AP® BIOLOGY 2010 SCORING GUIDELINES (Form B)

Question 1

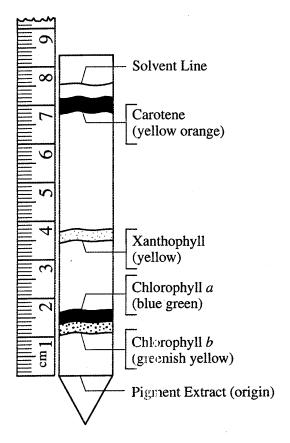
Biological molecules can be separated by using chromatographic techniques. The diagram shows the separation of several spinach leaf pigments by paper chromatography. Using the diagram,

(a) **Explain** how paper chromatography can be used to separate pigments based on their chemical and physical properties. **(4 points maximum)**

Separation property	Relationship to movement
2 points maximum	2 points maximum
Solubility in solvent used.	Greater solubility → further movement.
Molecular size/weight.	Smaller size → further movement.
Polarity/hydrophobicity/H-bonding.	Chemical similarity between solvent/pigment
	(solvent: pigment) → further movement.
Adhesion (affinity for paper).	Less adhesion → further movement.

- Description of chromatography protocol.
- (b) **Discuss** the role of pigments both in capturing light energy and in converting it to the chemical energy of ATP and NADPH. (3 points maximum for capturing; 3 points maximum for converting; 5 points maximum)

Capturing


- Electromagnetic spectrum is described.
- Specific pigments absorb specific wavelength.
- Absorption/reflection (e.g., chlorophyll absorbs red/blue; reflects or transmits green).
- Pigments are embedded in thylakoid membranes.
- Antennae and/or accessory pigments.
- Electron energy level is boosted by absorption of photons (light).

Converting

- Photosynthesis is the process.
- Brief description of pathway through photosystems II and I.
- Electron transport or chemiosmosis, or both, transform light energy to chemical energy (produce NADPH/H⁺/ATP).
- Brief description of electron transport or chemiosmosis, or both.
- Cyclic pathway.
- Splitting of water/photolysis.
 - o H^+ , e^- , O_2
- (c) Use the ruler shown above to **determine** the R_f value of xanthophyll. **Show** your calculations. (2 points maximum)
 - Formula or description d_{pigment/}d_{solvent}
 - Calculation $3.5/7.5 \approx 0.5$

Directions: Answer all questions.

Answers must be in essay form. Outline form is not acceptable. Labeled diagrams may be used to supplement discussion, but in no case will a diagram alone suffice. It is important that you read each question completely before you begin to write. Write all your answers on the pages following the questions in this booklet.

- 1. Biological molecules can be separated by using chromatographic techniques. The diagram above shows the separation of several spinach leaf pigments by paper chromatography. Using the diagram above
 - (a) **Explain** how paper chromatography can be used to separate pigments based on their chemical and physical properties.
 - (b) **Discuss** the role of pigments both in capturing light energy and in converting it to the chemical energy of ATP and NADPH.
 - (c) Use the ruler shown above to **determine** the R_f value of xanthophyll. **Show** your calculations.

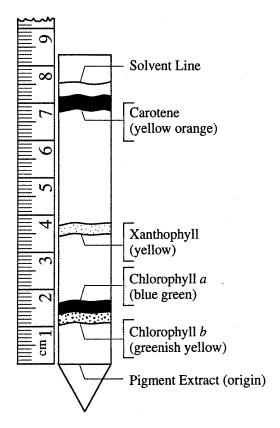
a) The distance that a cercuin prignent will travel up the paper is dependent on several factors By knowing about the properties of the different proments it is possible

to determi identify them using paper chromatography.
A prome me distance the pigment travels can be
affected by how well it forms bonds with the paper.
A pignent that has strong interactions with paper
will not travel as for as of pigment that doesn't form
strong bonds with paper Distance travelled & can
also Edepend on how well the pigment interacts with
the solvent. Pratificana Pigments that dissolve more
readily in the solvent and form stronger bonds with it
will travel fort up the paper faster than ones that
do not. Size is another factor. Smaller molecules will
travel faster than large ones. Knowing about these properties
can halo you determine which pigment will travel These
properties near that each pigment travels at a different
speed so it is possible to separate them using paper
chromatagraphy

photosynthese and transfer it to an electron transport to chain which generates ATP design by chemicomosis. They also use energy to take electrons at the end of the chain and use them to reduce NADP+ to NADPH.

