Geometry Formulas

2D Geometry Formulas

Area Formulas

Area of a square: $A = s^2$

Area of a rectangle: $A = l \cdot w$

s = Side of the Square I = length of the rectangle

Area of a triangle: $A = \frac{1}{2} \cdot b \cdot h$

Area of a parallelogram: $A = b \cdot h$

Area of a circle: $A = \pi r^2$

Perimeter Formulas

Perimeter of a square: P = 4s

Perimeter of a rectangle: P = 2(l + w)

Perimeter of a triangle: P = a + b + c

Perimeter (circumference) of a circle: $C = 2\pi r$

Triangle Formulas

a, b, and c are the lengths of the sides).

Area Formulas

Standard Area Formula:

Heron's Formula :

$$S = \frac{a+b+c}{2}$$
 (for sides a, b, c and semi-perimeter s):

$$Area= \sqrt{s(s-a)(s-b)(s-c)}$$

Area of an Equilateral Triangle:

Area =
$$\frac{\sqrt{3}}{4}$$
 x a² (where a is the length of a side

Triangle Formulas

Perimeter Formulas

Standard Area Formula:

Heron's Formula :

S =
$$\frac{a+b+c}{2}$$
 (for sides a, b, c and semi-perimeter s):

Area
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Area of an Equilateral Triangle:

Area =
$$\frac{\sqrt{3}}{4}$$
 x a^2

(where a is the length of a side).

Perimeter Formulas

Length of Median

$$m_a=\sqrt{rac{2b^2+2c^2-a^2}{4}}$$

Triangle Formulas

Perimeter Formulas

Altitude

$$h = \frac{2 \times \text{Area}}{\text{base}}$$

(perpendicular segment from a vertex to the line containing the opposite side):

Angle Bisector

$$l_a = \sqrt{bc\left(1-rac{a^2}{(b+c)^2}
ight)}$$

(line segment that splits an angle into two equal angles)

Circle Formulas Related to Triangles

Circumradius

$$R=rac{abc}{4 imes {
m Area}}$$
 (radius of the circumscribed circle):

Inradius

$$r=rac{\mathrm{Area}}{s}$$
 (radius of the inscribed circle):

Exradius

$$r_a=rac{\mathrm{Area}}{s-a}$$
 (radius of the excircle opposite side a):

Square Formulas

(a is the lengths of the sides).

Area of a Square

$$A = a^2$$

The area (A) of a square is the space contained within its four sides.

Perimeter of a Square

P = 4a

(a = length of one side of the square) The perimeter (P) of a square is the total distance around the outside of the square.

Diagonal of a Square

$$d = a\sqrt{2}$$

(a = length of one side of the square) The diagonal (d) of a square is the line segment connecting two opposite corners.

Circumcircle of a Square

 $R=rac{a\sqrt{2}}{2}=rac{d}{2}$ (The circumcircle is a circle that passes through all four vertices of the square.)

Incircle of a Square

(The incircle is a circle that is tangent to all four sides of the square.)

Relationship Between Diagonal and Side Length

Rectangle Formulas

Area

 $Area = Length \times Width$

(The area of a rectangle is the amount of space enclosed within its sides.)

Perimeter

${ m Perimeter}=2 imes({ m Length}+{ m Width}) egin{array}{l} ({ m The area of a rectangle is the amount} \ { m of space enclosed within its sides.}) \end{array}$

Diagonal of a rectangle

$$Diagonal = \sqrt{(Length^2 + Width^2)}$$

(The diagonal of a rectangle is the line segment connecting two opposite corners. It can be calculated using the Pythagorean theorem.)

Length (Given Area and Width)

$$Length = \frac{Area}{Width}$$

(If you know the area and width, you can find the length.)

Length (Given Perimeter and Width)

Width =
$$\frac{\text{Area}}{\text{Length}}$$

(If you know the area and length, you can find the width.)

Width (Given Perimeter and Length)

$${
m Length}=rac{{
m Perimeter}}{2}-{
m Width}$$
 (If you know the perimeter and width, you can find the length)

circle Formulas

Circumference

 $C = 2\pi r$

C: Circumference r : Radius π (pi): Approximately 3.14159

Area

 $A = \pi r^2$

A: Area r : Radius π (pi): Approximately 3.14159

Diameter

$$D=2r$$

The diameter is the distance across the circle, passing through the center. It is twice the radius. D: Diameter r : Radius

Radius

The radius is the distance from the center of the circle to any point on its circumference. D: Diameter r : Radius

Equation of a Circle (Standard Form)

$$(x - h)^2 + (y - k)^2 = r^2$$

The standard form equation of a circle with its center at (h,k) and radius r is: (h,k): Coordinates of the center

(x,y): Coordinates of any point on the circle

Equation of a Circle (General Form)

$$x^{2} + y^{2} + Dx + Ey + F = 0$$

D, E, F: Constants

To convert from the standard form to the general form, expand and rearrange the standard form equation.

