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Question 1 

 

Let f be the function given by ( )
3 2

3cos .4 3 2
x x xf x x= − − +  Let R 

be the shaded region in the second quadrant bounded by the graph of f, 
and let S be the shaded region bounded by the graph of f and line ,l  
the line tangent to the graph of f at 0,x =  as shown above. 
(a) Find the area of R. 
(b) Find the volume of the solid generated when R is rotated about the 

horizontal line 2.y = −  

(c) Write, but do not evaluate, an integral expression that can be used 
to find the area of S. 

 

For 0,x <  ( ) 0f x =  when 1.37312.x = −  
Let 1.37312.P = −   
 
 

 

(a) Area of ( )
0

2.903
P

R f x dx= =∫  

 

 

2 : { 1 : integral
1 : answer

 

 
 
 
 
 

(b) Volume ( )( )( )0 22 4 59.361
P

f x dxπ= + − =∫  

 

 

4 : 
1 : limits and constant

 2 : integrand
 1 : answer

⎧
⎪
⎨
⎪⎩

 

 
 
 
 
 

(c) The equation of the tangent line l  is 13 .2y x= −  

 
 The graph of f and line l  intersect at 3.38987.A =  
 

 Area of ( ) ( )( )
0

13 2

A
S x f x dx= − −⌠⎮

⌡
 

 

 

3 : 
1 : tangent line
1 : integrand

 1 : limits

⎧
⎪
⎨
⎪⎩
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Question 2 

 
An object moving along a curve in the xy-plane is at position ( ) ( )( ),x t y t  at time t,  where 

( )tan tdx edt
−=  and ( )sec tdy edt

−=  

for 0.t ≥  At time 1,t =  the object is at position ( )2, 3 .−  

(a) Write an equation for the line tangent to the curve at position ( )2, 3 .−  

(b) Find the acceleration vector and the speed of the object at time 1.t =  
(c) Find the total distance traveled by the object over the time interval 1 2.t≤ ≤  
(d) Is there a time 0t ≥  at which the object is on the y-axis? Explain why or why not. 
 

(a) 
( )
( ) ( )

sec 1
tan sin

t

t t

dy
edy dt

dx dx e e
dt

−

− −= = =  

( ) ( )1
2, 3

1 2.780
sin

dy
dx e−

−
= =  or 2.781 

( ) ( )1
13 2

sin
y x

e−+ = −  

 
 

 

2 : ( )2, 3
 1 : 

1 : equation of tangent line

dy
dx −

⎧
⎪
⎨
⎪⎩

 

 

(b) ( )1 0.42253,x′′ = −  ( )1 0.15196y′′ = −  
 
 ( )1 0.423, 0.152a = − −  or 0.422, 0.151 .− −  

 

speed ( )( ) ( )( )2 21 1sec tan 1.138e e− −= + =  or 1.139 

 
 

2 : { 1 : acceleration vector
 1 : speed

 

 

(c) ( )( ) ( )( )
2 2 2

1
1.059x t y t dt′ ′+ =∫  

 

 

2 : { 1 : integral
1 : answer

 

 
 

(d) ( ) ( ) ( )
1

0
0 1 2 0.775553 0x x x t dt′= − = − >∫  

 
 The particle starts to the right of the y-axis. 
 Since ( ) 0x t′ >  for all 0,t ≥  the object is always moving 

to the right and thus is never on the y-axis. 

 

3 : 
( )
( )

 1 : 0  expression
 1 : 0
1 : conclusion and reason

x
x t

⎧
⎪ ′ >⎨
⎪⎩
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Question 3 

 
The figure above is the graph of a function of x, which models the height of a 
skateboard ramp. The function meets the following requirements. 

   (i) At 0,x =  the value of the function is 0, and the slope of the graph of  
 the function is 0. 
 (ii) At 4,x =  the value of the function is 1, and the slope of the graph  of  
 the function is 1. 
(iii) Between 0x =  and 4,x =  the function is increasing. 

(a) Let ( ) 2 ,f x ax=  where a is a nonzero constant. Show that it is not possible to find a value for a so that f 
meets requirement (ii) above. 

(b) Let ( )
2

3 ,16
xg x cx= −  where c is a nonzero constant. Find the value of c so that g meets requirement (ii) 

above. Show the work that leads to your answer. 
(c) Using the function g and your value of c from part (b), show that g does not meet requirement (iii) above. 

(d) Let ( ) ,
nxh x k=  where k is a nonzero constant and n is a positive integer. Find the values of k and n so that  

h meets requirement (ii) above. Show that h also meets requirements (i) and (iii) above. 
 