Thereby The light-dependent reactions start when

light energy is absorbed by pigments in the grana
of chbroplasts. The energy is used to excite electrons
of chbroplasts. The energy is used to excite electrons, which are then passed to different pigment molecules
until they hit photosystem II (p680) Different
pigments absorb different wave lengths of light.
Photosystem I best absorbs light with a wavelength
of 680 nm, which is why it is called ep680, P680
uses this energy to put an electron from the splitting
Photosystem IT best absorbs light with a wavelength of 680 nm, which is why it is called &p680, P680 uses this energy to put an electron from the splitting of water into the electron transport chain, which generate
HIP by Chemiosmosis Ht the end of this chain
the electron goes to photosystem I (p700), which
has chlorophyll a as its central molecule 700
uses light energy to transfer this electron to NADP+ creating NADPH.
NADPT, Creating NADPH.
<u></u>


BIOLOGY SECTION II

Time—1 hour and 30 minutes

1B,

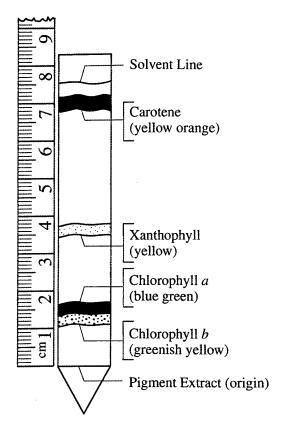
Directions: Answer all questions.

Answers must be in essay form. Outline form is not acceptable. Labeled diagrams may be used to supplement discussion, but in no case will a diagram alone suffice. It is important that you read each question completely before you begin to write. Write all your answers on the pages following the questions in this booklet.

- 1. Biological molecules can be separated by using chromatographic techniques. The diagram above shows the separation of several spinach leaf pigments by paper chromatography. Using the diagram above
 - (a) **Explain** how paper chromatography can be used to separate pigments based on their chemical and physical properties.
 - (b) **Discuss** the role of pigments both in capturing light energy and in converting it to the chemical energy of ATP and NADPH.
 - (c) Use the ruler shown above to **determine** the R_f value of xanthophyll. **Show** your calculations.

La. Bases chromatography in u	sed to seperate sigments. By
La. Paper chromatography is u placing The tip of the paper in a	you can observe
placing The top of the paper in a	valer, and observing the
different sigments rising. I	he pigments are seperated
	' '

according to the pigment's sizes (the heavier, The less distance
The pigment will travel up the paper) & density. As water
montes up the paper, it carries the pigment extract with
it, leaving a trail of the defferent pigments the colors are lighter in
b. Pegments play a major sole in photo synthesis.
When photosystems 2 captures light, an election is
existed & passed down a series of proteins. Then when a
photon hits photosepteurs 1, the electron is again excited
and moves down through proteins which activate NADH
to enter the calvin cycle. During this process, a water
molecule is broken down to Ht and 302. The Ht moves down
The membrane passing through ATP synthase, which in turn
turns ADP to ATP. \photon
photon VV
Da. (NADH)
PSI PSI = Cycle
H20, At and 0
ADP ATP
Lc. Xanthophyll, 4.8 cm


BIOLOGY SECTION II

Time-1 hour and 30 minutes

1C

Directions: Answer all questions.

Answers must be in essay form. Outline form is not acceptable. Labeled diagrams may be used to supplement discussion, but in no case will a diagram alone suffice. It is important that you read each question completely before you begin to write. Write all your answers on the pages following the questions in this booklet.

