Geometry Formulas

Square

Rectangle

Cube
Cuboid

Sphere

Cone

Ellipsoid

Triangle

Trapezoid

Cylinder

Prism

Ex Examples.com

2D Geometry Formulas

Area Formulas

Area of a square: $A=s^{2}$

Area of a rectangle: $\quad A=l \cdot w$
$s=$ Side of the Square
$\mathrm{I}=$ length of the rectangle

Area of a triangle: $\quad A=\frac{1}{2} \cdot b \cdot h$

Area of a parallelogram: $A=b \cdot h$

Area of a circle: $\quad A=\pi r^{2}$

Perimeter Formulas

Perimeter of a square: $P=4 s$

Perimeter of a rectangle: $\quad P=2(l+w)$

Perimeter of a triangle: $P=a+b+c$

Perimeter (circumference) of a circle: $C=2 \pi r$

Triangle Formulas

a, b, and c are the lengths of the sides).

Area Formulas

Standard Area Formula:

$$
\text { Area }=1 / 2 \times \text { base } \times \text { height }
$$

Heron's Formula :

$$
S=\frac{a+b+c}{2} \quad \begin{gathered}
\text { for sides } a, b, c \text { and } \\
\text { semi-perimeter } s):
\end{gathered}
$$

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

Area of an Equilateral Triangle:

$$
\text { Area }=\frac{\sqrt{3}}{4} \times a^{2} \quad \begin{gathered}
\text { (where } a \text { is the } \\
\text { length of } a \text { side) }
\end{gathered}
$$

Triangle Formulas

Perimeter Formulas

Standard Area Formula:

Area $=1 / 2 \times$ base \times height

Heron's Formula :

$$
S=\frac{a+b+c}{2} \quad \begin{gathered}
\text { (for sides } a, b, c \text { and } \\
\text { semi-perimeter } s):
\end{gathered}
$$

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

Area of an Equilateral Triangle:

$$
\text { Area }=\frac{\sqrt{3}}{4} \times a^{2} \quad \begin{gathered}
\text { (where } a \text { is the } \\
\text { length of } a \text { side }) .
\end{gathered}
$$

Perimeter Formulas

Length of Median

$$
m_{a}=\sqrt{\frac{2 b^{2}+2 c^{2}-a^{2}}{4}}
$$

Triangle Formulas

Perimeter Formulas

Altitude

$$
h=\frac{2 \times \text { Area }}{\text { base }} \quad \begin{aligned}
& \text { (perpendicular segment from a vertex to } \\
& \text { the line containing the opposite side): }
\end{aligned}
$$

Angle Bisector

$$
l_{a}=\sqrt{b c\left(1-\frac{a^{2}}{(b+c)^{2}}\right)} \quad \begin{gathered}
\text { (line segment that splits an angle } \\
\text { into two equal angles) }
\end{gathered}
$$

Circle Formulas Related to Triangles

Circumradius

$$
R=\frac{a b c}{4 \times \text { Area }} \quad \text { (radius of the circumscribed circle): }
$$

Inradius

$$
r=\frac{\text { Area }}{s} \quad \text { (radius of the inscribed circle): }
$$

Exradius

$$
r_{a}=\frac{\text { Area }}{s-a} \quad \text { (radius of the excircle opposite side a): }
$$

Ex Examples.com

Square Formulas

(a is the lengths of the sides).

Area of a Square

$$
A=a^{2} \quad \begin{gathered}
\text { The area (A) of a square is the space } \\
\text { contained within its four sides. }
\end{gathered}
$$

Perimeter of a Square

$$
P=4 a \quad \begin{gathered}
(a=\text { length of one side of the square })
\end{gathered} \begin{gathered}
\text { The perimeter (P) of a square is the total } \\
\text { distance around the outside of the square. }
\end{gathered}
$$

Diagonal of a Square

$$
d=a \sqrt{2} \quad \begin{gathered}
\begin{array}{c}
(\mathrm{a}=\text { length of one side of the square }) \\
\text { The diagonal }(\mathrm{d}) \text { of a square is the line } \\
\text { segment connecting two opposite corners. }
\end{array}
\end{gathered}
$$

