.\ 7J] The °ADVANCED
ﬁ College PLACEMENT
Board PROGRAM®

AP Computer Science A
1999 Sample Student Responses

The materials included in these files are intended for non-commercial use by AP
teachers for course and exam preparation; permission for any other use must be
sought from the Advanced Placement Program. Teachers may reproduce them, in
whole or in part, in limited quantities, for face-to-face teaching purposes but may
not mass distribute the materials, electronically or otherwise. These materials and
any copies made of them may not be resold, and the copyright notices must be
retained as they appear here. This permission does not apply to any third-party
copyrights contained herein.

These materials were produced by Educational Testing Service (ETS), which develops and administers the examinations of the Advanced Placement Program for the
College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and
employment policies are guided by that principle.

The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity.
Founded in 1900, the association is composed of more than 3,900 schools, colleges, universities, and other educational organizations. Each year, the College Board
serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance,

assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT™, the Advanced Placement
Program® (AP®), and Pacesetter®. The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its
programs, services, activities, and concerns.

Copyright © 2001 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered
trademarks of the College Entrance Examination Board.

(a) Wnte function WordIndex, as started below. The array wordList contains numWords strings

in alphabetical order, If word is already in wordList, then WordIndex should return the index
of word in wordList. Otherwise, WordIndex should return the index of the first string in
wordList that comes after word in alphabetical order; it should return numiWords if word
comes after all of the strings in wordList in alphabetical order.

For example, assume that array wordList 1s as follows:

o 1 2 3
"apple" "berry" "pear"” "quince®
Function Call Value Returmed

WordIndex(*air*, wordList, 4)
WordIndex("apple®, wordList, 4)
WordIndex(®"orange", wordList, 4)
WordIndex("raspberry®, wordList, 4)

1 e s O

Complete function WordIndex below. Assume that WordIndex iscalled only with parameters that
satisfy its precondition.

int WordIndex(const apstring & word,
const apvector<apstring> & wordList, int numWords)

// precondition:; wordList contains numWords strings in alphabetical
i order, 0 £ numWords < wordList.lengthi()

t

ih} =

Fﬂr(t :ﬂ"_; LA hl,thwifd“a; ﬂr‘!‘j
H(woid &= word[x31=1)

Eh‘
o

i

reture wn.-.?"n-rr:lf:_;

§

A

GO ON TO THE NEXT PAGE

e e e o e e g e e — o — —————r———

T e R

(b) Wnte function InsertInOrder, asstarted below. The aray wordList contains numWords
strings in alphabetical order. If the string word is already in wordList, InsertInOrder should
not change any of its parameters. Otherwise, it should insert word into wordList in alphabetical order
(i.e., all values greater than word should be moved one place to the right to make room for word), and
it should also increment numWords by 1. Assume that wordList.length() is greater than
numiWords.

In the examples below, numWords = 3 before the following call is made.

InsertInCrder ("pear®, wordList, numWords)

Before the call After the call

wordList wordlList numWords
"apple® *berry" "guince"’ *apple* *"berry® "pear®” “"guince” 4
“apple® *"berry™ "pear" apple” "berry® "pear” 3
apple "fig" "peach" *apple* "fig* *"peach" "pear” 4
*quince® *raisin" "tart" *pear® "quince® "raisin® "tart” 4

In writing Insert InOrder, you may include calls to function WordIndex specified in part (a).
Assume that WordIndex works as specified, regardless of what you wrote in part ().

Complete function InsertInOrder below. Assume that InsertInOrder 1scalled only with
parameters that satisfy its precondition.

void InsertInOrder (const apstring & word,
apvector <apstring> & wordList, int & numiWords)

// precondition: wordList contains numWords strings in alphabetical

! order, 0 € numWords < wordList.length()

// postecondition: if word was already in wordList, then wordList and
! numwWords are unchanged;

rr otherwise, word has been inserted inte wordlist in
ff sorted order, and numiWords has.been incremented by 1

ind place = Mord Irder (oid, word Link, muatorde) x;
 {pote == hpeds 1] wirdb il g 1= wnd)

for (e = hn-."'ﬂ""‘"*':r; x> Piﬂf-“_; x=-=)

{
I

word L} [r{nt-t] * ‘rﬂf‘,l_]

Mot

word Lot Do) = wordLag [x- 1

GO ON TO THE NEXT PAGE

(=

-,

(a) Write function WordIndex, asstarted below. The array wordList contains numWords strings
in alphah-::u::a! order. If word is already in wordList, then WordIndex should return the index
of word in wordList. Otherwise, WordIndex should return the index of the first string in -,
wordList that comes after word in aiphabelic:al order; it should return nunWords if word
comes after all of the strings in wordList in alphabetical order.

