Geometry Shapes Formulas for Class 8,9,10,11, 12

Geometry Shapes Formulas for Class 8

Name of the Solid	Lateral / Curved Surface Area	Total Surface Area	Volume
Cuboid	$2 \mathrm{~h}(\mathrm{l}+\mathrm{b})$	$2(\mathrm{lb+bh+hl})$	Ibh
Cube	$4 \mathrm{a}^{2}$	$6 a^{2}$	a^{3}
Right Prism	Perimeter of base \times height	Lateral Surface Area $+2($ Area of One End $)$	Area of Base \times Height
Right Circular Cylinder	$2 \pi r h$	$2 \pi r(r+h)$	$\pi r^{2} h$
Right Pyramid	$1 / 2 \times$ Perimeter of Base \times Slant Height	Lateral Surface Area + Area of the Base	$1 / 3 \times($ Area of the Base $) \times$ $h e i g h t ~$
Right Circular Cone	$\pi r l$	$\pi r(l+r)$	$1 / 3 \times \pi r^{2} h$
Sphere	$4 \pi r^{2}$	$4 \pi r^{2}$	$4 / 3 \times \pi r^{3}$
Hemisphere	$2 \pi r^{2}$	$3 \pi r^{2}$	πr^{3}

Geometry Shapes Formulas for Class 9

Geometric Figure	Area	Perimeter
Rectangle	$A=1 \times w$	$P=2(l+w)$
Triangle	$A=1 / 2 \times b h$	$P=a+b+c$
Trapezoid	$A=1 / 2 \times h\left(b_{1}+b_{2}\right)$	$P=a+b+c+d$
Parallelogram	$A=b h$	$P=2(a+b)$
Circle	$A=\pi r^{2}$	$C=2 \pi r$

Geometry Shapes Formulas for Class 8,9,10,11, 12

Geometry Shapes Formulas for Class 10

Name	Formuld
Area of Triangle	Area $=1 / 2 \times$ base \times height
Pythagorean Theorem	$\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
Area of a Circle	Area $=\pi r^{2}$
Circumference of a Circle	$C=2 \pi r$ or πd
Area of a Parallelogram	Area $=$ base \times height
Area of a Trapezoid	Area $=1 / 2 \times\left(\right.$ base $_{1}+$ base $\left._{2}\right) \times$ height
Area of a Kite or a Rhombus	Area $=1 / 2 \times($ diagonall \times diagonal 2$)$
Area of a Square	Area $=$ side 2
Area of a Regular Polygon	Area $=1 / 2 \times$ perimeter \times apothem
Number of Diagonal in n -sided Polygon	Diagonals $=1 / 2 \times n(n-3)$
Slope	$m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)=$ rise/run
Midpoint Formula	$\begin{aligned} & \left(x_{\mathrm{mp},} \mathrm{y}_{\mathrm{mp}}\right)=\left[\left(\mathrm{x}_{2}+\mathrm{x}_{1}\right) / 2\right]\left[\left(\mathrm{y}_{2}+\mathrm{y}_{1}\right.\right. \\ &) / 2] \end{aligned}$
Distance Formula	$d=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]$
Equation of a Circle	$(x-h)^{2}+(y-k)^{2}=r^{2}$

Geometry Shapes Formulas for Class 8,9,10,11, 12

Geometry Shapes Formulas for Class 11

Pythagoras Theorem Formula	$c=a^{2}+b^{2}$
Area of a Triangle	$1 / 2 \times b \times h$
Perimeter of Triangle	$a+b+c$
Area of a Square	a^{2}
Perimeter of a Square	$4 a$
Area of a Rectangle	$1 \times b$
Perimeter of a Rectangle	$2(1+b)$
Area of a Circle	$\pi \times r^{2}$
Circumference of a Circle	$2 \pi r$
Surface Area of a Cube	$6 a^{2}$
Volume of a Cube	a^{3}
Volume of a Cylinder	$\pi r^{2} h$
Volume of a Cone	$1 / 3 \pi r^{2} h$
Surface Area of a Sphere	$4 \pi r^{2}$
Volume of a Sphere	$4 / 3 \pi r^{3}$
Distance Between Two Points in $3 D$	$\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
Distance of a Point From Origin	$\sqrt{ }\left(x^{2}+y^{2}+z^{2}\right)$
Midpoint of a Line Segment	$\left[1 / 2\left(x_{1}+x_{2}\right), 1 / 2\left(y_{1}+y_{2}\right), 1 / 2\left(z_{1}+z_{2}\right)\right]$
Coordinates of the Centroid of a Triangle	
	$\left.\left.x_{1}+x_{3}\right), 1 / 3\left(y_{1}+y_{2}+y_{3}\right), y_{3}\left(z_{1}+z_{2}+z_{3}\right)\right]$

Geometry Shapes Formulas for Class 8,9,10,11, 12

Geometry Shapes Formulas for Class 12

Concept	Formula
Position Vector	$O \vec{P}=\vec{r}=\sqrt{ }\left(x^{2}+y^{2}+z^{2}\right)$
Direction Ratios	$l=a r, m=b r, n=c r$
Vector Addition	$P \vec{Q}+Q \vec{R}=P \vec{R}$
Properties of Vector Addition	Commutative Property: $\vec{a}+\vec{b}=\vec{b}+$ Associative Property: $(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c}$
Vector Joining Two Points	$P 1 P \overrightarrow{2}=O P \overrightarrow{2}-O P \overrightarrow{1}$
Equation of a Line	$\left(x-x_{1}\right) / a=\left(y-y_{1}\right) / b=\left(z-z_{1}\right) / c$

