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ABSTRACT

Symbolic Semantic Memory in Transformer Language Models

Robert Kenneth Morain
Department of Computer Science, BYU

Master of Science

This paper demonstrates how transformer language models can be improved by giving
them access to relevant structured data extracted from a knowledge base. The knowledge
base preparation process and modifications to transformer models are explained. We evaluate
these methods on language modeling and question answering tasks. These results show that
even simple additional knowledge augmentation leads to a reduction in validation loss by
73%. These methods also significantly outperform common ways of improving language
models such as increasing the model size or adding more data.
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Symbolic Semantic Memory in Transformer Language Models

Robert Morain , Kenneth Vargas and Dan Ventura
Computer Science Department

Brigham Young University
rmorain@byu.edu, kenneth.vargas.rivas@gmail.com, ventura@cs.byu.edu

Abstract

This paper demonstrates how transformer language
models can be improved by giving them access to
relevant structured data extracted from a knowledge
base. The knowledge base preparation process and
modifications to transformer models are explained.
We evaluate these methods on language modeling
and question answering tasks. These results show
that even simple additional knowledge augmenta-
tion leads to a reduction in validation loss by 73%.
These methods also significantly outperform com-
mon ways of improving language models such as
increasing the model size or adding more data.

1 Introduction
Currently, transformer language models are the gold stan-
dard 1 for most language tasks. The strength of these models
comes from their extensive pretraining on statistical language
modeling tasks.

In recent years, many improvements have been made to
transformer language models. These improvements include
adding layers and parameters [Brown et al., 2020] as well
as making changes to the model architecture [Devlin et al.,
2019]. There has also been work put into prompt engineering
[Zhang et al., 2021] to help guide the model to produce some
desired output. However, this work demonstrates a different
approach aimed to improve a transformer language model’s
ability to access semantic information.

One problem with traditional self-supervised language
modeling tasks is that semantic knowledge is only tangen-
tially acquired. To gain more semantic knowledge, these
models typically become larger and are trained with more
data. It has been argued elsewhere that these models have no
way of reasoning about the knowledge they have acquired and
instead are “haphazardly stitching together sequences of lin-
guistic forms...observed in...vast training data, according to
probabilistic information about how they combine, but with-
out any reference to meaning” [Bender et al., 2021]. This
work designs simple experiments to demonstrate how lan-

1The top 10 models on SuperGLUE’s [2019] leaderboard are all
transformer-based models

guage models can be improved by giving them access to addi-
tional structured data rather than strictly relying on statistics.

To proceed, we draw inspiration from research on seman-
tic memory as a cognitive process [Tulving, 1972]. Un-
like transformer models, humans rely on their semantic and
episodic memory to understand language and decide how to
respond. While there are connectionist and symbolic mod-
els for semantic memory [Jones et al., 2015], this work
loosely draws inspiration from the symbolic approach. Also,
since transformers are connectionist models already, using a
symbolic model of semantic memory allows us to create a
connectionist-symbolic hybrid which has proven to be effec-
tive on certain symbolic tasks [Mao et al., 2019].

Another significant influence on this work comes from
Daniel Kahneman’s research on reasoning and decision mak-
ing. Kahneman proposes a cognitive model which distin-
guishes between System 1 and System 2 thinking [Kahne-
man, 2011]. While System 1 is fast, instinctive, and emo-
tional, System 2 is slower, more deliberative, and more log-
ical. The base transformer model can loosely be compared
to Kahneman’s System 1 fast thinking, while knowledge base
integration resembles the slower System 2. Similar to how
the SOAR cognitive architecture attempts to replicate vari-
ous cognitive processes, a transformer-knowledge base hy-
brid seems appropriate in this case [Laird, 2012].