3D Geometry Formulas

Surfac Area Formulas

Surface Area of Cube : $6a^2$

Area of Rectangular Prism : 2(lw + lh + wh)

Surface Area of Sphere : $4\pi r^2$

Surface Area Cylinder: $2\pi r(h+r)$

Surface Area of Cone: $\pi r(r + \sqrt{h^2 + r^2})$

Area (Square Base of Pyramid): $B + \frac{1}{2}P\ell$

Area of Triangular Prism: $bh + (s_1 + s_2 + s_3)l$

Volume Formulas

Volume of a cube: $V = s^3$

Volume of a rectangular prism: $V = l \cdot w \cdot h$

Volume of a cylinder: $V = \pi r^2 h$

Volume of a cone:
$$V = \frac{1}{3}\pi r^2 h$$

Cube Formulas

Surface Area

$$A = 6s^2$$

The surface area (A) of a cube is the total area of all six faces.

Volume

$$V = s^3$$

The volume (V) of a cube is the amount of space enclosed within the cube.

Diagonal of a Face

$$d_f = s\sqrt{2}$$

The diagonal (d_f) of any face of the cube can be found using the Pythagorean theorem.

Space Diagonal

$$d_s = s\sqrt{3}$$

The space diagonal (d_s) of the cube, it can be found using the threedimensional Pythagorean theorem.

Perimeter of One Face

$$P_f = 4s$$

The perimeter (P_f) of one face of the cube is the sum of the lengths of the four edges forming that face.

Total Edge Length

$$E = 12s$$

The total edge length (E) of a cube is the sum of the lengths of all twelve edges.

Cuboid Formulds

Surface Area

A=2(lw+lh+wh) area of all six faces of the

The surface area is the total cuboid.

Length (I)

• Width (w)

Height (h)

Volume

$$V = l \times w \times h$$

The volume of a cuboid is the amount of space it occupies.

Diagonal Length

$$D = \sqrt{l^2 + w^2 + h^2}$$

The diagonal of a cuboid stretches from one vertex to the opposite vertex through the interior of the cuboid.

Face Diagonals

Face Diagonal on Length and Width (Front/Back Face)

Face Diagonal (l, w) =
$$\sqrt{l^2 + w^2}$$

Face Diagonal on Length and Width (Front/Back Face)

Face Diagonal (l, h)
$$= \sqrt{l^2 + h^2}$$

Face Diagonal on Length and Width (Front/Back Face)

Face Diagonal (w, h) =
$$\sqrt{w^2 + h^2}$$

Cuboid Formulas

Perimeter of Edges

Total Edge Length = 4(l+w+h) The total perimeter of all the edges of a cuboid.

Lateral Surface Area

Lateral Surface ${
m Area}=2h(l+w)$ cuboid is the sum of the areas of

the four vertical faces.

Cone Formulas

Volume of a Cone

	_		The volume V of a cone can be calculated using
Τ 7	1	21	the following formula:

the following formula:

- r is the radius of the base
- h is the height of the cone

Surface Area

a. Base Area

$$A_{\rm base} = \pi r^2$$

b. Lateral Surface Area

$$A_{\text{lateral}} = \pi r l$$

c. Total Surface Area

$$l=\sqrt{r^2+h^2}$$

Total Edge Length

$$A = \pi r (r + l)$$

The slant height I is the distance from the base to the apex along the surface of the cone.

Cylinder Formulas

- V is the volume
- r is the radius of the base
- h is the height

Surface Area

 $A = 2\pi r(r + h)$

$$V = \pi r^2 h$$

Lateral Surface Area (Curved Surface Area)

$$A_{\rm lateral} = 2\pi rh$$

Area of the Circular Bases

$$A_{\rm base} = \pi r^2$$

Total Surface Area Calculation

$$egin{aligned} A_{ ext{total}} &= A_{ ext{lateral}} + 2A_{ ext{base}} \ A_{ ext{total}} &= 2\pi rh + 2\pi r^2 \ A_{ ext{total}} &= 2\pi r(r+h) \end{aligned}$$

Sphere Formulas

- r = Radius of the sphere
- π (Pi) = Approximately 3.14159

Surface Area

9 $\left(\Lambda - \Omega \right)$

$$A = 4\pi r^2$$
 (A = Surface Area)

Volume

$$V=rac{4}{3}\pi r^3$$
 (V = Volume)

Lateral Surface Area (Curved Surface Area)

$$C = 2\pi r$$

C = Circumference of the great circle

Area of the Circular Bases

$$(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2$$

- (x, y, z) = Coordinates of any point on the surface of the sphere
- (h, k, l) = Coordinates of the center of the sphere

