2D Geometry Formulas

Area Formulas

Area of a square: $A = s^2$

Area of a rectangle: $A = l \cdot w$

s = Side of the Square I = length of the rectangle

Area of a triangle: $A = \frac{1}{2} \cdot b \cdot h$

Area of a parallelogram: $A = b \cdot h$

Area of a circle: $A = \pi r^2$

Perimeter Formulas

Perimeter of a square: P = 4s

Perimeter of a rectangle: P = 2(l + w)

Perimeter of a triangle: P = a + b + c

Perimeter (circumference) of a circle: $C = 2\pi r$

Triangle Formulas

a, b, and c are the lengths of the sides).

Area Formulas

Standard Area Formula:

Heron's Formula :

$$S = \frac{a+b+c}{2}$$
 (for sides a, b, c and semi-perimeter s):

$$Area=\sqrt{s(s-a)(s-b)(s-c)}$$

Area of an Equilateral Triangle:

Area =
$$\frac{\sqrt{3}}{4}$$
 x a² (where a is the length of a side

Triangle Formulas

Perimeter Formulas

Standard Area Formula:

Heron's Formula :

S =
$$\frac{a+b+c}{2}$$
 (for sides a, b, c and semi-perimeter s):

Area
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Area of an Equilateral Triangle:

Area =
$$\frac{\sqrt{3}}{4}$$
 x a^2

(where a is the length of a side).

Perimeter Formulas

Length of Median

$$m_a=\sqrt{rac{2b^2+2c^2-a^2}{4}}$$

Triangle Formulas

Perimeter Formulas

Altitude

$$h = \frac{2 \times \text{Area}}{\text{base}}$$

(perpendicular segment from a vertex to the line containing the opposite side):

Angle Bisector

$$l_a = \sqrt{bc\left(1-rac{a^2}{(b+c)^2}
ight)}$$

(line segment that splits an angle into two equal angles)

Circle Formulas Related to Triangles

Circumradius

$$R=rac{abc}{4 imes {
m Area}}$$
 (radius of the circumscribed circle):

Inradius

$$r=rac{\mathrm{Area}}{s}$$
 (radius of the inscribed circle):

Exradius

$$r_a=rac{\mathrm{Area}}{s-a}$$
 (radius of the excircle opposite side a):

Square Formulas

(a is the lengths of the sides).

Area of a Square

$$A = a^2$$

The area (A) of a square is the space contained within its four sides.

Perimeter of a Square

P = 4a

(a = length of one side of the square) The perimeter (P) of a square is the total distance around the outside of the square.

Diagonal of a Square

$$d = a\sqrt{2}$$

(a = length of one side of the square) The diagonal (d) of a square is the line segment connecting two opposite corners.

Circumcircle of a Square

 $R=rac{a\sqrt{2}}{2}=rac{d}{2}$ (The circumcircle is a circle that passes through all four vertices of the square.)

Incircle of a Square

(The incircle is a circle that is tangent to all four sides of the square.)

Relationship Between Diagonal and Side Length

Rectangle Formulas

Area

 $Area = Length \times Width$

(The area of a rectangle is the amount of space enclosed within its sides.)

Perimeter

${ m Perimeter}=2 imes({ m Length}+{ m Width}) egin{array}{l} ({ m The area of a rectangle is the amount} \ { m of space enclosed within its sides.}) \end{array}$

Diagonal of a rectangle

$$Diagonal = \sqrt{(Length^2 + Width^2)}$$

(The diagonal of a rectangle is the line segment connecting two opposite corners. It can be calculated using the Pythagorean theorem.)

Length (Given Area and Width)

$$Length = \frac{Area}{Width}$$

(If you know the area and width, you can find the length.)

Length (Given Perimeter and Width)

Width =
$$\frac{\text{Area}}{\text{Length}}$$

(If you know the area and length, you can find the width.)

Width (Given Perimeter and Length)

$${
m Length}=rac{{
m Perimeter}}{2}-{
m Width}$$
 (If you know the perimeter and width, you can find the length)

Circle Formulas

Circumference

 $C = 2\pi r$

C: Circumference r : Radius π (pi): Approximately 3.14159

Area

 $A = \pi r^2$

A: Area r : Radius π (pi): Approximately 3.14159

Diameter

$$D=2r$$

The diameter is the distance across the circle, passing through the center. It is twice the radius. D: Diameter r : Radius

Radius

The radius is the distance from the center of the circle to any point on its circumference. D: Diameter r : Radius

Equation of a Circle (Standard Form)

$$(x - h)^2 + (y - k)^2 = r^2$$

The standard form equation of a circle with its center at (h,k) and radius r is: (h,k): Coordinates of the center

(x,y): Coordinates of any point on the circle

Equation of a Circle (General Form)

$$x^{2} + y^{2} + Dx + Ey + F = 0$$

D, E, F: Constants

To convert from the standard form to the general form, expand and rearrange the standard form equation.