Circumcircle of a Square

$$
R=\frac{a \sqrt{2}}{2}=\frac{d}{2} \quad \begin{aligned}
& \text { (The circumcircle is a circle that passes } \\
& \text { through all four vertices of the square.) }
\end{aligned}
$$

Incircle of a Square

$$
r=\frac{a}{2} \quad \begin{gathered}
\text { (The incircle is a circle that is tangent to all } \\
\text { four sides of the square.) }
\end{gathered}
$$

Relationship Between Diagonal and Side Length

$$
a=\frac{d}{\sqrt{2}} \quad \text { If the diagonal }(\mathrm{d}) \text { is known, the side }
$$

Rectangle Formulas

Area

Area $=$ Length \times Width
(The area of a rectangle is the amount of space enclosed within its sides.)

Perimeter

$$
\text { Perimeter }=2 \times(\text { Length }+ \text { Width }) \begin{aligned}
& \text { (The area of a rectangle is the amount } \\
& \text { of space enclosed within its sides.) }
\end{aligned}
$$

Diagonal of a rectangle

Diagonal $=\sqrt{\left(\text { Length }^{2}+\text { Width }^{2}\right)}$
(The diagonal of a rectangle is the line segment connecting two opposite corners. It can be calculated using the Pythagorean theorem.)

Length (Given Area and Width)

$$
\text { Length }=\frac{\text { Area }}{\text { Width }}
$$

(If you know the area and width, you can find the length.)

Length (Given Perimeter and Width)

Width $=\frac{\text { Area }}{\text { Length }}$
(If you know the area and length, you can find the width.)

Width (Given Perimeter and Length)

$$
\text { Length }=\frac{\text { Perimeter }}{2}-\text { Width } \begin{gathered}
\text { (If fou know the perimeter and width, you can find } \\
\text { the length) }
\end{gathered}
$$

Circle Formulas

Circumference

$$
C=2 \pi r \quad \begin{aligned}
& \text { c: Circumference } \\
& r: \text { Radius } \\
& \pi(\text { pi): Approximately } 3.14159
\end{aligned}
$$

Area

$$
A=\pi r^{2} \quad \begin{aligned}
& \text { A:Area } \\
& \text { r:Radius } \\
& \pi(\mathrm{pi}): \text { Approximately } 3.14159
\end{aligned}
$$

Diameter

$$
D=2 r \begin{aligned}
& \text { The diameter is the distance across the circle, } \\
& \text { passing through the center. It is twice the radius. } \\
& \text { D: Diameter } \\
& r: \text { Radius }
\end{aligned}
$$

Radius

$$
\boldsymbol{P}=\frac{D}{2} \quad \begin{aligned}
& \text { The radius is the distance from the center of the circle } \\
& \text { to any point on its circumference. } \\
& \text { D: Diameter } \\
& \mathrm{r}: \text { Radius }
\end{aligned}
$$

Equation of a Circle (Standard Form)

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

The standard form equation of a circle with its center at (h, k) and radius r is:
(h, k) : Coordinates of the center
(x, y) : Coordinates of any point on the circle

Equation of a Circle (General Form)

$$
x^{2}+y^{2}+D x+E y+F=0 \begin{aligned}
& \text { D, E, F: Constants } \\
& \text { To convert from the standard form to the general form, } \\
& \text { expand and rearrange the standard form equation. }
\end{aligned}
$$

3D Geometry Formulas

Surfac Area Formulas

Surface Area of Cube : $6 a^{2}$
Area of Rectangular Prism : $\quad 2(l w+l h+w h)$
Surface Area of Sphere: $\quad 4 \pi r^{2}$
Surface Area Cylinder: $\quad 2 \pi r(h+r)$
Surface Area of Cone: $\pi r\left(r+\sqrt{h^{2}+r^{2}}\right)$
Area (Square Base of Pyramid): $\quad B+\frac{1}{2} P \ell$
Area of Triangular Prism: $\quad b h+\left(s_{1}+s_{2}+s_{3}\right) l$

Volume Formulas

Volume of a cube: $\quad V=s^{3}$
Volume of a rectangular prism: $\quad V=l \cdot w \cdot h$
Volume of a cylinder: $V=\pi r^{2} h$
Volume of a cone: $\quad V=\frac{1}{3} \pi r^{2} h$

Cube Formulas

 ($s=$ side length of the cube)
Surface Area

$$
A=6 s^{2}
$$

The surface area (A) of a cube is the total area of all six faces.

