# **3D Geometry Formulas**

### Surfac Area Formulas

Surface Area of Cube :  $6a^2$ 

Area of Rectangular Prism : 2(lw + lh + wh)

Surface Area of Sphere :  $4\pi r^2$ 

Surface Area Cylinder:  $2\pi r(h+r)$ 

Surface Area of Cone:  $\pi r(r + \sqrt{h^2 + r^2})$ 

Area (Square Base of Pyramid ):  $B + \frac{1}{2}P\ell$ 

Area of Triangular Prism:  $bh + (s_1 + s_2 + s_3)l$ 

### Volume Formulas

### Volume of a cube: $V = s^3$

Volume of a rectangular prism:  $V = l \cdot w \cdot h$ 

Volume of a cylinder:  $V = \pi r^2 h$ 

Volume of a cone: 
$$V = \frac{1}{3}\pi r^2 h$$



### Cube Formulas



Surface Area

$$A = 6s^2$$

The surface area (A) of a cube is the total area of all six faces.

#### Volume



$$V = s^3$$

The volume (V) of a cube is the amount of space enclosed within the cube.

#### **Diagonal of a Face**

$$d_f = s\sqrt{2}$$

The diagonal (d\_f) of any face of the cube can be found using the Pythagorean theorem.

#### **Space Diagonal**

$$d_s = s\sqrt{3}$$

The space diagonal (d\_s) of the cube, it can be found using the threedimensional Pythagorean theorem.

#### **Perimeter of One Face**

$$P_f = 4s$$

The perimeter (P\_f) of one face of the cube is the sum of the lengths of the four edges forming that face.

#### Total Edge Length

$$E = 12s$$

The total edge length (E) of a cube is the sum of the lengths of all twelve edges.



### Cuboid Formulds



#### **Surface Area**

A=2(lw+lh+wh) area of all six faces of the

The surface area is the total cuboid.

Length (I)

• Width (w)

Height (h)

#### Volume

$$V = l \times w \times h$$

The volume of a cuboid is the amount of space it occupies.

#### **Diagonal Length**

$$D = \sqrt{l^2 + w^2 + h^2}$$

The diagonal of a cuboid stretches from one vertex to the opposite vertex through the interior of the cuboid.

#### **Face Diagonals**

#### Face Diagonal on Length and Width (Front/Back Face)

Face Diagonal (l, w) = 
$$\sqrt{l^2 + w^2}$$

Face Diagonal on Length and Width (Front/Back Face)

Face Diagonal (l, h) 
$$= \sqrt{l^2 + h^2}$$

#### Face Diagonal on Length and Width (Front/Back Face)

Face Diagonal (w, h) = 
$$\sqrt{w^2 + h^2}$$



### Cuboid Formulas

#### **Perimeter of Edges**

Total Edge Length = 4(l+w+h) The total perimeter of all the edges of a cuboid.

#### Lateral Surface Area

Lateral Surface  ${
m Area}=2h(l+w)$  cuboid is the sum of the areas of

the four vertical faces.



### **Cone Formulas**



#### Volume of a Cone

|     | _ |    | The volume V of a cone can be calculated using |
|-----|---|----|------------------------------------------------|
| Τ 7 | 1 | 21 | the following formula:                         |



the following formula:

- r is the radius of the base
- h is the height of the cone

#### **Surface Area**

#### a. Base Area

$$A_{\rm base} = \pi r^2$$

#### **b. Lateral Surface Area**

$$A_{\text{lateral}} = \pi r l$$

#### c. Total Surface Area

$$l=\sqrt{r^2+h^2}$$

#### **Total Edge Length**

$$A = \pi r (r + l)$$

The slant height I is the distance from the base to the apex along the surface of the cone.



# Cylinder Formulas



- V is the volume
- r is the radius of the base
- h is the height

#### **Surface Area**

 $A = 2\pi r(r + h)$ 



$$V = \pi r^2 h$$

#### Lateral Surface Area (Curved Surface Area)

$$A_{\rm lateral} = 2\pi rh$$

#### **Area of the Circular Bases**

$$A_{\rm base} = \pi r^2$$

#### **Total Surface Area Calculation**

$$egin{aligned} A_{ ext{total}} &= A_{ ext{lateral}} + 2A_{ ext{base}} \ A_{ ext{total}} &= 2\pi rh + 2\pi r^2 \ A_{ ext{total}} &= 2\pi r(r+h) \end{aligned}$$



## Sphere Formulas



- r = Radius of the sphere
- $\pi$  (Pi) = Approximately 3.14159

**Surface Area** 

9  $\left( \Lambda - \Omega \right)$ 

$$A = 4\pi r^2$$
 (A = Surface Area)

#### Volume

$$V=rac{4}{3}\pi r^3$$
 (V = Volume)

#### Lateral Surface Area (Curved Surface Area)

$$C = 2\pi r$$

C = Circumference of the great circle

#### **Area of the Circular Bases**

$$(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2$$

- (x, y, z) = Coordinates of any point on the surface of the sphere
- (h, k, l) = Coordinates of the center of the sphere



# **Pyrmid Formulas**



SA = B + Lateral Surface Area

| Square Base | Rectangular Base | Triangular Base                       |
|-------------|------------------|---------------------------------------|
| $B = a^2$   | $B = l \times w$ | $B = \frac{1}{2} \times b \times h_b$ |

#### Volume

$$V = \frac{1}{3} \times B \times h$$

#### Lateral surface area (regular pyramid)

$$LateralSurfaceArea = \frac{1}{2} \times P \times s$$

Slant height (square base and rectangular base)

$$s = \sqrt{\left(\frac{a}{2}\right)^2 + h^2}$$

#### Perimeter (square base, rectangular base & triangular base)





## Ellipsoid Formulas



**Surface Area** 

$$C \sim A - \left( \left( a^p b^p + a^p c^p + b^p c^p \right) \right)^{\frac{1}{p}}$$
 ---b are  $\sim 1.6075$ 



#### where $p \approx 1.0075$

#### Volume

$$V = \frac{4}{3}\pi abc$$

#### **Eccentricity of an Ellipsoid**

$$e_{xy} = \sqrt{1 - \frac{b^2}{a^2}}$$

### Slant height (square base and rectangular base)

$$e_{xz} = \sqrt{1 - \frac{c^2}{a^2}}$$

#### Perimeter (square base, rectangular base & triangular base)

$$e_{yz}=\sqrt{1-rac{c^2}{b^2}}$$



## Prism Formulas





- P is the perimeter of the base
- h is the height of the prism

V=B imes h The volume V of a prism

#### Surface Area

SA=2B+Ph The surface area SA of a prism

Lateral Surface Area of a Prism

LSA = P imes h The lateral surface area LSA

### **Base Area Formulas for Specific Prisms**

#### **Rectangular Prism**

$$B = l \times w$$
  
 $P = 2(l + w)$ 

- B is Area of the base
- P is Perimeter of the base
- I is the length
- w is the width

#### Triangular Prism

• P is Perimeter of the base

$$B = rac{1}{2}b imes h_b$$
 , b is the base length of the triangle  
 $P = a + b + c$  , b is the base length of the triangle  
width  
• a, b, and c are the side lengths of the triangle

### Cylinder (as a Circular Prism)

$$B = \pi r^2$$
$$P = 2\pi r$$

- B is the Area of the base
- r is the radius of the base
- P is the Perimeter of the base