(a) ( )4 1f =  implies that 1
16a =  and ( ) ( )4 2 4 1f a′ = =  

 implies that 1 .8a =  Thus, f cannot satisfy (ii). 

2 : 
1 1 1 :  or 16 8

 1 : shows  does not work

a a

a

⎧ = =⎪
⎨
⎪⎩

(b) ( )4 64 1 1g c= − =  implies that 1 .32c =  

 When 1 ,32c =  ( ) ( ) ( ) ( )( )2 2 4 1 14 3 4 3 16 116 32 2g c′ = − = − =  

 

1 : value of c  
 

(c) ( ) ( )23 1 3 432 8 32
xg x x x x′ = − = −  

( ) 0g x′ <  for 40 ,3x< <  so g does not satisfy (iii). 

 

2 : ( ) 1 : 
 1 : explanation
g x′⎧

⎨
⎩

 

 

(d) ( ) 44 1
n

h k= =  implies that 4 .n k=  

 ( )
1 14 44 144

n n

n
n n nh k

− −
′ = = = =  gives 4n =  and 44 256.k = =  

 

( ) ( )
4

0 0.256
xh x h= ⇒ =  

( ) ( )
34 0 0256
xh x h′ ′= ⇒ =  and ( ) 0h x′ >  for 0 4.x< <   

4 : 
-1

4 1 : 1 

4 1 : 1 

 1 : values for  and 
 1 : verifications

n

n
k
n
k

k n

⎧ =⎪
⎪
⎪

=⎨
⎪
⎪
⎪⎩
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Question 4 

 
The rate, in calories per minute, at which a person using an 
exercise machine burns calories is modeled by the function 

f. In the figure above, ( ) 3 21 3 14 2f t t t= − + +  for 

0 4t≤ ≤  and f is piecewise linear for 4 24.t≤ ≤  

(a) Find ( )22 .f ′  Indicate units of measure. 

(b) For the time interval 0 24,t≤ ≤  at what time t is f 
increasing at its greatest rate? Show the reasoning that 
supports your answer. 

(c) Find the total number of calories burned over the time 
interval 6 18t≤ ≤  minutes. 

(d) The setting on the machine is now changed so that the person burns ( )f t c+  calories per minute. For this 
setting, find c so that an average of 15 calories per minute is burned during the time interval 6 18.t≤ ≤  

(a) ( ) 15 322 320 24f −′ = = −
−

 calories/min/min 
 

1 : ( )22f ′  and units 

(b) f is increasing on [ ]0, 4  and on [ ]12, 16 .  

 On ( )12, 16 ,  ( ) 15 9 3
16 12 2f t −′ = =

−
 since f has 

constant slope on this interval. 

On ( )0, 4 ,  ( ) 23 34f t t t′ = − +  and 

( ) 3 3 02f t t′′ = − + =  when 2.t =  This is where f ′  

has a maximum on [ ]0, 4  since 0f ′′ >  on ( )0, 2   
and 0f ′′ <  on ( )2, 4 .  

 

On [ ]0, 24 ,  f is increasing at its greatest rate when 

2t =  because ( ) 32 3 .2f ′ = >  

4 : 

( )
( )

( ) ( )

 1 :  on 0, 4
1 : shows   has a max at 2 on 0, 4
1 : shows for 12 16,    2  

 1 : answer

f
f t

t f t f

′⎧
⎪ ′ =⎪
⎨ ′ ′< < <⎪
⎪⎩

 

 

(c) ( ) ( ) ( )( ) ( )
18

6
16 9 4 9 15 2 152

132 calories

f t dt = + + +

=
∫  

 

2 : { 1 : method
1 : answer

 

(d) We want ( )( )
18

6
1 15.12 f t c dt+ =∫  

 This means 132 12 15(12).c+ =  So, 4.c =  
 

OR 

Currently, the average is 132 1112 =  calories/min. 

Adding c to ( )f t  will shift the average by c. 
So 4c =  to get an average of 15 calories/min.  