Volume

$$
V=S^{3} \quad \begin{aligned}
& \text { The volume }(\mathrm{v}) \text { of a cube is the } \\
& \text { amount of space enclosed } \\
& \text { within the cube. }
\end{aligned}
$$

Diagonal of a Face

$$
d_{f}=s \sqrt{2}
$$

The diagonal (d_f) of any face of the cube can be found using the Pythagorean theorem.

Space Diagonal

$$
d_{s}=s \sqrt{3}
$$

The space diagonal (d_s) of the cube, it can be found using the threedimensional Pythagorean theorem.

Perimeter of One Face

$$
P_{f}=4 s
$$

The perimeter ($P_{-} f$) of one face of the cube is the sum of the lengths of the four edges forming that face.

Total Edge Length

$$
\mathcal{H}=12 s \quad \begin{aligned}
& \text { The total edge length (E) of a cube is the } \\
& \text { sum of the lengths of all twelve edges. }
\end{aligned}
$$

Cuboid Formulas

Surface Area

- Length (I)
- Width (w)
- Height (h)

$$
A=2(l w+l h+w h) \begin{aligned}
& \text { The surface area is the total } \\
& \text { area of all six faces of the } \\
& \text { cuboid. }
\end{aligned}
$$

Volume

$$
V=l \times w \times h \quad \begin{aligned}
& \text { The volume of a cuboid is the } \\
& \text { amount of space it occupies. }
\end{aligned}
$$

Diagonal Length

$$
D=\sqrt{l^{2}+w^{2}+h^{2}}
$$

The diagonal of a cuboid stretches from one vertex to the opposite vertex through the interior of the cuboid.

Face Diagonals

- Face Diagonal on Length and Width (Front/Back Face)

$$
\text { Face Diagonal }(\mathrm{l}, \mathrm{w})=\sqrt{l^{2}+w^{2}}
$$

- Face Diagonal on Length and Width (Front/Back Face)

$$
\text { Face Diagonal }(\mathrm{l}, \mathrm{~h})=\sqrt{l^{2}+h^{2}}
$$

- Face Diagonal on Length and Width (Front/Back Face)

$$
\text { Face Diagonal }(\mathrm{w}, \mathrm{~h})=\sqrt{w^{2}+h^{2}}
$$

Cuboid Formulas

Perimeter of Edges

$$
\text { Total Edge Length }=4(l+w+h) \begin{aligned}
& \text { The total perimeter of all } \\
& \text { the edges of a cuboid. }
\end{aligned}
$$

Lateral Surface Area

$$
\text { Lateral Surface Area }=2 h(l+w) \begin{aligned}
& \text { The lateral surface area of a } \\
& \text { cuboid is the sum of the area } \\
& \text { the four vertical faces. }
\end{aligned}
$$

Cone Formulas

Volume of a Cone

$$
V=\frac{1}{3} \pi r^{2} h
$$

The volume V of a cone can be calculated using the following formula:

- r is the radius of the base
- h is the height of the cone

Surface Area

a. Base Area

$$
A_{\mathrm{base}}=\pi r^{2}
$$

b. Lateral Surface Area

$$
A_{\text {lateral }}=\pi r l
$$

c. Total Surface Area

$$
l=\sqrt{r^{2}+h^{2}}
$$

Total Edge Length

$$
A=\pi r(r+l)
$$

The slant height I is the distance from the base to the apex along the surface of the cone.

