

AP[®] Physics C: Electricity and Magnetism 2011 Free-Response Questions

About the College Board

The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is made up of more than 5,900 of the world's leading educational institutions and is dedicated to promoting excellence and equity in education. Each year, the College Board helps more than seven million students prepare for a successful transition to college through programs and services in college readiness and college success — including the SAT* and the Advanced Placement Program*. The organization also serves the education community through research and advocacy on behalf of students, educators and schools.

© 2011 The College Board. College Board, Advanced Placement Program, AP, AP Central, SAT and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service and inspiring minds are trademarks owned by the College Board. All other products and services may be trademarks of their respective owners. Visit the College Board on the Web: www.collegeboard.org. Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.org/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

TABLE OF INFORMATION FOR 2010 and 2011

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$

Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

 $c = 3.00 \times 10^8 \text{ m/s}$ Speed of light,

Universal gravitational

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$ constant,

Acceleration due to gravity at Earth's surface,

 $g = 9.8 \text{ m/s}^2$

1 unified atomic mass unit,

Planck's constant,

 $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$

 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$

 $hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$

Vacuum permittivity,

 $\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 / \mathrm{N} \cdot \mathrm{m}^2$

Coulomb's law constant, $k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Vacuum permeability,

 $\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$

Magnetic constant, $k' = \mu_0/4\pi = 1 \times 10^{-7} \text{ (T-m)/A}$

1 atmosphere pressure,

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$

	meter,	m	mole,	mol	watt,	W	farad,	F
LINIT	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
UNIT SYMBOLS	second,	S	newton,	N	volt,	V	degree Celsius,	°C
STWIDOLS	ampere,	A	pascal,	Pa	ohm,	Ω	electron-volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

PREFIXES						
Factor	Prefix	Symbol				
10 ⁹	giga	G				
10 ⁶	mega	M				
10 ³	kilo	k				
10^{-2}	centi	c				
10^{-3}	milli	m				
10^{-6}	micro	μ				
10^{-9}	nano	n				
10^{-12}	pico	p				

VALUES	VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°	
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1	
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0	
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8	

The following conventions are used in this exam.

- I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
- II. The direction of any electric current is the direction of flow of positive charge (conventional current).
- III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.

ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2010 and 2011

MECHANICS

$v = v_0 + at$	a = acceleration $F = force$
$x = x_0 + v_0 t + \frac{1}{2} a t^2$	f = frequency h = height

$$v^2 = {v_0}^2 + 2a(x - x_0)$$
 $I = \text{rotational inertia}$

$$D^2 = v_0^2 + 2a(x - x_0)$$
 $J = \text{impulse}$

$$\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$$
 $K = \text{kinetic energy}$
 $k = \text{spring constant}$

$$\mathbf{F} = \frac{d\mathbf{p}}{dt}$$
 $\ell = \text{length}$ $L = \text{angular momentum}$

$$\mathbf{F} = \frac{1}{dt}$$
 $L = \text{angular momentum}$
 $m = \text{mass}$

$$\mathbf{J} = \int \mathbf{F} \, dt = \Delta \mathbf{p}$$

$$N = \text{normal force}$$

$$P = \text{power}$$

$$\mathbf{p} = m\mathbf{v}$$
 $p = momentum$

$$r=$$
 radius or distance $F_{fric} \le \mu N$ $\mathbf{r}=$ position vector

$$W = \int \mathbf{F} \cdot d\mathbf{r}$$
 $T = \text{period}$ $t = \text{time}$

$$U = \text{potential energy}$$
 $v = \text{velocity or speed}$

$$K = \frac{1}{2}mv^2$$
 $W = \text{work done on a system}$

$$x = position$$

$$\mu = coefficient of friction$$

$$P = \frac{1}{dt}$$
 $\theta = \text{angle}$

$$P = \mathbf{F} \cdot \mathbf{v}$$
 $\tau = \text{torque}$
 $\omega = \text{angular speed}$

$$\Delta U_g = mgh$$
 $\alpha = \text{angular acceleration}$

$$a_c = \frac{v^2}{r} = \omega^2 r$$

$$\mathbf{F}_s = -k\mathbf{x}$$

$$\mathbf{\tau} = \mathbf{r} \times \mathbf{F}$$

$$U_s = \frac{1}{2}kx^2$$

$$\sum \mathbf{\tau} = \mathbf{\tau}_{net} = I\mathbf{\alpha}$$

$$I = \int r^2 dm = \sum mr^2 \qquad \qquad T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$\mathbf{r}_{cm} = \sum m\mathbf{r}/\sum m$$
 $T_s = 2\pi\sqrt{\frac{m}{k}}$

$$v = r\omega$$

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = I\omega$$

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = I\mathbf{\omega} \qquad \qquad T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$\mathbf{F}_G = -\frac{Gm_1m_2}{r^2}\,\hat{\mathbf{r}}$$

$$\omega = \omega_0 + \alpha t$$

$$U_G = -\frac{Gm_1m_2}{r}$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$

