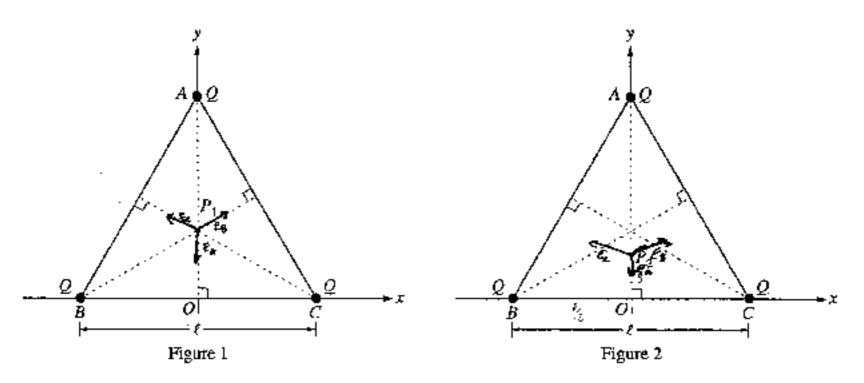


AP Physics C: Electricity and Magnetism 2000 Student Samples

The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein.

These materials were produced by Educational Testing Service (ETS), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.


The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity. Founded in 1900, the association is composed of more than 3,900 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT[®], the PSAT/NMSQTTM, the Advanced Placement Program[®] (AP[®]), and Pacesetter[®]. The College Board is committed to the principles of equity and excellence, and that committeent is embodied in all of its programs, services, activities, and concerns.

Copyright © 2001 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered trademarks of the College Entrance Examination Board.

Е&М2.

Three particles, A, B, and C, have equal positive charges Q and are held in place at the vertices of an equilateral triangle with sides of length ℓ , as shown in the figures below. The dotted lines represent the bisectors for each side. The base of the triangle lies on the x-axis, and the altitude of the triangle lies on the y-axis.

(a)

- i. Point P_1 , the intersection of the three bisectors, locates the geometric center of the triangle and is one point where the electric field is zero. On Figure 1 above, draw the electric field vectors E_A , E_B , and E_C at P_1 due to each of the three charges. Be sure your arrows are drawn to reflect the relative magnitude of the fields.
- ii. Another point where the electric field is zero is point P_2 at (0, y_2). On Figure 2 above, draw electric field vectors \mathbf{E}_A , \mathbf{E}_B , and \mathbf{E}_C at P_2 due to each of the three point charges. Indicate below whether the magnitude of each of these vectors is greater than, less than, or the same as for point P_1 .

	Greater than at P_1	Less than at P_{\parallel}	The same as at P_1
E_A	No	Kes .	N.
ER	Yes	N.	No
E _C	Yés	No	No

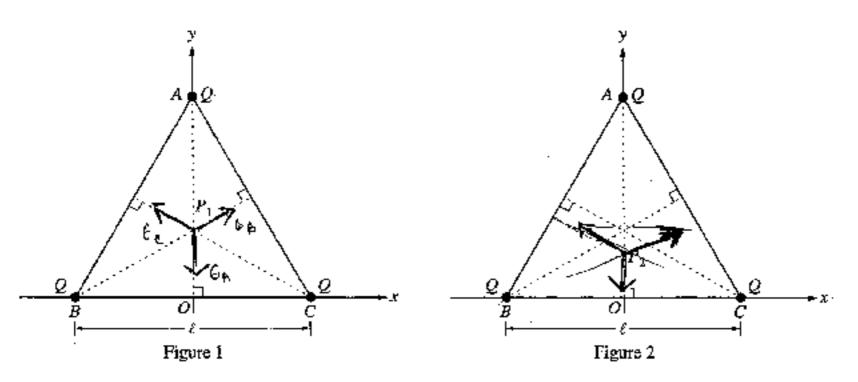
EEEEEEEEEEEEEEE

(b) Explain why the x-component of the total electric field is zero at any point on the y-axis.

Explain why the x-component of an ion and a some and a some one of the field from A will always Because on the yes axis, in a state the x - comparate from B. the be a since it is directly above. The x - comparate from B. C will cancel each other out they are equidestant from where they is then and they are an will conset each other out more and they are an approved whether from on the y-axis is thosen and they are an approved. Side the fact electric field in the point on the y-axis

(c) Write a general expression for the electric potential V at any point on the y-axis inside the triangle in terms of Q, ℓ , and y.

(d) Describe how the answer to part (c) could be used to determine the y-coordinates of points P_1 and P_2 at which the electric field is zero. (You do not need to actually determine these coordinates.)


when the electric field is zero, the opposite of the derivature
of the voltage is equal to zero
$$(E = -dv)$$
. Find the demander
of V, set it can't to zero, and solve for y toget
the y - coordinates at which the electric field is zero.

GO ON TO THE NEXT PAGE.

E & M 2.

Three particles, A, B, and C, have equal positive charges Q and are held in place at the vertices of an equilateral triangle with sides of length ℓ , as shown in the figures below. The dotted lines represent the bisectors for each side. The base of the triangle lies on the x-axis, and the altitude of the triangle lies on the y-axis.