 

2 : { 1 : setup
1 : value of c
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Question 5 

 
Let f be a function with ( )4 1f =  such that all points ( ),x y  on the graph of f satisfy the differential equation 

( )2 3 .dy y xdx = −  

Let g be a function with ( )4 1g =  such that all points ( ),x y  on the graph of g satisfy the logistic differential 
equation 

( )2 3 .dy y ydx = −  

(a) Find ( ).y f x=  

(b) Given that ( )4 1,g =  find ( )lim
x

g x
→∞

 and ( )lim .
x

g x
→∞

′  (It is not necessary to solve for ( )g x  or to show how 

you arrived at your answers.) 
(c) For what value of y does the graph of g have a point of inflection? Find the slope of the graph of g at the 

point of inflection. (It is not necessary to solve for ( ).g x ) 

 

(a) ( )2 3dy y xdx = −  

 ( )1 2 3dy x dxy = −  

 2ln 6y x x C= − +  
 0 24 16 C= − +  

 8C = −  
 2ln 6 8y x x= − −  

 
26 8x xy e − −=  for x− < <∞ ∞  

 

 

5 : 

 1 : separates variables
 1 : antiderivatives
1 : constant of integration
1 : uses initial condition
1 : solution

⎧
⎪
⎪
⎨
⎪
⎪
⎩

 

 
Note: max 2 5  [1-1-0-0-0] if no 
 constant of integration 
Note: 0 5  if no separation of variables 
 

(b) ( )lim 3
x

g x
→∞

=  

 
( )lim 0

x
g x

→∞
′ =  

 

2 : 
( )
( )

1 : lim 3

1 : lim 0
x

x

g x

g x
→

→

∞

∞

=⎧⎪
⎨ ′ =⎪⎩

 

 

 

(c) 
2

2 (6 4 )d y dyy dxdx
= −   

 Because 0dy
dx ≠  at any point on the graph of g, the 

concavity only changes sign at 3 ,2y =  half the carrying 

capacity. 

 ( )( )
3 2

3 3 92 32 2 2y

dy
dx =

= − =  

2 : 

3 2

3 1 :  2

1 :  
y

y

dy
dx =

⎧ =⎪⎪
⎨
⎪
⎪⎩
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Question 6 

 

The function f is defined by ( ) 3
1 .

1
f x

x
=

+
 The Maclaurin series for f is given by 

( )3 6 9 31 1 ,n nx x x x− + − + + − +L L  

which converges to ( )f x  for 1 1.x− < <  

(a) Find the first three nonzero terms and the general term for the Maclaurin series for ( ).f x′  

(b) Use your results from part (a) to find the sum of the infinite series ( )2 5 8 3 1
3 6 9 31 .

2 2 2 2
n

n
n
−− + − + + − +L L  

(c) Find the first four nonzero terms and the general term for the Maclaurin series representing ( )
0

.
x
f t dt∫  

(d) Use the first three nonzero terms of the infinite series found in part (c) to approximate ( )
1 2

0
.f t dt∫  What are 

the properties of the terms of the series representing ( )
1 2

0
f t dt∫  that guarantee that this approximation is 

within 1
10,000  of the exact value of the integral? 

(a) ( ) ( )2 5 8 3 13 6 9 3 1 n nf x x x x n x −′ = − + − + + − +L L  
 

2 : { 1 : first three terms
 1 : general term

 

(b) The given series is the Maclaurin series for ( )f x′  with 1 .2x =  

( ) ( ) ( )23 21 3f x x x
−

′ = − +  

Thus, the sum of the series is ( ) ( )
( )2

131 164 .2 2711 8

f ′ = − = −
+

 

 

2 : 
( )

( )
 1 : 

1 1 : 2

f x

f

′⎧⎪
⎨ ′⎪⎩

 

(c)  ( ) 3 14 7 10

3
0

11
4 7 10 3 11

n nx xx x xdt x nt

+−
= − + − + + +

++
⌠⎮
⌡

L L  

 

2 : { 1 : first four terms
 1 : general term

 

(d) 
( ) ( )4 7

1 2

3
0

1 1
1 1 2 2 .2 4 71

dt
t

≈ − +
+

⌠⎮
⌡

 

 The series in part (c) with 1
2x =  has terms that alternate, decrease in 

absolute value, and have limit 0. Hence the error is bounded by the 
absolute value of the next term. 

 
( ) ( ) ( )4 7 10

1 2

3
0

1 1 1
1 1 12 2 2 0.00012 4 7 10 102401

dt
t

⎛ ⎞
⎜ ⎟

− − + < = <⎜ ⎟
+ ⎜ ⎟⎜ ⎟

⎝ ⎠

⌠⎮
⌡

 

 
 

3 : 

 1 : approximation
 1 : properties of terms
 1 : absolute value of 
      fourth term 0.0001 

⎧
⎪⎪
⎨
⎪
⎪ <⎩

 

 