The idea of combining connectionist and symbolic mod-
els has recently become more popular. Bosselut et al. in-
troduced Commonsense Transformers (COMET) [2019], a
GPT-2 model trained on ATOMIC [Sap et al., 2019] and Con-
ceptNet [Speer et al., 2017] to automatically construct knowl-
edge graphs. Miller et al. introduces key-value memory
networks [2016] which are trained on structured data from
Wikipedia to improve performance on question answering
tasks. The CLEVR dataset [Johnson et al., 2017] is a vi-
sual question answering dataset specifically designed to test a
model’s reasoning abilities by minimizing biases that models
can exploit. This work shares the goal of improving a model’s
reasoning abilities through symbolic methods.

The contributions of this paper include:

• Methods for augmenting language datasets with knowl-
edge base data.

• Modification to GPT-2’s causal mask to attend to addi-
tional knowledge data.
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Figure 1: For each sequence in a language dataset, spaCy is used
to identify the entities. Based on the entity selection criteria, a sin-
gle entity is used to query the Wikidata database to acquire a set of
knowledge statements. These statements are then filtered based on
their relevance to the corresponding sequence. Lastly, the knowl-
edge for each sequence is concatenated to the end of the original
text sequence.

• Demonstrating the effectiveness of knowledge aug-
mented data on language modeling, which reduces loss
by 73%.

• Demonstrating the effectiveness of knowledge aug-
mented data on a multiple-choice question answering
task.

2 Methods
In order to test the efficacy of providing semantic knowledge
to a transformer language model, there must be a way to aug-
ment the standard linguistic training data with the semantic
knowledge. The basic steps for doing so are outlined be-
low. While this process is general to any dataset or knowledge
base, a description of the specific implementation details are
provided. Details regarding the creation of an original ques-
tion answering dataset are provided as well.

2.1 Augmented Dataset Creation
The augmented dataset creation process is composed of a
knowledge base, an entity selection algorithm, a knowledge
extraction process, and a merge between the extracted knowl-
edge and the original dataset. Figure 1 shows how these sys-
tems work together to select the supplementary data to in-
clude in the augmented dataset. For each sequence in the
dataset, a set of entities is extracted from the sequence and fil-
tered based on the entity selection algorithm to a single entity.
This entity is then used to query the knowledge base to return
a set of knowledge statements. The knowledge statements are
filtered and the remaining statements are concatenated to the
end of the original text sequence. Once the entire dataset is

augmented, it is ready to be used for training the knowledge
transformer model.

Dataset: The WikiText dataset [Merity et al., 2017] is used
to train each of the models. After removing rows with no enti-
ties in the knowledge base, this dataset consists of a split with
628,965 (99.8%) training rows and 1,320 (0.2%) validation
rows2. The WikiText language modeling dataset is a collec-
tion of over 100 million tokens extracted from the set of veri-
fied Good and Featured articles on Wikipedia. It makes sense
to use this dataset for fine-tuning GPT-2 because WebText ex-
cludes Wikipedia articles from it’s training dataset [Radford
et al., 2019].

Knowledge base: Wikidata [Vrande, 2014] is a free and
open knowledge base of structured [Cafarella et al., 2011]
Wikimedia data. While there is an API to access the offi-
cial version hosted by Wikidata, this approach proves to be
too slow to be used on large datasets. To reduce the time
of each Wikidata query, a downloaded JSON data dump of
the knowledge base can be converted into a SQLite database.
While Wikidata supports many languages, only the English
entities and properties are used.

In Wikidata, items refer to entities in the knowledge base,
including people, topics, concepts, and objects. For example,
the “1988 Summer Olympics”, “love”, “Elvis Presley”, and
“gorilla” are all items in Wikidata. A statement is defined
as a relation between an item and a value by way of a prop-
erty. Statements follow the resource description framework
(subject-predicate-object) [Miller, 1998]. Generally, values
are other items but can also be unknown or quantitative val-
ues.

