AP® CALCULUS AB 2008 SCORING GUIDELINES (Form B)

Question 4

The functions f and g are given by $f(x) = \int_0^{3x} \sqrt{4 + t^2} dt$ and $g(x) = f(\sin x)$.

- (a) Find f'(x) and g'(x).
- (b) Write an equation for the line tangent to the graph of y = g(x) at $x = \pi$.
- (c) Write, but do not evaluate, an integral expression that represents the maximum value of g on the interval $0 \le x \le \pi$. Justify your answer.

(a)
$$f'(x) = 3\sqrt{4 + (3x)^2}$$

$$4: \begin{cases} 2: f'(x) \\ 2: g'(x) \end{cases}$$

$$g'(x) = f'(\sin x) \cdot \cos x$$
$$= 3\sqrt{4 + (3\sin x)^2} \cdot \cos x$$

(b)
$$g(\pi) = 0$$
, $g'(\pi) = -6$
Tangent line: $y = -6(x - \pi)$

$$2: \begin{cases} 1: g(\pi) \text{ or } g'(\pi) \\ 1: \text{tangent line equation} \end{cases}$$

(c) For
$$0 < x < \pi$$
, $g'(x) = 0$ only at $x = \frac{\pi}{2}$.
 $g(0) = g(\pi) = 0$

$$g\left(\frac{\pi}{2}\right) = \int_0^3 \sqrt{4 + t^2} \ dt > 0$$

The maximum value of g on $[0, \pi]$ is

$$\int_0^3 \sqrt{4+t^2} \ dt.$$

3:
$$\begin{cases} 1 : \text{sets } g'(x) = 0 \\ 1 : \text{justifies maximum at } \frac{\pi}{2} \\ 1 : \text{integral expression for } g\left(\frac{\pi}{2}\right) \end{cases}$$

Do not write beyond this border.

NO CALCULATOR ALLOWED

CALCULUS AB SECTION II, Part B

Time-45 minutes

Number of problems—3

No calculator is allowed for these problems.

Work for problem 4(a)

$$f'(x) = \frac{d}{dx} \left[\int_{0}^{3x} \sqrt{4+t^{2}} dt \right]$$

$$= 3 \sqrt{4+9x^{2}}$$

$$g'(x) = \frac{d}{dx} \left[\int_{0}^{3x} \sqrt{4+t^{2}} dt \right]$$

$$= 3\cos x \sqrt{4+1} dt$$

Work for problem 4(b)

$$g'(\pi) = 3 \cos \pi \int 4 + 9 \sin^2 \pi$$
 Equation of $x = \pi$:

= $3(-1) \int 4 + 9(0)$ at $x = \pi$:

= $-3(2)$

= $-6(x - 6)$
 $g(\pi) = f(\sin \pi)$

= $f(0)$

Equation of tangent line $y = -b(x - \pi)$

Do not write beyond this border.

NO CALCULATOR ALLOWED

Work for problem 4(c)

$$g'(x) = 0$$

$$3 \cos x \sqrt{4 + 9 \sin^2 x} = 0$$

$$=$$
 $\sum S(0) x = 0$

X= I is a critical point

Since g is continuous and differentiable on the interval [0,17] by Extreme Value Theorem, the global maximum can occur at the critical points or end points

$$g(\overline{t}) = f(\sin \overline{t})$$

$$= f(1)$$

$$= \int_{0}^{3} \sqrt{4 + t^{2}} dt > 0$$

$$g(\pi) = f(\sin \pi)$$

$$= f(u)$$

$$= 0$$

$$g(0) = f(\sin u)$$

$$= f(u)$$

.. The maximum value of g is \$\int_0^3 \overline{4}t^2 dt

4B1

NO CALÇULATOR ALLOWED

CALCULUS AB
SECTION II, Part B

Time-45 minutes

Number of problems—3

No calculator is allowed for these problems.

Work for problem 4(a)

$$f'(x) = \sqrt{4 + (3x)^2} \cdot 3$$

$$= 3\sqrt{4 + 9x^2}$$

$$= \cos x \cdot 3\sqrt{4 + 9\sin^2 x}$$

= 3 cosx J4+9 sin2x

Work for problem 4(b)

$$y=mx+b$$
 $m = g'(\pi) = 3\cos \pi \sqrt{4 + 9\sin^2 \pi}$
 $= -3\sqrt{4}$
 $= -6$

$$y = -6x + b$$

$$g(\pi) = f(\sin \pi) = f(0) = \int_0^6 \sqrt{4 - t^2} dt = 0$$

$$0 = -6\pi + b$$

$$b = 6\pi$$

$$y = -6x + 6\pi$$

Continue problem 4 on page 11.

Do not write beyond this border

NO CALCULATOR ALLOWED

Work for problem 4(c)

Lthe formula for a circle with center (0,0) and vadius of 2

Maximum value of g occurs when there is a maximum value of f.

f has its maximum value when $x = \frac{3}{3}$, because the answer will be the area of the quarter circle

below.

This area $TS = \int_0^2 \sqrt{4 + t^2} dt$

i. The maximum value is above

NO CALCULATOR ALLOWED

CALCULUS AB SECTION II, Part B

Time—45 minutes

Number of problems—3

No calculator is allowed for these problems.

Work for problem 4(a)

$$f(x) = \frac{d}{dx} \int_{0}^{3x} \sqrt{4 + 4^{2}} dt = 3\sqrt{4 + (3x)^{2}}$$

 $g'(x) = f'(\sin x) = 3\sqrt{4 + (3\sin x)^{2}}$

$$q'(x) = f'(\sin x) = 3\sqrt{4 + (3 \sin x)^2}$$

Work for problem 4(b)

Do not write beyond this border.

$$q(\pi) = f(\sin \pi) = f(0) = 0$$
 (\tau_10)

$$a'(TC) = f'(sinTC) = 3\sqrt{4+(0)^2} = 6$$

$$y - 0 = 6(x - \pi)$$

 $y = 6y - 6\pi$

Do not write beyond this border.

Continue problem 4 on page 11.

Work for problem 4(c)

Do not write beyond this border.

Do not write beyond this border.

AP® CALCULUS AB 2008 SCORING COMMENTARY (Form B)

Question 4

Sample: 4A Score: 9

The student earned all 9 points.

Sample: 4B Score: 6

The student earned 6 points: 4 points in part (a), 2 points in part (b), and no points in part (c). The student presents correct work in parts (a) and (b). In part (c) the student tries to argue from a geometric point of view, but the initial premise is incorrect, so no points were earned.

Sample: 4C Score: 4

The student earned 4 points: 2 points in part (a), 2 points in part (b), and no points in part (c). In part (a) the student has a correct f'(x) but makes a chain rule error in finding g'(x) so earned just 2 of the 4 points. In part (b) the student finds $g(\pi)$ correctly and finds a value for $g'(\pi)$ based on the incorrect answer in part (a). The student combines these values to form a tangent line equation, earning both points in part (b). The student's work in part (c) did not earn any points.