Cylinder Formulas

Surface Area

$$
A=2 \pi r(r+h)
$$

Volume

$$
V=\pi r^{2} h
$$

Lateral Surface Area (Curved Surface Area)

$$
A_{\text {lateral }}=2 \pi r h
$$

Area of the Circular Bases

$$
A_{\text {base }}=\pi r^{2}
$$

Total Surface Area Calculation

$$
\begin{aligned}
& A_{\text {total }}=A_{\text {lateral }}+2 A_{\text {base }} \\
& A_{\text {total }}=2 \pi r h+2 \pi r^{2} \\
& A_{\text {total }}=2 \pi r(r+h)
\end{aligned}
$$

Ex Examples.com

Sphere Formulas

- $r=$ Radius of the sphere
- \quad (Pi) = Approximately 3.14159

Surface Area

$$
A=4 \pi r^{2} \quad(\mathrm{~A}=\text { Surface Area })
$$

Volume

$$
V=\frac{4}{3} \pi r^{3} \quad(\mathrm{~V}=\text { volume })
$$

Lateral Surface Area (Curved Surface Area)

$$
C=2 \pi r \quad \begin{aligned}
& \text { c }=\text { Circumference of } \\
& \text { the great circle }
\end{aligned}
$$

Area of the Circular Bases

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2} \\
\bullet(x, y, z)=\text { Coordinates of any point on the } \\
\quad \begin{array}{l}
\text { surface of the sphere }
\end{array} \\
\bullet(h, k, l)=\text { Coordinates of the center of the } \\
\\
\text { sphere }
\end{gathered}
$$

Ex Examples.com

Pyrmid Formulas

- $r=$ Radius of the sphere
- $\Pi(\mathrm{Pi})=$ Approximately 3.14159

Surface Area

$$
S A=B+\text { Lateral Surface Area }
$$

Square Base

$$
B=a^{2} \quad B=l \times w \quad B=\frac{1}{2} \times b \times h_{b}
$$

Volume

$$
V=\frac{1}{3} \times B \times h
$$

Lateral surface area (regular pyramid)

$$
\text { LateralSurfaceArea }=\frac{1}{2} \times P \times s
$$

Slant height (square base and rectangular base)

$$
s=\sqrt{\left(\frac{a}{2}\right)^{2}+h^{2}}
$$

Perimeter (square base, rectangular base \& triangular base)

Square Base

$$
P=4 a
$$

Rectangular Base

$$
P=2(l+w)
$$

$$
P=a+b+c
$$

Ellipsoid Formulas

Surface Area

$$
S \approx 4 \pi\left(\frac{\left(a^{p} b^{p}+a^{p} c^{p}+b^{p} c^{p}\right)}{3}\right)^{\frac{1}{p}} \quad \text { where } \quad p \approx 1.6075
$$

Volume

$$
V=\frac{4}{3} \pi a b c
$$

Eccentricity of an Ellipsoid

$$
e_{x y}=\sqrt{1-\frac{b^{2}}{a^{2}}}
$$

Slant height (square base and rectangular base)

$$
e_{x z}=\sqrt{1-\frac{c^{2}}{a^{2}}}
$$

Perimeter (square base, rectangular base \& triangular base)

$$
e_{y z}=\sqrt{1-\frac{c^{2}}{b^{2}}}
$$

Prism Formulas

Volume

- B is the area of the base
- P is the perimeter of the base
- h is the height of the prism

$$
V=B \times h \quad \text { The volume } v \text { of a prism }
$$

Surface Area

$$
S A=2 B+P h \text { the surface area } S A \text { of a prism }
$$

Lateral Surface Area of a Prism

$L S A=P \times h \quad$ The lateral surface area $L S A$

Base Area Formulas for Specific Prisms

Rectangular Prism

$$
\begin{array}{ll}
B=l \times w & \bullet \mathrm{~B} \text { is Area of the base } \\
P=2(l+w) & \bullet \mathrm{P} \text { is Perimeter of the base } \\
\bullet \text { is the length } \\
\bullet w \text { is the width }
\end{array}
$$

Triangular Prism

$$
B=\frac{1}{2} b \times h_{b} \begin{aligned}
& \stackrel{\mathrm{P} \text { is Perimeter of the base }}{\bullet \mathrm{b}_{\mathrm{b}} \text { is the base length of the triangle }} \begin{array}{l}
\bullet \mathrm{h} \text { is the height of the trianglew is the } \\
\text { width }
\end{array} \\
& P=a+b+c \begin{array}{l}
\text { en, and c are the side lengths of the } \\
\text { triangle }
\end{array}
\end{aligned}
$$

