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Question 1 

An object moving along a curve in the xy-plane has position � �( ), ( )x t y t  at time t with 

� �3cosdx t
dt

�  and � �23 sindy t
dt

�  

for 0 3t� � . At time t = 2, the object is at position (4,5). 

(a) Write an equation for the line tangent to the curve at (4,5). 

(b) Find the speed of the object at time t = 2. 

(c) Find the total distance traveled by the object over the time interval 0 1t� � . 

(d) Find the position of the object at time t = 3. 

 

 

(a) 
� �
� �

2

3

3 sin
cos

tdy
dx t

�  

� �
� �

2

3
2

3 sin 2
15.604

cos 2t

dy
dx

�

� �  

 5 15.604( 4)y x� � �  

 

 

 

 

 

1 : tangent line 

(b) Speed = 2 2cos (8) 9 sin (4)�  = 2.275 

 

 

1 : answer 

(c) Distance = � � � �
1 2 3 2 2

0
cos 9 sint t dt��  

  = 1.458 

 

 

 

 

3 : 

2 : distance integral

    < 1  each integrand error

     < 1  error in limits

 1 : answer

��
�
�
� � ��
��
�
� � ��
�
�
�
���

 

 

(d) � �
3 3

2
(3) 4 cosx t dt� � �  = 3.953 or 3.954 

 � �
3 2

2
(3) 5 3 siny t dt� � �  = 4.906 

 

4 : 

1 : definite integral for 

 1 : answer for (3)

1 : definite integral for 

 1 : answer for (3)

x

x

y

y

��
�
�
�
�
��
�
�
�
�
�
�
���
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Question 2 

The temperature, in degrees Celsius (°C), of the water in a pond is a 

differentiable function W of time t. The table above shows the water 

temperature as recorded every 3 days over a 15-day period. 

(a) Use data from the table to find an approximation for (12)W � . Show the 

computations that lead to your answer. Indicate units of measure. 

(b) Approximate the average temperature, in degrees Celsius, of the water 

over the time interval 0 15t� �  days by using a trapezoidal 

approximation with subintervals of length 3t� �  days. 

(c) A student proposes the function P, given by ( / 3)( ) 20 10 tP t te �� � , as a model for the 

temperature of the water in the pond at time t, where t is measured in days and ( )P t  is 

measured in degrees Celsius. Find (12)P � . Using appropriate units, explain the meaning of 

your answer in terms of water temperature. 

(d) Use the function P defined in part (c) to find the average value, in degrees Celsius, of ( )P t  

over the time interval 0 15t� �  days. 

(a) Difference quotient; e.g. 

 (15) (12) 1(12)
15 12 3

W WW �
� � � �

�
 °C/day or 

 (12) (9) 2(12)
12 9 3

W WW �
� � � �

�
 °C/day or 

 (15) (9) 1(12)
15 9 2

W WW �
� � � �

�
 °C/day 

 

2 : 
1 : difference quotient

1 : answer (with units)

��
�
�
�
��

 

 

(b) � �
3 20 2(31) 2(28) 2(24) 2(22) 21 376.5
2

� � � � � �  

 Average temperature 1 (376.5) 25.1
15

� � °C 

2 : 
1 : trapezoidal method

 1 : answer

��
�
�
�
��

 

(c) / 3 / 3

12

10(12) 10
3

t t

t
P e te� �

�

� � �  

 430 0.549e�� � � � °C/day 

 This means that the temperature is decreasing at the 

rate of 0.549 °C/day when t = 12 days. 

2 : 
1 : (12)  (with or without units)

 1 : interpretation

P ���
��
�
�
���

 

(d) � �
15 / 3

0

1 20 10 25.757
15

tte dt�� �� °C 

3 : 

1 : integrand

 1 : limits and 

    average value constant

 1 : answer

��
�
�
�
�
��
�
�
�
�
�
�
���

 

t 
(days) 

( )W t
(°C) 

0 
3 
6 
9 
12 
15 

20 
31 
28 
24 
22 
21 
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Question 3 

A car is traveling on a straight road with velocity  

55 ft/sec at time t = 0. For 0 18t� �  seconds, the 

car�s acceleration ( )a t , in ft/sec2, is the piecewise 

linear function defined by the graph above. 