Entity Selection: The first step in the entity selection pro-
cess is to identify words in the sequence that may have items
in the knowledge base. This problem can be framed as a
traditional named-entity recognition task to identify prede-
fined categories such as person names, organizations, loca-
tions, medical codes, time expressions, quantities, monetary
values, percentages, etc. For example, with the sentence “Ap-
ple is looking at buying U.K. startup for $1 billion”, Apple,
U.K., and $1 billion are considered entities. While there are
many methods for named-entity recognition, spaCy3 is used
to extract the named-entities in each sequence.

Once a set of entities are identified in a text sequence, a
single entity is included in the augmented dataset based on
the entity selection criteria. In these experiments, an entity’s
average attention score is determined by inputting a sequence
of text into a pretrained GPT-2 small model and returning the
attention scores for each model layer. These attention scores
are then averaged across layers, heads, sequence, and entity
tokens—resulting in a single attention score for each entity
in the sequence. These entities are then sorted by their aver-
age attention score to easily determine the maximum, median,
and minimum attention-score entity. We interpret this order-
ing of entities to indicate their relative importance as deter-
mined by GPT-2 in the context of the input sequence. Figure
2 provides more details about how these attention scores are

2These are standard splits from Huggingface’s datasets library at
https://huggingface.co/datasets/wikitext

3https://spacy.io/
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Figure 2: To compute an entity-specific score: a sequence is input to
a pretrained GPT-2 model and the token attention scores are returned
in an n× n× h tensor, where n is the sequence length and h is the
number of heads; the scores of each entity are isolated by selecting
only the rows corresponding to the tokens of the entity in question;
the scores are averaged across heads, the sequence length, and the
entity tokens. The result is a single average attention score value for
each entity in the sequence. This allows the entities to be sorted by
their average attention score, which is representative of their relative
importance.

calculated.
Knowledge Extraction: In general, the knowledge extrac-

tion process consists of querying the knowledge base for in-
formation and then filtering that information based on the in-
put sequence. For these experiments, all of the knowledge
is filtered out except for the description of the entity. This
information is recorded in JSON format like so: {label : de-
scription}.

While this knowledge extraction process is simple, the pur-
pose of this work is not to optimally select the best possible
knowledge for a given input sequence. For now, it is suffi-
cient to show that even naive semantic data can improve per-
formance on language tasks. The task of developing more
sophisticated knowledge extraction methods is left to future
work.

Merge: The augmentation process is complete once the
extracted knowledge is combined with the original dataset.
This is done by concatenating the knowledge text to the end
of the input text.

2.2 Knowledge Question Answering Dataset
In order to evaluate whether knowledge augmentation im-
proves a model’s knowledge of the real world, models are
trained on an original question answering dataset. This
dataset is created by generating multiple-choice questions of
the form shown in Table 1. The data for these questions
comes directly from the Wikidata knowledge base, which is
queried to get descriptions of an entity. One question is gener-
ated for each entity extracted from the WikiText dataset. The
distractor choices are randomly selected from other known
entities.

The dataset is augmented by adding knowledge tokens be-
tween the question and the choices. For this dataset, the added
knowledge is the description of the entity in the question.
Since the correct answer and the added knowledge are ex-
actly the same, a certain percentage of the knowledge tokens
are randomly masked. This is done to determine the limit to

which noisy or incomplete knowledge data continues to prove
useful.

3 Experiments
The knowledge augmentation process is evaluated on two
tasks: language modeling and multiple-choice question an-
swering. Since a language model is often indirectly asked to
exploit the semantic knowledge it has acquired through pre-
training, it stands to reason that language modeling would
benefit from adding supplementary knowledge to the dataset.
On the other hand, multiple-choice question answering di-
rectly tests a model’s real-world knowledge.

3.1 Knowledge-augmented Language Modeling
The term knowledge-augmented language modeling refers to
performing a language modeling task with additional seman-
tic knowledge added to the dataset. While modifications to a
model’s architecture are not always necessary, some changes
may be required to allow the model to exploit this added
knowledge.