Cylinder (as a Circular Prism)

$$
\begin{array}{ll}
B=\pi r^{2} & \cdot B \text { is the Area of the base } \\
P=2 \pi r & \cdot \mathrm{r} \text { is the radius of the base } \\
P \text { is the Perimeter of the base }
\end{array}
$$

Geometry Shapes Formulas for Class 8,9,10,11, 12

Geometry Shapes Formulas for Class 8

Name of the Solid	Lateral / Curved Surface Area	Total Surface Area	Volume
Cuboid	$2 \mathrm{~h}(\mathrm{l}+\mathrm{b})$	$2(\mathrm{lb+bh+hl})$	Ibh
Cube	$4 \mathrm{a}^{2}$	$6 a^{2}$	a^{3}
Right Prism	Perimeter of base \times height	Lateral Surface Area $+2($ Area of One End $)$	Area of Base \times Height
Right Circular Cylinder	$2 \pi r h$	$2 \pi r(r+h)$	$\pi r^{2} h$
Right Pyramid	$1 / 2 \times$ Perimeter of Base \times Slant Height	Lateral Surface Area + Area of the Base	$1 / 3 \times($ Area of the Base $) \times$ $h e i g h t ~$
Right Circular Cone	$\pi r l$	$\pi r(l+r)$	$1 / 3 \times \pi r^{2} h$
Sphere	$4 \pi r^{2}$	$4 \pi r^{2}$	$4 / 3 \times \pi r^{3}$
Hemisphere	$2 \pi r^{2}$	$3 \pi r^{2}$	πr^{3}

Geometry Shapes Formulas for Class 9

Geometric Figure	Area	Perimeter
Rectangle	$A=1 \times w$	$P=2(l+w)$
Triangle	$A=1 / 2 \times b h$	$P=a+b+c$
Trapezoid	$A=1 / 2 \times h\left(b_{1}+b_{2}\right)$	$P=a+b+c+d$
Parallelogram	$A=b h$	$P=2(a+b)$
Circle	$A=\pi r^{2}$	$C=2 \pi r$

Geometry Shapes Formulas for Class 8,9,10,11, 12

Geometry Shapes Formulas for Class 10

Name	Formuld
Area of Triangle	Area $=1 / 2 \times$ base \times height
Pythagorean Theorem	$\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
Area of a Circle	Area $=\pi r^{2}$
Circumference of a Circle	$C=2 \pi r$ or πd
Area of a Parallelogram	Area $=$ base \times height
Area of a Trapezoid	Area $=1 / 2 \times\left(\right.$ base $_{1}+$ base $\left._{2}\right) \times$ height
Area of a Kite or a Rhombus	Area $=1 / 2 \times($ diagonall \times diagonal 2$)$
Area of a Square	Area $=$ side 2
Area of a Regular Polygon	Area $=1 / 2 \times$ perimeter \times apothem
Number of Diagonal in n -sided Polygon	Diagonals $=1 / 2 \times n(n-3)$
Slope	$\mathrm{m}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=$ rise/run
Midpoint Formula	$\begin{aligned} & \left(x_{\mathrm{mp},} \mathrm{y}_{\mathrm{mp}}\right)=\left[\left(\mathrm{x}_{2}+\mathrm{x}_{1}\right) / 2\right]\left[\left(\mathrm{y}_{2}+\mathrm{y}_{1}\right.\right. \\ &) / 2] \end{aligned}$
Distance Formula	$d=\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]$
Equation of a Circle	$(x-h)^{2}+(y-k)^{2}=r^{2}$

