AP® Physics C: Electricity & Magnetism 2002 Sample Student Responses The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program[®]. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-party copyrights contained herein. These materials were produced by Educational Testing Service® (ETS®), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle. The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity. Founded in 1900, the association is composed of more than 4,200 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT*, the PSAT/NMSQT*, and the Advanced Placement Program* (AP*). The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns. Copyright © 2002 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, SAT, and the acorn logo are registered trademarks of the College Entrance Examination Board. APIEL is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service. #### E&M 2. Your engineering firm has built the RC circuit shown above. The current is measured for the time t after the switch is closed at t = 0 and the best-fit curve is represented by the equation $I(t) = 5.20 e^{-t/10}$, where I is in milliamperes and t is in seconds. (a) Determine the value of the charging voltage V_0 predicted by the equation. Vois naxinal at time too, so this is $$V_o = RI(o) = 50k\Omega \cdot 5.20mA = 260 V.$$ (b) Determine the value of the capacitance C predicted by the equation. the line constant is RC = 10 for an RC circuit, so $$C = \frac{10}{R} = 200 \mu F.$$ - (c) The charging voltage is measured in the laboratory and found to be greater than predicted in part (a). - i. Give one possible explanation for this finding. I(E) = 5.20e is a best At course, which does not recessorily countain the pt. Vo. In fact, with an internal resistance in the betterp RC in creases, which recross I(E). This gives a best-fit curve which compensates for ii. Explain the implications that your answer to part i has for the predicted value of the capacitance. larger. - (d) Your laboratory supervisor tells that you the charging time must be decreased. You may add resistors or capacitors to the original components and reconnect the *RC* circuit. In parts i and ii below, show how to reconnect the circuit, using either an additional resistor or a capacitor to decrease the charging time. - i. Indicate how a resistor may be added to decrease the charging time. Add the necessary resistor and connections to the following diagram. ii. Instead of a resistor, use a capacitor. Indicate how the capacitor may be added to decrease the charging time. Add the necessary capacitor and connections to the following diagram. #### E&M 2. Your engineering firm has built the RC circuit shown above. The current is measured for the time t after the switch is closed at t = 0 and the best-fit curve is represented by the equation $I(t) = 5.20 e^{-t/10}$, where I is in milliamperes and t is in seconds. (a) Determine the value of the charging voltage V_0 predicted by the equation. $$I_{max} = I(0) = 5.20 \text{ milliamperes} = 5.20 * 10^3 \text{ A}$$ $$V_0 = IR = (5.20 * 10^3)(50 \text{ L}\Omega)(\frac{1000 \Omega}{1 \text{ L}\Omega}) \in 260 \text{ Volys}$$ (b) Determine the value of the capacitance C predicted by the equation. (c) The charging voltage is measured in the laboratory and found to be greater than predicted in part (a). i. Give one possible explanation for this finding. the equation for I(t) is derived from a best-fit curve which means it is an approximation of the actual equation for I(t). Because Vo has greater than expected, the estimated I(t) ii. Explain the implications that your answer to part i has for the predicted value of the capacitance. If the charge stored in the capacitor is the same, then a higher Vowill result in a lower C. $$Q=CV$$ $C=Q$ - (d) Your laboratory supervisor tells that you the charging time must be decreased. You may add resistors or capacitors to the original components and reconnect the *RC* circuit. In parts i and ii below, show how to reconnect the circuit, using either an additional resistor or a capacitor to decrease the charging time. - i. Indicate how a resistor may be added to decrease the charging time. Add the necessary resistor and connections to the following diagram. ii. Instead of a resistor, use a capacitor. Indicate how the capacitor may be added to decrease the charging time. Add the necessary capacitor and connections to the following diagram.