## **Geometry Shapes Formulas for Class 8**

| Name of the Solid       | Lateral / Curved Surface<br>Area        | <b>Total Surface Area</b>                       | Volume                                |
|-------------------------|-----------------------------------------|-------------------------------------------------|---------------------------------------|
| Cuboid                  | 2h(l+b)                                 | 2(lb+bh+hl)                                     | lbh                                   |
| Cube                    | 4a²                                     | 6a²                                             | 0 <sup>3</sup>                        |
| Right Prism             | Perimeter of base ×<br>height           | Lateral Surface<br>Area + 2(Area of<br>One End) | Area of Base ×<br>Height              |
| Right Circular Cylinder | 2πrh                                    | 2πr(r+h)                                        | πr²h                                  |
| Right Pyramid           | ½ × Perimeter of Base ×<br>Slant Height | Lateral Surface<br>Area + Area of the<br>Base   | ⅓ × (Area of<br>the Base) ×<br>height |
| Right Circular Cone     | πrl                                     | πr(l+r)                                         | ⅓ × πr²h                              |
| Sphere                  | 4πr²                                    | 4πr²                                            | 4/3 × πr³                             |
| Hemisphere              | 2πr²                                    | 3πr²                                            | 2/3 × πr³                             |

| <b>Geometric Figure</b> | Area                          | Perimeter         |
|-------------------------|-------------------------------|-------------------|
| Rectangle               | $A = I \times W$              | P = 2 (I+w)       |
| Triangle                | $A = 1/2 \times bh$           | P = a + b + c     |
| Trapezoid               | $A = 1/2 \times h(b_1 + b_2)$ | P = a + b + c + d |
| Parallelogram           | A = bh                        | P = 2 (a+b)       |
| Circle                  | $A = \pi r^2$                 | C = 2πr           |



| Name                                     | Formula                                         |
|------------------------------------------|-------------------------------------------------|
| Area of Triangle                         | Area= ½ × base × height                         |
| Pythagorean Theorem                      | $a^2 + b^2 = c^2$                               |
| Area of a Circle                         | Area = πr²                                      |
| Circumference of a Circle                | C = 2пr or пd                                   |
| Area of a Parallelogram                  | Area = base × height                            |
| Area of a Trapezoid                      | Area = ½ × (base1 + base2) × height             |
| Area of a Kite or a Rhombus              | Area = ½ × (diagonal1 × diagonal2)              |
| Area of a Square                         | Area = side <sup>2</sup>                        |
| Area of a Regular Polygon                | Area = ½ × perimeter × apothem                  |
| Number of Diagonal in n-sided<br>Polygon | Diagonals = ½ × n(n-3)                          |
| Slope                                    | $m = (y_2 - y_1)/(x_2 - x_1) = rise/run$        |
| Midpoint Formula                         | $(x_{mp}, y_{mp}) = [(x_2+x_1)/2][(y_2+y_1)/2]$ |
| Distance Formula                         | $d = \sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}$    |
| Equation of a Circle                     | $(x-h)^{2}+(y-k)^{2}=r^{2}$                     |



| Pythagoras Theorem Formula                | $c = a^2 + b^2$                                                                                              |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Area of a Triangle                        | ½×b×h                                                                                                        |
| Perimeter of Triangle                     | a + b + c                                                                                                    |
| Area of a Square                          | Q <sup>2</sup>                                                                                               |
| Perimeter of a Square                     | 4a                                                                                                           |
| Area of a Rectangle                       | I×b                                                                                                          |
| Perimeter of a Rectangle                  | 2 (I + b)                                                                                                    |
| Area of a Circle                          | π×r²                                                                                                         |
| Circumference of a Circle                 | 2πr                                                                                                          |
| Surface Area of a Cube                    | 6a²                                                                                                          |
| Volume of a Cube                          | Q <sup>3</sup>                                                                                               |
| Volume of a Cylinder                      | πr²h                                                                                                         |
| Volume of a Cone                          | ⅓ πr²h                                                                                                       |
| Surface Area of a Sphere                  | 4πr²                                                                                                         |
| Volume of a Sphere                        | 4/3 πr³                                                                                                      |
| Distance Between Two Points in 3D         | $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$                                                     |
| Distance of a Point From Origin           | $\sqrt{(\chi^2 + \gamma^2 + z^2)}$                                                                           |
| Midpoint of a Line Segment                | $[\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2), \frac{1}{2}(z_1 + z_2)]$                                   |
| Coordinates of the Centroid of a Triangle | $\left[ \frac{1}{3} (x_1 + x_2 + x_3), \frac{1}{3} (y_1 + y_2 + y_3), \frac{1}{3} (z_1 + z_2 + z_3) \right]$ |



| Concept                       | Formula                                                                                                                                             |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Position Vector               | $O\vec{P} = \vec{r} = \sqrt{\left(x^2 + y^2 + z^2\right)}$                                                                                          |
| Direction Ratios              | l=ar, m=br, n=cr                                                                                                                                    |
| Vector Addition               | $P\vec{Q} + Q\vec{R} = P\vec{R}$                                                                                                                    |
| Properties of Vector Addition | Commutative Property:<br>$\vec{a} + \vec{b} = \vec{b} + \text{Associative Property:} \vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ |
| Vector Joining Two Points     | $P_1 P \vec{2} = O P \vec{2} - O P \vec{1}$                                                                                                         |
| Equation of a Line            | $(x-x_1)/a=(y-y_1)/b=(z-z_1)/c$                                                                                                                     |

