2D Geometry Formulas

Area Formulas

Area of a square: $A=s^{2}$

Area of a rectangle: $\quad A=l \cdot w$
$s=$ Side of the Square
$\mathrm{I}=$ length of the rectangle

Area of a triangle: $\quad A=\frac{1}{2} \cdot b \cdot h$

Area of a parallelogram: $A=b \cdot h$

Area of a circle: $\quad A=\pi r^{2}$

Perimeter Formulas

Perimeter of a square: $P=4 s$

Perimeter of a rectangle: $\quad P=2(l+w)$

Perimeter of a triangle: $P=a+b+c$

Perimeter (circumference) of a circle: $C=2 \pi r$

Triangle Formulas

a, b, and c are the lengths of the sides).

Area Formulas

Standard Area Formula:

$$
\text { Area }=1 / 2 \times \text { base } \times \text { height }
$$

Heron's Formula :

$$
S=\frac{a+b+c}{2} \quad \begin{gathered}
\text { for sides } a, b, c \text { and } \\
\text { semi-perimeter } s):
\end{gathered}
$$

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

Area of an Equilateral Triangle:

$$
\text { Area }=\frac{\sqrt{3}}{4} \times a^{2} \quad \begin{gathered}
\text { (where } a \text { is the } \\
\text { length of } a \text { side) }
\end{gathered}
$$

Triangle Formulas

Perimeter Formulas

Standard Area Formula:

Area $=1 / 2 \times$ base \times height

Heron's Formula :

$$
S=\frac{a+b+c}{2} \quad \begin{gathered}
\text { (for sides } a, b, c \text { and } \\
\text { semi-perimeter } s):
\end{gathered}
$$

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

Area of an Equilateral Triangle:

$$
\text { Area }=\frac{\sqrt{3}}{4} \times a^{2} \quad \begin{gathered}
\text { (where } a \text { is the } \\
\text { length of } a \text { side }) .
\end{gathered}
$$

Perimeter Formulas

Length of Median

$$
m_{a}=\sqrt{\frac{2 b^{2}+2 c^{2}-a^{2}}{4}}
$$

Triangle Formulas

Perimeter Formulas

Altitude

$$
h=\frac{2 \times \text { Area }}{\text { base }} \quad \begin{aligned}
& \text { (perpendicular segment from a vertex to } \\
& \text { the line containing the opposite side): }
\end{aligned}
$$

Angle Bisector

$$
l_{a}=\sqrt{b c\left(1-\frac{a^{2}}{(b+c)^{2}}\right)} \quad \begin{gathered}
\text { (line segment that splits an angle } \\
\text { into two equal angles) }
\end{gathered}
$$

Circle Formulas Related to Triangles

Circumradius

$$
R=\frac{a b c}{4 \times \text { Area }} \quad \text { (radius of the circumscribed circle): }
$$

Inradius

$$
r=\frac{\text { Area }}{s} \quad \text { (radius of the inscribed circle): }
$$

Exradius

$$
r_{a}=\frac{\text { Area }}{s-a} \quad \text { (radius of the excircle opposite side a): }
$$

Ex Examples.com

Square Formulas

(a is the lengths of the sides).

Area of a Square

$$
A=a^{2} \quad \begin{gathered}
\text { The area (A) of a square is the space } \\
\text { contained within its four sides. }
\end{gathered}
$$

Perimeter of a Square

$$
P=4 a \quad \begin{gathered}
(a=\text { length of one side of the square })
\end{gathered} \begin{gathered}
\text { The perimeter (P) of a square is the total } \\
\text { distance around the outside of the square. }
\end{gathered}
$$

Diagonal of a Square

$$
d=a \sqrt{2} \quad \begin{gathered}
\begin{array}{c}
(\mathrm{a}=\text { length of one side of the square }) \\
\text { The diagonal }(\mathrm{d}) \text { of a square is the line } \\
\text { segment connecting two opposite corners. }
\end{array}
\end{gathered}
$$

Circumcircle of a Square

$$
R=\frac{a \sqrt{2}}{2}=\frac{d}{2} \quad \begin{aligned}
& \text { (The circumcircle is a circle that passes } \\
& \text { through all four vertices of the square.) }
\end{aligned}
$$

Incircle of a Square

$$
r=\frac{a}{2} \quad \begin{gathered}
\text { (The incircle is a circle that is tangent to all } \\
\text { four sides of the square.) }
\end{gathered}
$$

Relationship Between Diagonal and Side Length

$$
a=\frac{d}{\sqrt{2}} \quad \text { If the diagonal }(\mathrm{d}) \text { is known, the side }
$$

Rectangle Formulas

Area

Area $=$ Length \times Width
(The area of a rectangle is the amount of space enclosed within its sides.)

Perimeter

$$
\text { Perimeter }=2 \times(\text { Length }+ \text { Width }) \begin{aligned}
& \text { (The area of a rectangle is the amount } \\
& \text { of space enclosed within its sides.) }
\end{aligned}
$$

Diagonal of a rectangle

Diagonal $=\sqrt{\left(\text { Length }^{2}+\text { Width }^{2}\right)}$
(The diagonal of a rectangle is the line segment connecting two opposite corners. It can be calculated using the Pythagorean theorem.)

Length (Given Area and Width)

$$
\text { Length }=\frac{\text { Area }}{\text { Width }}
$$

(If you know the area and width, you can find the length.)

Length (Given Perimeter and Width)

Width $=\frac{\text { Area }}{\text { Length }}$
(If you know the area and length, you can find the width.)

Width (Given Perimeter and Length)

$$
\text { Length }=\frac{\text { Perimeter }}{2}-\text { Width } \begin{gathered}
\text { (If fou know the perimeter and width, you can find } \\
\text { the length) }
\end{gathered}
$$

Circle Formulas

Circumference

$$
C=2 \pi r \quad \begin{aligned}
& \text { c: Circumference } \\
& r: \text { Radius } \\
& \pi(\text { pi): Approximately } 3.14159
\end{aligned}
$$

Area

$$
A=\pi r^{2} \quad \begin{aligned}
& \text { A:Area } \\
& \text { r:Radius } \\
& \pi(\mathrm{pi}): \text { Approximately } 3.14159
\end{aligned}
$$

Diameter

$$
D=2 r \begin{aligned}
& \text { The diameter is the distance across the circle, } \\
& \text { passing through the center. It is twice the radius. } \\
& \text { D: Diameter } \\
& r: \text { Radius }
\end{aligned}
$$

Radius

$$
\boldsymbol{P}=\frac{D}{2} \quad \begin{aligned}
& \text { The radius is the distance from the center of the circle } \\
& \text { to any point on its circumference. } \\
& \text { D: Diameter } \\
& \mathrm{r}: \text { Radius }
\end{aligned}
$$

Equation of a Circle (Standard Form)

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

The standard form equation of a circle with its center at (h, k) and radius r is:
(h, k) : Coordinates of the center
(x, y) : Coordinates of any point on the circle

Equation of a Circle (General Form)

$$
x^{2}+y^{2}+D x+E y+F=0 \begin{aligned}
& \text { D, E, F: Constants } \\
& \text { To convert from the standard form to the general form, } \\
& \text { expand and rearrange the standard form equation. }
\end{aligned}
$$