Geometry Shapes Formulas for Class 8,9,10,11, 12

Geometry Shapes Formulas for Class 11

Pythagoras Theorem Formula	$c=a^{2}+b^{2}$
Area of a Triangle	$1 / 2 \times b \times h$
Perimeter of Triangle	$a+b+c$
Area of a Square	a^{2}
Perimeter of a Square	$4 a$
Area of a Rectangle	$1 \times b$
Perimeter of a Rectangle	$2(1+b)$
Area of a Circle	$\pi \times r^{2}$
Circumference of a Circle	$2 \pi r$
Surface Area of a Cube	$6 a^{2}$
Volume of a Cube	a^{3}
Volume of a Cylinder	$\pi r^{2} h$
Volume of a Cone	$1 / 3 \pi r^{2} h$
Surface Area of a Sphere	$4 \pi r^{2}$
Volume of a Sphere	$4 / 3 \pi r^{3}$
Distance Between Two Points in $3 D$	$\sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]$
Distance of a Point From Origin	$\sqrt{ }\left(x^{2}+y^{2}+z^{2}\right)$
Midpoint of a Line Segment	$\left[1 / 2\left(x_{1}+x_{2}\right), 1 / 2\left(y_{1}+y_{2}\right), 1 / 2\left(z_{1}+z_{2}\right)\right]$
Coordinates of the Centroid of a Triangle	
	$\left.\left.x_{2}+x_{3}\right), 1 / 3\left(y_{1}+y_{2}+y_{3}\right), y_{3}\left(z_{1}+z_{2}+z_{3}\right)\right]$

Geometry Shapes Formulas for Class 8,9,10,11, 12

Geometry Shapes Formulas for Class 12

Concept	Formula
Position Vector	$O \vec{P}=\vec{r}=\sqrt{ }\left(x^{2}+y^{2}+z^{2}\right)$
Direction Ratios	$l=a r, m=b r, n=c r$
Vector Addition	$P \vec{Q}+Q \vec{R}=P \vec{R}$
Properties of Vector Addition	Commutative Property: $\vec{a}+\vec{b}=\vec{b}+$ Associative Property: $(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c}$
Vector Joining Two Points	$P 1 P \overrightarrow{2}=O P \overrightarrow{2}-O P \overrightarrow{1}$
Equation of a Line	$\left(x-x_{1}\right) / a=\left(y-y_{1}\right) / b=\left(z-z_{1}\right) / c$

Area Formulas in 2D and 3D

Geometry

2D Shapes

Rectangle

$$
A=l \times w \quad \text { where } \mathrm{l} \text { is the length and } \mathrm{w} \text { is the width. }
$$

Square

$$
A=s^{2} \quad \text { where } s \text { is the side length. }
$$

Triangle

$$
A=\frac{1}{2} b \times h \quad \text { where } \mathrm{b} \text { is the base and } \mathrm{h} \text { is the height. }
$$

Circle

$$
A=\pi r^{2} \quad \text { where } \mathrm{r} \text { is the radius. }
$$

Parallelogram

$$
A=b \times h \quad \text { where } \mathrm{b} \text { is the base and } \mathrm{h} \text { is the height. }
$$

Trapezoid

$$
A=\frac{1}{2}\left(b_{1}+b_{2}\right) \times h \begin{aligned}
& \text { where } \mathrm{bl} \text { and b2 are the lengths } \\
& \text { of the two parallel sides, and } \mathrm{h} \text { is } \\
& \text { the height. }
\end{aligned}
$$

Rhombus

$$
A=\frac{1}{2} d_{1} \times d_{2} \quad \begin{aligned}
& \text { where dl and d2 are the lengths of the } \\
& \text { diagonals }
\end{aligned}
$$

Ellipse

$$
A=\pi a \times b \quad \begin{aligned}
& \text { where } \mathrm{a} \text { is the semi-major axis } \\
& \text { and } \mathrm{b} \text { is the semi-minor axis. }
\end{aligned}
$$

Area Formulas in 2D and 3D

Geometry

3D Shapes

Cube

$$
A=6 s^{2} \quad \text { where } s \text { is the side length. }
$$

Rectangular Prism

$$
A=2(l w+l h+w h) \begin{aligned}
& \text { where } l \text { is the length, } \mathrm{w} \text { is the } \\
& \text { width, and hhh is the height }
\end{aligned}
$$

Sphere

$$
A=4 \pi r^{2} \quad \text { where } \mathrm{r} \text { is the radius. }
$$

Cylinder

$$
A=2 \pi r(r+h) \begin{aligned}
& \text { where } r \text { is the radius and } \mathrm{h} \text { is the } \\
& \text { height. }
\end{aligned}
$$

Cone

$$
A=\pi r(r+l) \begin{aligned}
& \text { where } r \text { is the radius and } l \text { is the } \\
& \text { slant height. }
\end{aligned}
$$