ELECTRICITY AND MAGNETISM

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$
 $A = \text{area}$
 $B = \text{magnetic field}$
 $C = \text{capacitance}$
 $E = \frac{\mathbf{F}}{q}$ $d = \text{distance}$
 $E = \text{electric field}$

$$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\epsilon_0} \qquad \qquad \mathbf{\mathcal{E}} = \text{emf} \\
F = \text{force} \\
I = \text{current}$$

$$E = -\frac{dV}{dr}$$
 $J = \text{current density}$ $L = \text{inductance}$ $\ell = \text{length}$

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

$$n = \text{number of loops of wire}$$

$$\text{per unit length}$$

$$N = \text{number of charge carriers}$$

per unit volume

 κ = dielectric constant

$$U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$
 per unit v
 $P = \text{power}$
 $Q = \text{charge}$
 $C = \frac{Q}{V}$ $q = \text{point charge}$
 $Q = \text{resistance}$

$$U = \text{potential or stored energy}$$
 $C_p = \sum_i C_i$
 $V = \text{electric potential}$

$$v = \text{velocity or speed}$$

$$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$$

$$\rho = \text{resistivity}$$

$$\phi_m = \text{magnetic flux}$$

$$I = \frac{dQ}{dt}$$

$$U_c = \frac{1}{2}QV = \frac{1}{2}CV^2 \qquad \qquad \oint \mathbf{B} \cdot d\boldsymbol{\ell} = \mu_0 I$$

$$R = \frac{\rho \ell}{A} \qquad \qquad d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I \, d\ell \times \mathbf{r}}{r^3}$$

$$\mathbf{E} = \rho \mathbf{J} \qquad \qquad \mathbf{F} = \int I \ d\boldsymbol{\ell} \times \mathbf{B}$$

$$I = Nev_d A B_s = \mu_0 nI$$

$$V = IR \qquad \qquad \phi_m = \int \mathbf{B} \cdot d\mathbf{A}$$

$$R_{s} = \sum_{i} R_{i}$$

$$\boldsymbol{\varepsilon} = \oint \mathbf{E} \cdot d\boldsymbol{\ell} = -\frac{d\phi_{m}}{dt}$$

$$\frac{1}{R_p} = \sum_{i} \frac{1}{R_i}$$

$$\varepsilon = -L \frac{dI}{dt}$$

$$P = IV$$

$$II = \frac{1}{2}II^{2}$$

$$P = IV$$

$$\mathbf{F}_{M} = q\mathbf{v} \times \mathbf{B}$$

$$U_{L} = \frac{1}{2}LI^{2}$$

ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2010 and 2011

GEOMETRY AND TRIGONOMETRY

Rectangle

A = area

$$A = bh$$

C = circumference

Triangle

V = volumeS = surface area

$$A = \frac{1}{2}bh$$

b = base

h = height

Circle

 $\ell = length$

$$A = \pi r^2$$

w = width

$$C = 2\pi r$$

r = radius

Parallelepiped

$$V = \ell w h$$

Cylinder

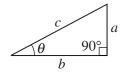
$$V = \pi r^2 \ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$


Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin\theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan\theta = \frac{a}{b}$$

CALCULUS

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \, n \neq -1$$

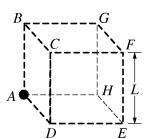
$$\int e^x dx = e^x$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\int \cos x \, dx = \sin x$$

$$\int \sin x \, dx = -\cos x$$

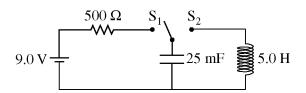
2011 AP® PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS


PHYSICS C: ELECTRICITY AND MAGNETISM

SECTION II Time—45 minutes 3 Questions

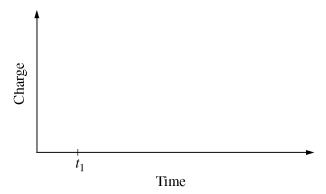
Directions: Answer all three questions. The suggested time is about 15 minutes for answering each of the questions, which are worth 15 points each. The parts within a question may not have equal weight. Show all your work in the pink booklet in the spaces provided after each part, NOT in this green insert.

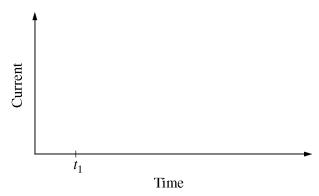
E&l	M. 1.		
	onconducting, the where else inside	•	nell has a uniform surface charge density σ on its outside surface and no charge
(a)	Use Gauss's law surface that you	•	the electric field inside the shell is zero everywhere. Describe the Gaussian
(b)	The charges are still zero everyw		ated so that the surface charge density is no longer uniform. Is the electric field e shell?
	Yes	_ No	It cannot be determined from the information given.
	Justify your ans	wer.	