Pyrmid Formulas

SA = B + Lateral Surface Area

Square Base	Rectangular Base	Triangular Base
$B = a^2$	$B = l \times w$	$B = \frac{1}{2} \times b \times h_b$

Volume

$$V = \frac{1}{3} \times B \times h$$

Lateral surface area (regular pyramid)

$$LateralSurfaceArea = \frac{1}{2} \times P \times s$$

Slant height (square base and rectangular base)

$$s = \sqrt{\left(\frac{a}{2}\right)^2 + h^2}$$

Perimeter (square base, rectangular base & triangular base)

Ellipsoid Formulas

Surface Area

$$C \sim A - \left(\left(a^p b^p + a^p c^p + b^p c^p \right) \right)^{\frac{1}{p}}$$
 ---b are ~ 1.6075

where $p \approx 1.0075$

Volume

$$V = \frac{4}{3}\pi abc$$

Eccentricity of an Ellipsoid

$$e_{xy} = \sqrt{1 - \frac{b^2}{a^2}}$$

Slant height (square base and rectangular base)

$$e_{xz} = \sqrt{1 - \frac{c^2}{a^2}}$$

Perimeter (square base, rectangular base & triangular base)

$$e_{yz}=\sqrt{1-rac{c^2}{b^2}}$$

Prism Formulas

- P is the perimeter of the base
- h is the height of the prism

V=B imes h The volume V of a prism

Surface Area

SA=2B+Ph The surface area SA of a prism

Lateral Surface Area of a Prism

LSA = P imes h The lateral surface area LSA

Base Area Formulas for Specific Prisms

Rectangular Prism

$$B = l \times w$$

 $P = 2(l + w)$

- B is Area of the base
- P is Perimeter of the base
- I is the length
- w is the width

Triangular Prism

• P is Perimeter of the base

$$B = rac{1}{2}b imes h_b$$
 , b is the base length of the triangle
 $P = a + b + c$, b is the base length of the triangle
width
• a, b, and c are the side lengths of the triangle

Cylinder (as a Circular Prism)

$$B = \pi r^2$$
$$P = 2\pi r$$

- B is the Area of the base
- r is the radius of the base
- P is the Perimeter of the base

Geometry Shapes Formulas for Class 8

Name of the Solid	Lateral / Curved Surface Area	Total Surface Area	Volume
Cuboid	2h(l+b)	2(lb+bh+hl)	lbh
Cube	4a²	6a²	0 ³
Right Prism	Perimeter of base × height	Lateral Surface Area + 2(Area of One End)	Area of Base × Height
Right Circular Cylinder	2πrh	2πr(r+h)	πr²h
Right Pyramid	½ × Perimeter of Base × Slant Height	Lateral Surface Area + Area of the Base	⅓ × (Area of the Base) × height
Right Circular Cone	πrl	πr(l+r)	⅓ × πr²h
Sphere	4πr²	4πr²	4/3 × πr³
Hemisphere	2πr²	3πr²	2/3 × πr³

Geometric Figure	Area	Perimeter
Rectangle	$A = I \times W$	P = 2 (I+w)
Triangle	$A = 1/2 \times bh$	P = a + b + c
Trapezoid	$A = 1/2 \times h(b_1 + b_2)$	P = a + b + c + d
Parallelogram	A = bh	P = 2 (a+b)
Circle	$A = \pi r^2$	C = 2πr

Name	Formula
Area of Triangle	Area= ½ × base × height
Pythagorean Theorem	$a^2 + b^2 = c^2$
Area of a Circle	Area = πr²
Circumference of a Circle	C = 2пr or пd
Area of a Parallelogram	Area = base × height
Area of a Trapezoid	Area = ½ × (base1 + base2) × height
Area of a Kite or a Rhombus	Area = ½ × (diagonal1 × diagonal2)
Area of a Square	Area = side ²
Area of a Regular Polygon	Area = ½ × perimeter × apothem
Number of Diagonal in n-sided Polygon	Diagonals = ½ × n(n-3)
Slope	$m = (y_2 - y_1)/(x_2 - x_1) = rise/run$
Midpoint Formula	$(x_{mp}, y_{mp}) = [(x_2+x_1)/2][(y_2+y_1)/2]$
Distance Formula	$d = \sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}$
Equation of a Circle	$(x-h)^{2}+(y-k)^{2}=r^{2}$

