3D Geometry Formulas

Surfac Area Formulas

Surface Area of Cube : $6 a^{2}$
Area of Rectangular Prism : $\quad 2(l w+l h+w h)$
Surface Area of Sphere: $\quad 4 \pi r^{2}$
Surface Area Cylinder: $\quad 2 \pi r(h+r)$
Surface Area of Cone: $\pi r\left(r+\sqrt{h^{2}+r^{2}}\right)$
Area (Square Base of Pyramid): $\quad B+\frac{1}{2} P \ell$
Area of Triangular Prism: $\quad b h+\left(s_{1}+s_{2}+s_{3}\right) l$

Volume Formulas

Volume of a cube: $\quad V=s^{3}$
Volume of a rectangular prism: $\quad V=l \cdot w \cdot h$
Volume of a cylinder: $V=\pi r^{2} h$
Volume of a cone: $\quad V=\frac{1}{3} \pi r^{2} h$

Cube Formulas

 ($s=$ side length of the cube)
Surface Area

$$
A=6 s^{2}
$$

The surface area (A) of a cube is the total area of all six faces.

Volume

$$
V=S^{3} \quad \begin{aligned}
& \text { The volume }(\mathrm{v}) \text { of a cube is the } \\
& \text { amount of space enclosed } \\
& \text { within the cube. }
\end{aligned}
$$

Diagonal of a Face

$$
d_{f}=s \sqrt{2}
$$

The diagonal (d_f) of any face of the cube can be found using the Pythagorean theorem.

Space Diagonal

$$
d_{s}=s \sqrt{3}
$$

The space diagonal (d_s) of the cube, it can be found using the threedimensional Pythagorean theorem.

Perimeter of One Face

$$
P_{f}=4 s
$$

The perimeter ($P_{-} f$) of one face of the cube is the sum of the lengths of the four edges forming that face.

Total Edge Length

$$
\mathcal{H}=12 s \quad \begin{aligned}
& \text { The total edge length (E) of a cube is the } \\
& \text { sum of the lengths of all twelve edges. }
\end{aligned}
$$

Cuboid Formulas

Surface Area

- Length (I)
- Width (w)
- Height (h)

$$
A=2(l w+l h+w h) \begin{aligned}
& \text { The surface area is the total } \\
& \text { area of all six faces of the } \\
& \text { cuboid. }
\end{aligned}
$$

Volume

$$
V=l \times w \times h \quad \begin{aligned}
& \text { The volume of a cuboid is the } \\
& \text { amount of space it occupies. }
\end{aligned}
$$

Diagonal Length

$$
D=\sqrt{l^{2}+w^{2}+h^{2}}
$$

The diagonal of a cuboid stretches from one vertex to the opposite vertex through the interior of the cuboid.

Face Diagonals

- Face Diagonal on Length and Width (Front/Back Face)

$$
\text { Face Diagonal }(\mathrm{l}, \mathrm{w})=\sqrt{l^{2}+w^{2}}
$$

- Face Diagonal on Length and Width (Front/Back Face)

$$
\text { Face Diagonal }(\mathrm{l}, \mathrm{~h})=\sqrt{l^{2}+h^{2}}
$$

- Face Diagonal on Length and Width (Front/Back Face)

$$
\text { Face Diagonal }(\mathrm{w}, \mathrm{~h})=\sqrt{w^{2}+h^{2}}
$$

Cuboid Formulas

Perimeter of Edges

$$
\text { Total Edge Length }=4(l+w+h) \begin{aligned}
& \text { The total perimeter of all } \\
& \text { the edges of a cuboid. }
\end{aligned}
$$

Lateral Surface Area

$$
\text { Lateral Surface Area }=2 h(l+w) \begin{aligned}
& \text { The lateral surface area of a } \\
& \text { cuboid is the sum of the area } \\
& \text { the four vertical faces. }
\end{aligned}
$$

Cone Formulas

Volume of a Cone

$$
V=\frac{1}{3} \pi r^{2} h
$$

The volume V of a cone can be calculated using the following formula:

- r is the radius of the base
- h is the height of the cone

Surface Area

a. Base Area

$$
A_{\mathrm{base}}=\pi r^{2}
$$

b. Lateral Surface Area

$$
A_{\text {lateral }}=\pi r l
$$

c. Total Surface Area

$$
l=\sqrt{r^{2}+h^{2}}
$$

Total Edge Length

$$
A=\pi r(r+l)
$$

The slant height I is the distance from the base to the apex along the surface of the cone.