Triangular Prism

$$
A=b h+P h \begin{aligned}
& \text { where } \mathrm{b} \text { is the base area, } \mathrm{h} \text { is the height, } \\
& \text { and } \mathrm{P} \text { is the perimeter of the base. }
\end{aligned}
$$

Volume Formulas 3D Geometry

Cube

3D Shapes

$$
V=s^{3} \quad \text { where a is the edge length. }
$$

Rectangular Prism

$$
V=l \times w \times h \quad \begin{aligned}
& \text { where } l \text { is the length, } w \text { is the } \\
& \text { width, and } \mathrm{h} \text { is the height. }
\end{aligned}
$$

Cylinder

$$
V=\pi r^{2} h \quad \text { where } \mathrm{r} \text { is the radius and } \mathrm{h} \text { is the height. }
$$

Cone

$$
V=\frac{1}{3} \pi r^{2} h \quad \begin{aligned}
& \text { where } r \text { is the radius and } h \text { is the } \\
& \text { height. }
\end{aligned}
$$

Sphere

$$
V=\frac{4}{3} \pi r^{3} \quad \text { where } r \text { is the radius. }
$$

Pyramid

$$
V=\frac{1}{3} B h \quad \begin{aligned}
& \text { where } \mathrm{b} \text { is the base area, } \mathrm{h} \text { is the height, } \\
& \text { and } \mathrm{P}
\end{aligned}
$$

Triangular Prism

$$
V=\frac{1}{2} b h_{p} L \quad \begin{aligned}
& \text { where } \mathrm{b} \text { is the base area, } \mathrm{h} \text { is the height }, \\
& \text { and } \mathrm{P} \text { is the perimeter of the base. }
\end{aligned}
$$

Perimeter Formulas 2D Geometry

2D Shapes

Triangle

$$
P=a+b+c \quad \begin{aligned}
& \text { Where } \mathrm{a} \text { is the edge length.where } \mathrm{b} \\
& \text { and } \mathrm{c} \text { are the lengths of the sides. }
\end{aligned}
$$

Square

$$
P=4 a \quad \text { Where } a \text { is the length of } a \text { side. }
$$

Rectangle

$$
P=2(l+w) \quad \begin{aligned}
& \text { where } l \text { is the length and } w \text { is the } \\
& \text { width. }
\end{aligned}
$$

Parallelogram

$$
P=2(a+b) \quad \begin{aligned}
& \text { where } a \text { and } b \text { are the lengths of } \\
& \text { the adjacent sides. }
\end{aligned}
$$

Rhombus

$$
P=4 a \quad \text { where } a \text { is the length of a side. }
$$

Trapezoid

$$
P=a+b+c+d \begin{aligned}
& \text { where } \mathrm{a}, \mathrm{~b}, \mathrm{c} \text { and } \mathrm{d} \text { are the } \\
& \text { lengths of the sides }
\end{aligned}
$$

Circle

$$
C=2 \pi r \quad \text { where } r \text { is the radius }
$$

Perimeter Formulas 2D Geometry

3D Shapes

Cube (Base is a Square)

$P_{b a s e}=4 a \quad$ where a is the length of a side of the base.

Rectangular Prism (Base is a Rectangle)

$$
P_{b a s e}=2(l+w) \begin{aligned}
& \text { Where is the length and } w \text { is } \\
& \text { the width of the base. }
\end{aligned}
$$

Triangular Prism (Base is a Triangle)

$$
P_{b a s e}=a+b+c \underset{\substack{\text { where } a, b a n d ~ c a r e ~ t h e ~}}{\text { lengths of the sides of the bas }}
$$

Cylinder (Base is a Circle)

$$
P_{b a s e}=2 \pi r \quad \begin{aligned}
& \text { Where } r \text { is the radius of the } \\
& \text { base }
\end{aligned}
$$

Pyramid (Base can be any Polygon)

square Pyramid: $P_{b a s e}=4 a$ (where a, b, and c are the side lengths of the base)

Square Pyramid: $P_{b a s e}=2(l+w)$

Square Pyramid: $P_{b a s e}=a+b+c$