Now consider a small conducting sphere with charge +Q whose center is at corner A of a cubical surface, as shown below.

- (c) For which faces of the surface, if any, is the electric flux through that face equal to zero?

 ____ABCD ____CDEF ___EFGH ____ABGH ___BCFG ____ADEH
 Explain your reasoning.
- (d) At which corner(s) of the surface does the electric field have the least magnitude?
- (e) Determine the electric field strength at the position(s) you have indicated in part (d) in terms of Q, L, and fundamental constants, as appropriate.
- (f) Given that one-eighth of the sphere at point A is inside the surface, calculate the electric flux through face CDEF.

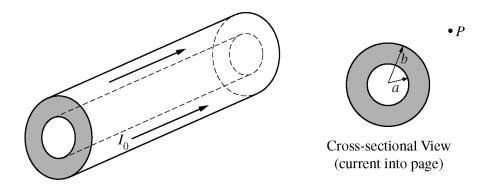

2011 AP® PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS


E&M. 2.

The circuit represented above contains a 9.0 V battery, a 25 mF capacitor, a 5.0 H inductor, a 500 Ω resistor, and a switch with two positions, S_1 and S_2 . Initially the capacitor is uncharged and the switch is open.

- (a) In experiment 1 the switch is closed to position S_1 at time t_1 and left there for a long time.
 - i. Calculate the value of the charge on the bottom plate of the capacitor a long time after the switch is closed.
 - ii. On the axes below, sketch a graph of the magnitude of the charge on the bottom plate of the capacitor as a function of time. On the axes, explicitly label any intercepts, asymptotes, maxima, or minima with numerical values or algebraic expressions, as appropriate.

iii. On the axes below, sketch a graph of the current through the resistor as a function of time. On the axes, explicitly label any intercepts, asymptotes, maxima, or minima with numerical values or algebraic expressions, as appropriate.



 $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\ \$ $\ \$ $\$ $\ \$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\ \$ $\$

2011 AP $^{\circ}$ PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

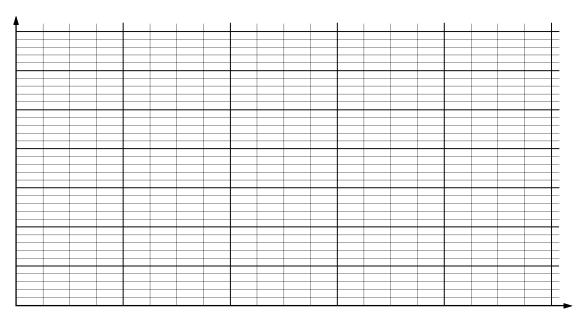
- (b) In experiment 2 the capacitor is again uncharged when the switch is closed to position S_1 at time t_1 . The switch is then moved to position S_2 at time t_2 when the magnitude of the charge on the capacitor plate is 105 mC, allowing electromagnetic oscillations in the LC circuit.
 - i. Calculate the energy stored in the capacitor at time t_2 .
 - ii. Calculate the maximum current that will be present during the oscillations.
 - iii. Calculate the time rate of change of the current when the charge on the capacitor plate is 50 mC.

2011 AP® PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

E&M. 3.

A section of a long conducting cylinder with inner radius a and outer radius b carries a current I_0 that has a uniform current density, as shown in the figure above.

- (a) Using Ampère's law, derive an expression for the magnitude of the magnetic field in the following regions as a function of the distance r from the central axis.
 - i. r < a
 - ii. a < r < b
 - iii. r = 2b
- (b) On the cross-sectional view in the diagram above, indicate the direction of the field at point P, which is at a distance r = 2b from the axis of the cylinder.
- (c) An electron is at rest at point *P*. Describe any electromagnetic forces acting on the electron. Justify your answer.


2011 AP $^{\circ}$ PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

Now consider a long, solid conducting cylinder of radius b carrying a current I_0 . The magnitude of the magnetic field inside this cylinder as a function of r is given by $B = \mu_0 I_0 r / 2\pi b^2$. An experiment is conducted using a particular solid cylinder of radius 0.010 m carrying a current of 25 A. The magnetic field inside the cylinder is measured as a function of r, and the data is tabulated below.

Distance r (m)	0.002	0.004	0.006	0.008	0.010
Magnetic Field B (T)	1.2×10^{-4}	2.7×10^{-4}	3.6×10^{-4}	4.7×10^{-4}	6.4×10^{-4}

(d)

i. On the graph below, plot the data points for the magnetic field B as a function of the distance r, and label the scale on both axes. Draw a straight line that best represents the data.

ii. Use the slope of your line to estimate a value of the permeability μ_0 .

END OF EXAM