- 1. Biological molecules can be separated by using chromatographic techniques. The diagram above shows the separation of several spinach leaf pigments by paper chromatography. Using the diagram above
 - (a) **Explain** how paper chromatography can be used to separate pigments based on their chemical and physical properties.
 - *(b) **Discuss** the role of pigments both in capturing light energy and in converting it to the chemical energy of ATP and NADPH.
 - (c) Use the ruler shown above to **determine** the R_f value of xanthophyll. Show your calculations.

a. In H	~~ & & & & & & & & & & & & & & & & & &	of mor	chromaton	righty, &	Le sole	ent
had me	phrents	with it	This sup	untien	owns	AS

the pigments of MFRing masses get worded Free ther
or shorter by the solvent. This causes proments
such as chlorophyll a and chlorophyll b to
more the shortest distance up the paper, while
anotines which is lighter than the other proments
moves up the farthest. These planents will
show up we different colors, apresenting the
show up ar different colors, aprecenting the uncleasth of light that they can't absorb
Contrict is why plants are great.
b. pignents are heardly involved in the light
to pignents are heardly in volved in the light reactions in they illumoplasts, of plantight energy and convert
it to ATP and NADPH to pass on to the
Nark reactions (Colyn agele). This water
involves pignents, such as theorophyll a and b
in photosystems I and II. These photosystems
absorb light, which exaltes dutions produced through
photolysis Coreaking of HOD to Ht and Or and sends
then low in dectron transport chain, which
protocus ATP da chemios nois (a proton gradient)
with ATT synthose, the last protein in the ETC
Grilly synthestring ATP. This process is characteristic
of moneyelic photophosphorylation, which Hifters from
ughte shotophosphorylation in that it gradues ATP
and NADPA (igilar only produces ATP)

						1C3
1 0	ADDITIONAL F	PAGE FOR ANS	WERING QUE	ESTION, 1	<i></i>	, 0 5
a The frage	nery of	Xanthop	high is	Mout	<u>- 3,5 i</u>	<u>m</u>
is shown or	the	reler i	hich to	nnslates	(70)	280 mm
again shorping	, the	varelong H	c of	Gall	Hat	the
snathophyll	(4. 1/1- 0)	back				
X No III Nophyw		D301 D1	V			
			to the state of		<u>-</u>	
					÷	
		,				
				······································		-

AP® BIOLOGY 2010 SCORING COMMENTARY (Form B)

Question 1

Sample: 1A Score: 10

A total of 4 points were earned in part (a) for explaining two factors that affect pigment migration during paper chromatography. The first 2 points were earned for the explanation that strong interactions between the paper and the pigment will retard the pigment's movement. The second 2 points were earned for indicating that pigments that dissolve better in the solvent will diffuse further than those that do not dissolve as readily. The molecular size points were not awarded since the maximum 4 points had already been earned

In part (b) the maximum 5 points were earned. One point was earned for indicating that photosynthesis is the process for capturing light energy through pigments. Another point was earned for discussion of the electron transport chain and the production of ATP by chemiosmosis. A point was earned for indicating that pigments absorb at different wavelengths, using an example of photosystem II absorbing at 680 nm. A fourth point was earned for the indication that water is split, providing an electron. A point could have been awarded for describing the electron flow through the photosystems, but the maximum 3 points had been earned for the conversion of light energy part of the question. The electron flow point was earned for describing electron movement through the photosystems to NADP⁺.

One point was earned in part (c) for the correct R_f formula. The second point for the correct values was not awarded since the response had already received the maximum 10 points.

Sample: 1B Score: 7

Two points were earned in part (a) for explaining that size and solubility in a solvent affect pigment separation. One point was earned for stating that heavier pigments migrate less.

In part (b) 4 points were earned. The point for capturing light energy was earned for stating that "[w]hen photosystems 2 captures light, an electron is excited." One point was earned for indicating that photosynthesis is the process. Two points were earned for describing electron movement through proteins (electron transport) and for describing ATP synthesis by chemiosmosis. Although the response states that "a water molecule is broken down," it does not mention the electron and therefore did not earn a point for that discussion.

No points were earned in part (c).

Sample: 1C Score: 6

In part (a) 2 points were earned for explaining that pigments separate due to their masses and that a lighter pigment (carotene) moves the farthest.

Four points were earned in part (b). One point was earned for the statement in part (a) that pigment color is because of "the wavelength of light that [it] can't absorb." One point was earned for explaining that "photosystems absorb light, which excites electrons." Another point was earned for the indication that photolysis produces H^+ , O_2 and electrons. The fourth point was earned for describing the role of electron transport in ATP production by chemiosmosis.

No points were earned in part (c).