Knowledge Model
GPT-2 is used as the base model for causal language model-
ing on each knowledge augmented dataset. The causal mask
of Huggingface’s [Wolf et al., 2019] implementation of the
standard GPT-2 architecture must be modified to allow the
model to attend to the knowledge tokens at the end of the
input (see Figure 3).

While the text tokens are masked normally, the knowledge
tokens are always attended to. One could argue that this gives
an unfair advantage to the knowledge model over the base-
line GPT-2 model because the added tokens bias the model
early on in the sequence. First of all, we argue that this bias
is a good thing because it more closely resembles how a hu-
man might rely on their semantic memory while reading or
listening. In spite of this, these results include experiments
with a smaller, filtered dataset where additional contiguous
text populates the knowledge tokens buffer (a sliding window
over the entire dataset is not used). This filtered dataset only
consists of rows that have excess knowledge tokens (333,753
train, 877 validation). Comparing this dataset with an identi-
cal dataset where knowledge tokens fill considers the benefit
of added semantic knowledge vs. the benefit of additional
textual context.

Baseline
The baseline for this experiment is an unmodified pretrained
GPT-2 small model fine-tuned on the WikiText dataset. This
is sufficient to observe the effect that additional knowledge
has on language modeling. All of the models are trained using
a batch size of 32, a learning rate of 1e−4, and the ADAM
optimizer [Kingma and Ba, 2015]. The early stopping criteria
terminates training after three epochs of no improvement to
the validation loss. The length of the text sequence is limited
to 128 tokens while leaving a 64 token buffer available for
knowledge tokens.

Entity Selection Criteria
These experiments focus on three primary variations of en-
tity selection. As discussed previously, the average attention

4



Question Correct Answer Distractor 1 Distractor 2 Distractor 3
What is {Entity 1 label}? {Entity 1 description} {Entity 2 description} {Entity 3 description} {Entity 4 description}
What is Stephen Curry? American basketball player star in the constellation Ophiuchus scientific article published on 01 January 1980 species of crustaceans

Table 1: This question answering dataset is generated using the features shown in the table columns. Distractor choices are randomly selected
from other entities seen in the WikiText dataset.

Figure 3: Modifications to the causal mask of Huggingface’s GPT-2
to allow the text tokens to attend to knowledge tokens for each pre-
diction. Recall that attention scores are calculated from each token
to every token in the sequence, resulting in an n × n attention ma-
trix. The text tokens are masked normally, with one less token being
masked for each row until all but one of the tokens is unmasked (up-
per left quadrant). In the upper right quadrant, all of the knowledge
tokens are unmasked to allow each unmasked text token to attend
to the knowledge tokens. Since the model does not predict on the
knowledge tokens, all tokens are masked on the lower half of the
causal mask.

score for each entity is calculated using the attention scores
output by a pretrained GPT-2 model (Figure 2). Given a
list of entities ordered by attention score, the performance
when using the maximum-, median-, or minimum-attention-
score as the entity selection criterion is compared. Based on
which entity is selected, the corresponding description is re-
trieved from the knowledge base to form a knowledge state-
ment. This knowledge statement populates the knowledge
buffer as described previously. The four possible combina-
tions of these primary variations (max/median, max/min, me-
dian/min, max/median/min) are also tested. The differences
in performance of each of these variations provides insight
into whether the entity selection criteria has an effect on the
performance of a task.

3.2 Question Answering
In this task, the knowledge model is trained on a custom
multiple-choice question answering task. Each question in
the dataset has four possible choices, so a random baseline
would achieve 25% accuracy. Huggingface’s double heads
model, which is the recommended model for multiple-choice
question answering, is used as a base for the knowledge
model. While the model has the option to train on the ques-
tion answering and language modeling loss, this experiment
relies exclusively on the question answering loss for training.

The baseline for this task uses the plain question answering
dataset without knowledge augmentation. When the knowl-
edge tokens are added, a certain percentage of knowledge to-
kens are randomly masked. The percentage of masked knowl-
edge tokens is incrementally reduced until all of the tokens
are visible.