Cylinder Formulas

Surface Area

$$
A=2 \pi r(r+h)
$$

Volume

$$
V=\pi r^{2} h
$$

Lateral Surface Area (Curved Surface Area)

$$
A_{\text {lateral }}=2 \pi r h
$$

Area of the Circular Bases

$$
A_{\text {base }}=\pi r^{2}
$$

Total Surface Area Calculation

$$
\begin{aligned}
& A_{\text {total }}=A_{\text {lateral }}+2 A_{\text {base }} \\
& A_{\text {total }}=2 \pi r h+2 \pi r^{2} \\
& A_{\text {total }}=2 \pi r(r+h)
\end{aligned}
$$

Ex Examples.com

Sphere Formulas

- $r=$ Radius of the sphere
- \quad (Pi) = Approximately 3.14159

Surface Area

$$
A=4 \pi r^{2} \quad(\mathrm{~A}=\text { Surface Area })
$$

Volume

$$
V=\frac{4}{3} \pi r^{3} \quad(\mathrm{~V}=\text { volume })
$$

Lateral Surface Area (Curved Surface Area)

$$
C=2 \pi r \quad \begin{aligned}
& \text { c }=\text { Circumference of } \\
& \text { the great circle }
\end{aligned}
$$

Area of the Circular Bases

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2} \\
\bullet(x, y, z)=\text { Coordinates of any point on the } \\
\quad \begin{array}{l}
\text { surface of the sphere }
\end{array} \\
\bullet(h, k, l)=\text { Coordinates of the center of the } \\
\\
\text { sphere }
\end{gathered}
$$

Ex Examples.com

Pyrmid Formulas

- $r=$ Radius of the sphere
- $\Pi(\mathrm{Pi})=$ Approximately 3.14159

Surface Area

$$
S A=B+\text { Lateral Surface Area }
$$

Square Base

$$
B=a^{2} \quad B=l \times w \quad B=\frac{1}{2} \times b \times h_{b}
$$

Volume

$$
V=\frac{1}{3} \times B \times h
$$

Lateral surface area (regular pyramid)

$$
\text { LateralSurfaceArea }=\frac{1}{2} \times P \times s
$$

Slant height (square base and rectangular base)

$$
s=\sqrt{\left(\frac{a}{2}\right)^{2}+h^{2}}
$$

Perimeter (square base, rectangular base \& triangular base)

Square Base

$$
P=4 a
$$

Rectangular Base

$$
P=2(l+w)
$$

$$
P=a+b+c
$$

Ellipsoid Formulas

Surface Area

$$
S \approx 4 \pi\left(\frac{\left(a^{p} b^{p}+a^{p} c^{p}+b^{p} c^{p}\right)}{3}\right)^{\frac{1}{p}} \quad \text { where } \quad p \approx 1.6075
$$

Volume

$$
V=\frac{4}{3} \pi a b c
$$

Eccentricity of an Ellipsoid

$$
e_{x y}=\sqrt{1-\frac{b^{2}}{a^{2}}}
$$

Slant height (square base and rectangular base)

$$
e_{x z}=\sqrt{1-\frac{c^{2}}{a^{2}}}
$$

Perimeter (square base, rectangular base \& triangular base)

$$
e_{y z}=\sqrt{1-\frac{c^{2}}{b^{2}}}
$$

Prism Formulas

Volume

- B is the area of the base
- P is the perimeter of the base
- h is the height of the prism

$$
V=B \times h \quad \text { The volume } v \text { of a prism }
$$

Surface Area

$$
S A=2 B+P h \text { the surface area } S A \text { of a prism }
$$

Lateral Surface Area of a Prism

$L S A=P \times h \quad$ The lateral surface area $L S A$

Base Area Formulas for Specific Prisms

Rectangular Prism

$$
\begin{array}{ll}
B=l \times w & \bullet \mathrm{~B} \text { is Area of the base } \\
P=2(l+w) & \bullet \mathrm{P} \text { is Perimeter of the base } \\
\bullet \text { is the length } \\
\bullet w \text { is the width }
\end{array}
$$

Triangular Prism

$$
B=\frac{1}{2} b \times h_{b} \begin{aligned}
& \stackrel{\mathrm{P} \text { is Perimeter of the base }}{\bullet \mathrm{b}_{\mathrm{b}} \text { is the base length of the triangle }} \begin{array}{l}
\bullet \mathrm{h} \text { is the height of the trianglew is the } \\
\text { width }
\end{array} \\
& P=a+b+c \begin{array}{l}
\text { en, and c are the side lengths of the } \\
\text { triangle }
\end{array}
\end{aligned}
$$

Cylinder (as a Circular Prism)

$$
\begin{array}{ll}
B=\pi r^{2} & \cdot B \text { is the Area of the base } \\
P=2 \pi r & \cdot \mathrm{r} \text { is the radius of the base } \\
P \text { is the Perimeter of the base }
\end{array}
$$

