Practice AP Calculus BC [감

Unit 1: Limits & Continuity

- Algebraic simplifications for limits: Completing the square, rationalization, factoring.
- Intermediate Value Theorem (IVT): If f(x) is continuous on [a,b], and f(c) is between f(a and f(b), then there is a c in (a,b) such that f(c) = 0.
- Limits formulas:
 - $\bullet \ \lim_{x \to c} [af(x)] = a \cdot \lim_{x \to c} f(x)$
 - $ullet \lim_{x o c} [f(x)\pm g(x)] = \lim_{x o c} f(x) \pm \lim_{x o c} g(x)$
 - $\bullet \quad \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \quad \text{(L'Hopital's Rule)}$

<u>Additional Notes:</u>

Practice AP Calculus BC []

Unit 2: Differentiation: Definition and Fundamental Properties

- Differentiation is a fundamental concept in calculus that deals with finding the rate at
 which a function changes at any given point. Essentially, it measures how a function's
 output value changes as its input value changes. The derivative of a function at a
 particular point provides the slope of the tangent line to the curve at that point.
- In mathematical terms, if y = f(x), the derivative of f(x) with respect to x, denoted by f'(x) or $\frac{dy}{dx}$ is the rate of change of y with respect to x.

• Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$

• Sum/Difference Rule: $\frac{d}{dx}(f(x)\pm g(x))=f'(x)\pm g'(x)$

• Product Rule: $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$

• Quotient Rule: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$

• Chain Rule: $\frac{d}{dx}f(g(x)) = g'(x) \cdot f'(g(x))$

• Implicit Differentiation: Differentiate both sides with respect to the variables.

• Inverse Trig Functions:

$$\bullet \quad \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

Practice AP Calculus BC [7]

Unit 3: Differentiation: Composite, Implicit, and Inverse Functions

- Chain Rule for Composite Functions:
 - The derivative of a composite function f(g(x)) is: $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$
 - This applies to any combination of nested functions. For example: Chain Rule $\frac{d}{dx}\sin(2x)=\cos(2x)\cdot 2$
- Derivatives of Inverse Trigonometric Functions:

$$ullet \qquad rac{d}{dx} \cos^{-1}(x) = -rac{1}{\sqrt{1-x^2}}$$

$$\bullet \quad \frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2}$$

$$\bullet \quad \frac{d}{dx} \cot^{-1}(x) = -\frac{1}{1+x^2}$$

$$\bullet \quad \frac{d}{dx} {\rm sec}^{-1}(x) = \frac{1}{|x| \sqrt{x^2 - 1}}$$

$$ullet \quad rac{d}{dx} \mathrm{csc}^{-1}(x) = -rac{1}{|x|\sqrt{x^2-1}}$$

Practice AP Calculus BC

Unit 4: Contextual Applications of Differentiation

- Particle Motion:
- Position: s(t)
- Velocity: v(t) = s'(t)
- Acceleration: a(t) = v'(t) = s''(t)
 - If velocity is negative, the particle is moving to the left.
 - If velocity is positive, the particle is moving to the right.
 - If velocity and acceleration have the same sign, the particle is speeding up.
 - If velocity and acceleration have different signs, the particle is slowing down.
- Steps for Related Rates:
 - Draw a picture and label it, assigning variables.
 - List known and unknown values.
 - Differentiate both sides with respect to time (use d/dt).
 - Plug in known values and solve for the desired value. Don't forget units!
- Linearization:
 - Linear approximation of f(x) at x = a is L(x) = f(a) + f'(a)(x-a).
- L'Hopital's Rule:
 - Use $\frac{f(x)}{g(x)}$ when is indeterminate (0/0 or ∞/∞). $\lim_{x\to c}\frac{f(x)}{g(x)}=\lim_{x\to c}\frac{f'(x)}{g'(x)}$

Practice AP Calculus BC [2]

Unit 5: Analytical Applications of Differentiation

• **Mean Value Theorem (MVT):** If f(x) is continuous on [a,b] and differentiable on (a,b), there is a ccc in (a,b) such that:

 $\bullet \ f'(c) = \frac{f(b) - f(a)}{b - a}$

- Extreme Value Theorem (EVT): If f(x) is continuous on [a,b], there exists at least one local maximum and one local minimum on [a,b].
- Critical Points: Occur where f'(x) = 0 or does not exist.
- First Derivative Test:
 - If f'(x) changes from positive to negative at c, f(x) has a local maximum at c.
 - If f'(x) changes from negative to positive at c, f(x) has a local minimum at c.
- Concavity:
 - f''(x) > 0: Concave up.
 - f''(x) < 0: Concave down.
 - f''(x) = 0: Possible inflection point.
- Second Derivative Test:
 - If f'(x) = 0 and f''(x) > 0, then f(x) has a local minimum.
 - If f'(x)=0 and f''(x)<0, then f(x) has a local maximum.
- Steps for Optimization:
 - Draw and label a picture.
 - Assign variables and write an equation.
 - Find relationships among the variables.
 - Differentiate and find extrema (min/max).

Practice AP Calculus BC [7]

Unit 6: Integration & Accumulation of Change

 Fundamental Theorem of Calculus (FTC): ∫_a^b f(x)dx = F(b) - F(a) where F(x) is an antiderivative of f(x). Integration by Parts: ∫u dv = uv -∫vdu Riemann Sum: Approximation of area under a curve using left, right, midpoint, or
trapezoidal sums.
Additional Notes:

Practice AP Calculus BC []

Unit 7: Differential Equations

- Logistic Differential Equation: $\frac{dP}{dt} = kP\left(1 \frac{P}{L}\right)$, where P is the population, L is the carrying capacity, and k is a constant.
- Slope Fields: Graphical representation of a differential equation $\frac{dy}{dx} = f(x,y)$
- Euler's Method: Used to numerically approximate solutions of differential equations.

• Euler's Method: used to numerically approximate solutions of differential equations.
<u>Additional Notes</u> :

Practice AP Calculus BC []

Unit 8: Applications of Integration

• Volumes:

• Washer Method: $V = \pi \int_a^b \left(R(x)^2 \right) dx$

• Disc Method: $V = \pi \int_a^b \left(R(x)^2 - r(x)^2\right) dx$

• Arc Length:

• Parametric: $L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

• Polar: $A=rac{1}{2}\int_{ heta_1}^{ heta_2}r^2d heta$

• Area under a Polar Curve: $\int_{ heta_1}^{ heta_2} \sqrt{r^2 + \left(rac{dr}{d heta}
ight)^2} d heta$

Practice AP Calculus BC []

<u>Unit 9: Parametric Equations, Polar Coordinates, & Vector Valued Functions</u>

• Parametric Equations: $x = f(t)$, $y = g(t)$ • Second Derivative: $\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right)$ • Area under Polar Curves: $\int_{\theta_1}^{\theta_2} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$
Additional Notes:

Practice AP Calculus BC []

Unit 10: Infinite Sequences and Series

- Taylor Series: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$
- Power Series: Converges when p>1; diverges otherwise.
- Convergence Tests:
 - ullet Nth-Term Test: Series diverges if $(\lim_{n o\infty}a_n)0$
 - ullet Ratio Test: Converges if $(\lim_{n o \infty} rac{a_{n+1}}{a_n} < 1)$

<u>Additional Notes</u> :			