like petroleum, has only one fate, exhaustion.

Time to exhaustion is likely to be finite (as when there is a maximum 
price above which demand vanishes).

Implication for sustainability:

- A substitute needs to be found during the extraction process before 
exhaustion.

- Some of the accumulated income (rent) needs to be invested in the 
search for the alternative, or one has to learn “how to do without.”  
Either way, there is a learning curve.

- The cumulative learning ought to be the sustainable aspect.

Ultimately, however, substitution alone is inadequate if it progresses 
through a series of finite resources exhaustions.  
There must be a “Sustainable Finale”!