4 Results
These results show that even simple knowledge augmentation
can dramatically improve performance on language modeling
tasks. At its best, the validation loss decreases by 73%. These
improvements persist even as the number of model parame-
ters increases and with a different model architecture (BERT)
on a masked language modeling task.

4.1 Knowledge Language Modeling
GPT-2 Small
Figures 4 and 5 illustrate how the best knowledge augmen-
tation strategy (min attention) causes the baseline validation
loss to decrease by 53.4%. Of the three knowledge augmen-
tation strategies tested, min attention performed the best, fol-
lowed closely by the median attention (0.26% worse), and
then max attention (5.4% worse than min attention).

Based on these results, all of these knowledge augmenta-
tion strategies are effective in improving the performance of
pretrained transformer language models on causal language

5



Figure 4: Validation loss curves for language modeling on GPT-
2 small. The min attention knowledge augmentation strategy de-
creases the loss of the baseline by 53.4%.

Figure 5: The minimum validation loss for each augmentation strat-
egy when language modeling on GPT-2 small.

Figure 6: Minimum validation loss for each knowledge augmenta-
tion strategy when language modeling on GPT-2 medium. Knowl-
edge augmentation methods continue to improve performance even
on larger language models.

modeling fine-tuning tasks. This increased performance is
achieved without optimizing the knowledge augmentation
process—instead, simply adding a label:description relation
to knowledge buffer. It stands to reason that the loss could be
reduced further by adding more relevant data to the knowl-
edge buffer.

While the difference in minimum validation loss between
the min and median attention runs is small, the min atten-
tion runs consistently outperform the max attention runs. This
may be caused by GPT-2 assigning lower attention scores to
entities it does not know very well and higher attention scores
to entities it recognizes. By this logic, the additional data
about an already common entity could be seen as redundant
while the description of an unknown entity might be vital in-
formation.

GPT-2 Medium
While GPT-2 small has 85M parameters, GPT-2 medium in-
creases this by 313% to 354M. Despite these added param-
eters, the validation loss for GPT-2 medium only decreases
by 5.86% when compared to GPT-2 small (compare base-
lines from Figures 5 and 6). However, adding min attention
knowledge to GPT-2 medium decreases the validation loss
by 52.71% from the GPT-2 small baseline. The difference
between min, median, and max is comparable to the experi-
ments with GPT-2 small.

The knowledge augmentation approach remains effective
even as models get larger. This suggests that even very large
models such as GPT-3 [Brown et al., 2020] could benefit from
additional knowledge. In fact, the knowledge augmentation
is more effective than increasing the model size since just
adding min attention knowledge to GPT-2 small outperforms
GPT-2 medium by 47.54%.

Higher Order Combinations of Knowledge
Figure 7 shows the validation loss for each combination of
knowledge augmentation strategies. As discussed previously,
the best first order reduction, min attention, decreases the val-
idation loss by by 53.4%. The best second order combina-
tion of min and max attention improves on that by another
12.65%. Finally, the combination of min, median, and max

6



Figure 7: The minimum validation loss for higher-order combina-
tions of knowledge data when language modeling on GPT-2 small.
Augmenting with minimum, median, and maximum knowledge en-
tities yields the best results reducing the baseline validation loss by
73.26%.

Figure 8: Minimum validation loss when language modeling on
GPT-2 small with comparison between filling the knowledge buffer
with excess text tokens and filling it with min med max knowledge
tokens for a dataset where each row has excess tokens.

attention knowledge improves on the second order by an ad-
ditional 7.21% for a total of 73.26% improvement over the
baseline. This demonstrates that a higher quantity of added
semantic information consistently results in better generaliza-
tion.