(a)

- i. Point P_1 , the intersection of the three bisectors, locates the geometric center of the triangle and is one point where the electric field is zero. On Figure 1 above, draw the electric field vectors \mathbf{E}_A , \mathbf{E}_B , and \mathbf{E}_C at P_1 due to each of the three charges. Be sure your arrows are drawn to reflect the relative magnitude of the fields.
- ii. Another point where the electric field is zero is point P_2 at $(0, y_2)$. On Figure 2 above, draw electric field vectors \mathbf{E}_A , \mathbf{E}_B , and \mathbf{E}_C at P_2 due to each of the three point charges. Indicate below whether the magnitude of each of these vectors is greater than, less than, or the same as for point P_1 .

	Greater than at P_1	Less than at P_1	The same as at P_{j}
EA	,	1	
E _B	\checkmark		
E _C			

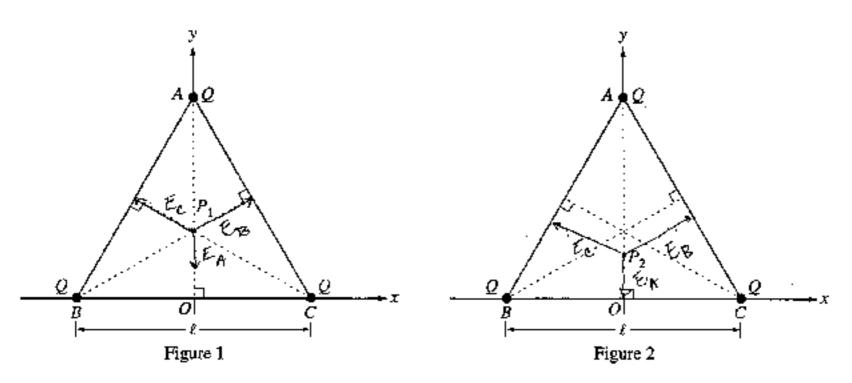
(b) Explain why the x-component of the total electric field is zero at any point on the y-axis.

(c) Write a general expression for the electric potential V at any point on the y-axis inside the triangle in terms of Q, ℓ , and y.

distance from
$$A = \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$$

distance from $B = distance$ from $C = \sqrt{\frac{1}{2} + \frac{9^2}{4}}$
Voltage = $\frac{1}{1460} \frac{Q}{R}$, and voltages are additive, so
 $V = \frac{1}{4060} \frac{Q}{2} \frac{1}{29} + \frac{1}{\sqrt{\frac{1}{2} + \frac{9^2}{4}}}$

.


(d) Describe how the answer to part (c) could be used to determine the y-coordinates of points P_1 and P_2 at which the electric field is zero. (You do not need to actually determine these coordinates.)

$$\vec{E} = -\nabla V; \text{ on } f_{n} \neq -axy find meas \vec{E} = -dV/d1. \quad if |\vec{E}| = 0, |-dV/dF| = 0, 80 we can fate $dV/dr, \text{ set } if = 0,$
 hand solve.$$

Е& М2.

Three particles, A, B, and C, have equal positive charges Q and are held in place at the vertices of an equilateral triangle with sides of length ℓ , as shown in the figures below. The dotted lines represent the bisectors for each side. The base of the triangle lies on the x-axis, and the altitude of the triangle lies on the y-axis.

(a)

- i. Point P_1 , the intersection of the three bisectors, locates the geometric center of the triangle and is one point where the electric field is zero. On Figure 1 above, draw the electric field vectors \mathbf{E}_A , \mathbf{E}_B , and \mathbf{E}_C at P_1 due to each of the three charges. Be sure your arrows are drawn to reflect the relative magnitude of the fields.
- ii. Another point where the electric field is zero is point P_2 at $(0, y_2)$. On Figure 2 above, draw electric field vectors \mathbf{E}_A , \mathbf{E}_B , and \mathbf{E}_C at P_2 due to each of the three point charges. Indicate below whether the magnitude of each of these vectors is greater than, less than, or the same as for point P_3 .

	Greater than at P_1	Less than at P_1	The same as at P_1
EA	EC, EB		
EB	É.A.		Ec
E _C	€a		Ев

ΕΕΕΕΕΕΕΕΕΕΕΕΕΕΕ

(b) Explain why the x-component of the total electric field is zero at any point on the y-axis. Because the magnitude of the x-component of Ez and the X-component Ec are equal all along the y-axis, but in opposite directions, ExtEcx=0. Also, along the y-axis, the X-COMPONENT OF Ex is always equal to zero.

(c) Write a general expression for the electric potential V at any point on the y-axis inside the triangle in terms of Q, l, and y.

$$V = k \leq q_{1} = \left[k \left(\frac{q}{y-\frac{1}{2}} + \frac{Q}{y-\frac{1}{2}} + \frac{Q}{y-\frac{1}{2}} + \frac{Q}{y-\frac{1}{2}} \right]$$

$$V = k \left(\frac{q}{y-\frac{1}{2}} + \frac{2Q}{y-\frac{1}{2}} \right)$$

(d) Describe how the answer to part (c) could be used to determine the y-coordinates of points P_1 and P_2 at which the electric field is zero. (You do not need to actually determine these coordinates.)