(a) Is the velocity of the car increasing at t = 2 

seconds? Why or why not? 

(b) At what time in the interval 0 18t� � , other than t = 0, is the velocity of the car  

55 ft/sec? Why? 

(c) On the time interval 0 18t� � , what is the car�s absolute maximum velocity, in ft/sec, 

and at what time does it occur? Justify your answer. 

(d) At what times in the interval 0 18t� � , if any, is the car�s velocity equal to zero? Justify 

your answer. 

 

(a) Since (2) (2)v a� �  and (2) 15 0a � � , the velocity is 

increasing at t = 2. 

 

 

1 : answer and reason 

(b) At time t = 12 because 
12

0
(12) (0) ( ) 0v v a t dt� � �� . 

 

2 : 
1 : 12

1 : reason

t ���
�
�
�
��

 

(c) The absolute maximum velocity is 115 ft/sec at  

t = 6.  

 The absolute maximum must occur at t = 6 or  

at an endpoint.  

 

6

0
(6) 55 ( )

155 2(15) (4)(15) 115 (0)
2

v a t dt

v

� �

� � � � �

�
 

 
18

6
( ) 0a t dt ��  so (18) (6)v v�  

  

4 : 

1 : 6

1 : absolute maximum velocity

 1 : identifies 6 and 

     18 as candidates
     or

    indicates that  increases, 

     decreases, then increases

 1 : eliminates 18

t

t

t

v

t

����
�
�
�
��
� ��
�
�
� ����	�
�
�
�
�
��

�



�
�
�
��
�
�
���

 

(d) The car�s velocity is never equal to 0. The absolute 

minimum occurs at t = 16 where 
16

6
(16) 115 ( ) 115 105 10 0v a t dt� � � � � �� . 

 

2 : 
1 : answer

1 : reason

��
�
�
�
��
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Question 4 
 
Let h be a function defined for all 0x �  such that (4) 3h � �  and the derivative of h is given  

by 
2 2

( )
x

h x
x
�

� �  for all 0x � . 

(a) Find all values of x for which the graph of h has a horizontal tangent, and determine  

whether h has a local maximum, a local minimum, or neither at each of these values.  

Justify your answers. 

(b) On what intervals, if any, is the graph of h concave up? Justify your answer. 

(c) Write an equation for the line tangent to the graph of h at x = 4. 

(d) Does the line tangent to the graph of h at x = 4 lie above or below the graph of h for  

4x � ? Why? 

 

 

(a) ( ) 0h x� �  at 2x � �  

 

 

 

 

 Local mi

 

 

4 : 

1 : 2

 1 : analysis

 2 : conclusions
    1 > not dealing with

x� � ��
�
�
�
�
����
�
�
� � ��

 

(b) ( ) 1h x�� �

 the grap

 

 

(c) 1(4)h � �

 

 3y � �

 

(d) The tang

the graph
 
 
 
 

+ 

x 

( )h x�    +
Copyright 
ed Placement Pro

nima at x �

               discontinuity at 0�
�

2
2 0
x

� �  fo

h of h is conc

6 2 7
4 2
�

�  

7 ( 4)
2

x �  

ent line is be

 of h is conc

2�  2
0
0

© 2001 by
gram and A

2�  an

r all x �

ave up f

low the 
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0
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d at 2x �  

���

 

0 . Therefore,  

or all 0x � . 
3 : 

1 : ( )

1 : ( ) 0

1 : answer 

h x

h x

� ���
�
�
�� �� ��
�
�
�
���

 

 

 

1 : tangent line equation 

graph because  

r 4x � .  

1 : answer with reason 
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Question 5 
 

Let f be the function satisfying ( ) 3 ( )f x x f x� � � , for all real numbers x, with (1) 4f �  and 

lim ( ) 0
x

f x
��

� . 

(a) Evaluate 
1

3 ( )x f x dx
�

�� . Show the work that leads to your answer. 