Pythagoras Theorem Formula	$c = a^2 + b^2$
Area of a Triangle	½×b×h
Perimeter of Triangle	a + b + c
Area of a Square	Q ²
Perimeter of a Square	4a
Area of a Rectangle	I×b
Perimeter of a Rectangle	2 (I + b)
Area of a Circle	π×r²
Circumference of a Circle	2πr
Surface Area of a Cube	6a²
Volume of a Cube	Q ³
Volume of a Cylinder	πr²h
Volume of a Cone	⅓ πr²h
Surface Area of a Sphere	4πr²
Volume of a Sphere	4/3 πr³
Distance Between Two Points in 3D	$\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$
Distance of a Point From Origin	$\sqrt{(\chi^2 + \gamma^2 + z^2)}$
Midpoint of a Line Segment	$[\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2), \frac{1}{2}(z_1 + z_2)]$
Coordinates of the Centroid of a Triangle	$\left[\frac{1}{3} (x_1 + x_2 + x_3), \frac{1}{3} (y_1 + y_2 + y_3), \frac{1}{3} (z_1 + z_2 + z_3) \right]$

Concept	Formula
Position Vector	$O\vec{P} = \vec{r} = \sqrt{\left(x^2 + y^2 + z^2\right)}$
Direction Ratios	l=ar, m=br, n=cr
Vector Addition	$P\vec{Q} + Q\vec{R} = P\vec{R}$
Properties of Vector Addition	Commutative Property: $\vec{a} + \vec{b} = \vec{b} + \text{Associative Property:} \vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$
Vector Joining Two Points	$P_1 P \vec{2} = O P \vec{2} - O P \vec{1}$
Equation of a Line	$(x-x_1)/a=(y-y_1)/b=(z-z_1)/c$

Area Formulas in 2D and 3D Geometry

2D Shapes

Rectangle

$$\mathbf{l} = l imes w$$
 where I is the length and w is the width.

Square

$$s=s^2$$
 where s is the side length.

Triangle

$$A=rac{1}{2}b imes h$$
 where b is the base and h is the height

Circle

Parallelogram

A=b imes h where b is the base and h is the height.

Trapezoid

where bl and b2 are the lengths

$$A=rac{1}{2}(b_1+b_2) imes h$$
 of the two parallel sides, and h is the height.

Rhombus

$$A=rac{1}{2}d_1 imes d_2$$
 $\stackrel{ ext{where d1}}{ ext{and d2}}$ are the lengths of the diagonals

Ellipse

 $A=\pi a imes b$ where a is the semi-major axis and b is the semi-minor axis.

Area Formulas in 2D and 3D Geometry

3D Shapes

Cube

 $A=6s^2$ where s is the side length.

Rectangular Prism

$$A=2(lw+lh+wh)\,$$
 where I is the length, w is the width, and hhh is the height

Sphere $A=4\pi r^2$ where r is the radius.

Cylinder

$$A=2\pi r(r+h)$$
 where r is the radius and h is the height.

Cone

$$A=\pi r(r+l)$$
 where r is the radius and I is the slant height.

Triangular Prism

$A=bh+Ph_{ m and P}$ is the base area, h is the height, and P is the perimeter of the base.

Volume Formulas 3D Geometry

Rectangular Prism

$$V = l \times w \times h$$

where I is the length, w is the width, and h is the height.

Cylinder

$$V=\pi r^2 h$$
 where r is the radius and h is the height.

Cone

$$V=rac{1}{3}\pi r^2h$$
 where r is the radius and h is the height.

Sphere

$$V = \frac{4}{3}\pi r^3$$

where r is the radius.

$$V=rac{1}{3}Bh$$
 where b is the base area, h is the height, and P

Triangular Prism

$$V = \frac{1}{2}bh_pL$$

where b is the base area, h is the height, and P is the perimeter of the base.

Perimeter Formulas 2D Geometry

2D Shapes

Triangle

$$P = a + b + c$$

Where a is the edge length.where b and c are the lengths of the sides.

Square

P = 4a

Where a is the length of a side.

Rectangle

$$P = 2(l+w)$$

where I is the length and w is the width.

Parallelogram

$$P = 2(a + b)$$

where a and b are the lengths of the adjacent sides.

Rhombus

$$P = 4a$$

where a is the length of a side.

Trapezoid

P=a+b+c+d where a,b,c and d are the lengths of the sides

 $C = 2\pi r$

where r is the radius.

Perimeter Formulas 2D Geometry

3D Shapes

Cube (Base is a Square)

$P_{base} = 4a$ Where a is the length of a side of the base.

Rectangular Prism (Base is a Rectangle)

$$P_{base} = Z(l + w)$$

2(l+w) Where I is the length and w is the width of the base.

Triangular Prism (Base is a Triangle)

$$P_{base} = a + b + c\,$$
 Where a,b and c are the lengths of the sides of the bas

Cylinder (Base is a Circle)

$$P_{base} = 2\pi r$$

Where r is the radius of the base

Pyramid (Base can be any Polygon)

Square Pyramid :
$$P_{base} = 4a$$
 (Where a, b, and c are the side lengths of the base)

Square Pyramid :
$$P_{base} = 2(l+w)$$

Square Pyramid:
$$P_{base} = a + b + c$$