Excess Text Tokens Versus Knowledge Tokens
Figure 8 compares the validation loss between filling the
knowledge buffer with additional contextual text tokens or
min med max knowledge tokens. For this dataset, knowl-
edge tokens outperform the text tokens by 44.28%. This sug-
gests that structured semantic data has a distinct advantage
over additional textual context tokens.

BERT
Figure 9 once again shows the minimum validation loss for
the primary knowledge augmentation strategies. All of the
knowledge augmentation runs outperform the baseline, with
the max attention variation resulting in the greatest percent-
age decrease of the baseline loss (8.01%). While this re-
duction in loss is not as large as with GPT-2, there are sev-
eral contributing factors which may explain this. First of all,
BERT is pretrained on the English Wikipedia corpus [Devlin
et al., 2019] while GPT-2 excludes it. This means the pre-

Figure 9: Minimum validation loss when language modeling on
BERT. Knowledge augmentation continues to improve results on
BERT despite its being pretrained on Wikipedia.

Figure 10: Question answering validation accuracy across a range of
knowledge token visibility percentages. The leftmost column with
0% visible knowledge is the baseline dataset that does not contain
knowledge augmentation. Even with only 10% of the knowledge
tokens visible, the knowledge augmented model improves signifi-
cantly over this baseline.

trained BERT is already relatively close to it’s training limit
when fine tuning begins. Secondly, because BERT is a bidi-
rectional model, it can attend to all unmasked tokens in the
sequence for each prediction. This makes the added knowl-
edge less useful in disambiguating the subject of the sentence
when compared with causal language modeling—especially
early on in the sequence. Also, since BERT only predicts on
15% of tokens, these loss values are not directly comparable.
Taking all this into account, these results continue to validate
the efficacy of these methods even across model architectures.

4.2 Question Answering
Figure 10 shows the validation accuracy across a range of
knowledge token visibility percentages for the question an-
swering task. Even when only 10% of the knowledge tokens
are visible, the validation accuracy still increases by 22.3%.
This demonstrates that even noisy (a proxy for less relevant
data) knowledge data may significantly improve performance
on question answering tasks. Of course, due to the fact that on
this simple question answering dataset (enough) knowledge
tokens (eventually) give away the answer, these results are
less reflective of a model’s general question answering ability
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and instead demonstrate that the model is able to identify the
correct answer despite noisy knowledge data. Question an-
swering tasks are a promising next step for these knowledge
augmentation methods, even if the knowledge is not perfectly
relevant to the question at hand.

5 Discussion
The purpose of these experiments was to determine whether
knowledge-augmented datasets are effective in improving a
model’s semantic memory. The significant improvement
demonstrated on both language modeling and question an-
swering shows that knowledge augmentation does make a
difference. One possible reason for this could be that statis-
tical language models rely so heavily on the context around
the word that the definition of the word itself remains a little
too obscure. This may get to the point where words used in
an unfamiliar context, possess little meaning and confuse the
model. This would explain why including additional seman-
tic information provides a useful bias that keeps unfamiliar
words in context. This is further demonstrated by the fact that
the min attention entity generally outperformed max and me-
dian attention entities. Assuming that the min attention entity
is deemed least important by GPT-2, the added knowledge
for this entity appears to give new relevance to overlooked or
unfamiliar data.

Another way to think about knowledge augmentation is as
a form of prompt engineering—where a prompt is automati-
cally generated to help the model with the task at hand.

In these experiments, the entity identification, selection,
and knowledge extraction process is relatively simple. In fu-
ture work, this entire process would be self-directed where a
single model learns to use the knowledge base to best suit the
task at hand.

As language models becomes more important to society,
challenges will arise where language modeling will fall short
if it is solely reliant on statistics. Ethical concerns regard-
ing transformer models spreading misinformation and bias
have already harmed the reputation of popular language mod-
els such as GPT-3 [Bender et al., 2021]. The principles dis-
cussed in this work will directly enable ways of biasing lan-
guage models away from the dubious ideas present in “wild”
training data and towards a shared reality present in curated
knowledge bases.
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