(b) Use Euler�s method, starting at x = 1 with a step size of 0.5, to approximate (2)f . 

(c) Write an expression for ( )y f x�  by solving the differential equation 3dy xy
dx

� �  with the 

initial condition (1) 4f � . 

 

 

(a) 
1

3 ( )x f x dx
�

��  

 = 
1 1 1

( ) lim ( ) lim ( )
bb

b b
f x dx f x dx f x

�

�� ��

� �� �� �  

 = lim ( ) (1) 0 4 4
b

f b f
��

� � � � �  

 

 

 

 

2 : 
1 : use of FTC

1 : answer from limiting process

��
�
�
�
��

 

(b) (1.5) (1) (1)(0.5)f f f �� �  

  = 4 3(1)(4)(0.5) 2� � �  

 
(2) 2 (1.5)(0.5)

2 3(1.5)( 2)(0.5) 2.5

f f �� � �

� � � � �
 

 

 

 

2 : 

1 : Euler's method equations or

     equivalent table

 1 : Euler approximation to (2)

     (not eligible without first point)

f

��
�
�
�
�
��
�
�
�
�
�
�
���

 

(c) 1 3dy x dx
y

� �  

 23ln
2

y x k� � �  

 
3
2

2x
y Ce

�

�  

 
3
24 Ce

�

�  ; 
3
24C e�  

 
3 3
2 2

2
4

x
y e e

�

�  

 

 

5 : 

1 : separates variables

 1 : antiderivatives

 1 : constant of integration

1 : uses initial condition (1) 4

 1 : solves for 

f

y

��
�
�
�
�
�
�
��
�
�
�
� ��
�
�
�
���

 

Note: max 2/5 [1-1-0-0-0] if no constant  

 of integration 

Note: 0/5 if no separation of variables 
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Question 6 

A function f is defined by 

2
2 3 1

1 2 3 1( )
3 3 3 3

n
n

nf x x x x
�

�
� � � � � �� � 

for all x in the interval of convergence of the given power series. 

(a) Find the interval of convergence for this power series. Show the work that leads to your 

answer. 

(b) Find 
0

1( )
3lim

x

f x

x�

�

. 

(c) Write the first three nonzero terms and the general term for an infinite series that 

represents 
1

0
( )f x dx� . 

(d) Find the sum of the series determined in part (c). 

(a) 

1

2

1

( 2)
( 2)3lim lim 1

( 1) ( 1) 3 3
3

n

n
nn n

n

n x
n x x

n x n

�

�

�� ��

�

�

�
� � �

� �
 

 At 3x � � , the series is 
0

1( 1)
3

n

n

n�

�

�
�� , which diverges. 

 At x = 3, the series is 
0

1
3n

n�

�

�

� , which diverges. 

 Therefore, the interval of convergence is 3 3x� � � . 

 

4 : 

 1 : sets up ratio test

 1 : computes limit

 1 : conclusion of ratio test

 1 : endpoint conclusion

��
�
�
�
�
��
�
�
�
�
�
�
���

 

(b) � �2
2 3 40 0

1( ) 2 3 4 23lim lim
93 3 3x x

f x
x x

x� �

�

� � � � ��  

 

 

1 : answer 

(c) 
1

0
( )f x dx� � �

1 2
2 3 10

1 2 3 1
3 3 3 3

n
n

nx x x dx
�

�
� � � � � �� � �  

  = � �
1

2 3 1
2 3 1

0

1 1 1 1
3 3 3 3

x
n

n
x

x x x x
�

�

�
�

� � � � �� �  

  = 2 3 1
1 1 1 1
3 3 3 3n�� � � � �� � 

 

3 : 

1 : antidifferentiation 

     of series

1 : first three terms for

    definite integral series

 1 : general term

��
�
�
�
�
�
�
����
�
�
�
�
�
�
�
����

 

(d) The series representing 
1

0
( )f x dx�  is a geometric series. 

Therefore, 
1

0

1
13( ) 1 21

3

f x dx � �

�

� . 

 

 

1 : answer 

 