For example, assume that array wordList is as follows:

—

0 1 2 3 - L
*apple® . *berrv* "paar"” "quince* -
Function Call - . Value Returped |

WordIndex ("air", wordList, 4}
Wordindex("apple*, wordList, 4)
WordIndex ("orange®, wordList, 4)
WordIndex("raspberry”, wordList, 4)

i b oo

Complete function WordIndex below. Assume that WordIndex is called only with parameters that
satisfy its precondition.

int Wordindex{const apstring & word, -
const apvector<apstring> & wordlist, int numWords)

/{ precondition: wordList contains numWords strings in alphabptical
Iy order, 0 £ numiWords < wordList. length{}l

HL'T [if .
12, oo S L

i (anrhts 1] == woed)
Tuin K By el
ML (rf;gfgl < ﬂﬂFJ\bls-%g}{}) i

-B-

- ——— e A S i Ry A L B T R A e =

N

{(b) Wnite function InsertInOrder, asstarted below. The ammay wordList contains numWords
strings in alphabetical order. If the string word is already in wordList, InsertInOrder should
_. not change any of its paramieters. Otherwise, it should insert word into wordList in alphabetical order
. (i.e., all values greater than word should be moved one place to the right to make room for word), and
it should also increment numWords by 1. Assume that wordList.length() is greater than
numWords.

Tu the examples below, numWords = 3 before the following call is made.

InsertInOrder (*pear*, wordList, numWords)

Before the call ' After the call

wordList wordlList numiWords
: "apple® "berry" "q.uinc:e.'_ "apple® "berry" 'pea:::' "guince"® 4
'applg' *berrvy" 'PEEr" ‘ﬁpple. *berry" "pear® 3
Y "apple® "fig" "peach" *apple* "fig" "peach® "pear"” 4
" "quince® *raisin® "tart® *pear® "guince® *"raisin® "tart" 4

In writing Insert InOrder, you may include calls to function WordIndex specified in part (a).
Assume that WerdIndex works as specified, regardless of what you wrote in part (a).

Complete function InsertInOrder below. Assume that InsertInOrder iscalled only with
parameters that satisfy its precondition.

' void InsertInOrder (const apstring & word,
o apvector <apstring> & wordList, int & numWords)
// precondition: wordlList contains numWords strings in alphabetical

Iy order, 0 € numWords < wordList.length()

/! postcondition: if word was already in weordList, then wordList and
i numiWords are unchanged; o

e otherwise, word has been inserted into wordList in
g sorted order, and numWords has been Jj.nl:remented by 1

]

B, b,

é\?r(li:oj k::- mumVun’?’s/- {LH)
- £ .'-PL“""‘”"A 12 word Lts‘t[}:]) .

.. i’s nlf?‘ = W{IW{ I“ﬁiﬂ' (uﬂra[; ""'”J L;Sfi’ ﬂuﬂwﬂr{;}j

i "
2
U= nom\Woad § - L> lnd ex - L"‘)
5 l;]ﬂ A st EL]/‘-’- word L:B_{‘tj__.., 11} |
Mﬂf’d LI@"’ E’N‘h}(j = WA .ro!_;

s .-..El'.a'.:r L : -

o 1]
]

(sl L'i:ll [}

L
;." -.i n:"l- b
g PRk

.-:."

ot

]
]

Ay

P
s o]
T

d

T g GO ON TO THE NEXT PAGE

Az

T

2.

(a) Write function WordIndex, asstarted below. The array wordList contains numWords strings
in alphabetical order. If word is already in wordList, then WordIndex should return the index
of word in wordList. Otherwise, WordIndex should return the index of the first string in
wordList thatcomes after word in alphabetical order; it should retumn numWords if word
comes after all of the strings in wordList in alphabetical order.

L]

For example, assume that array wordList is as follows:

o 1 2 3

*apple® *berry" - "pear* "gquince®

Function Call Value Retuned

WordIndex("air*, wordList, 4) .
WordIndex("apple®, wordList, 4)
WordIndex(®"orange®, wordList, 4)
WordIndex("raspberrv®, wordList, 4)

(= =

Complete function WordIndex below. Assume that WordIndex is called only with parameters that
satisfy its precondition.

int WordIndex (const apstring & word,
const apvector<apstring> & wordList, int numWords)

{// precondition: wordList contains numWords strings in alphabetical
l/ order, 0 £ numWords < wordList.length()

& ot ol b

||.'-. -':'-n

{;r{nm‘u" &3 ﬁhkrﬂu‘f&'r‘-h ﬂﬂ.ﬁh\‘Jl o d.s' - '.)

o éj nrd L= wurdh{i‘i{.ﬂ“ﬁ'ﬁwfaﬂ}
_ (pynect :-numwﬂrdji
£

l'L,{\Hh tﬁﬁn’h

GO ON TO THE NEXT PAGE

(b} Write function InsertInOrder, asstarted below. The array wordList contains numWords -j
strings in alphabetical order, If the string word is already in wordList, InsertInOrder should
not change any of its parameters. Otherwise, it should insert word into wordList in alphabetical order
(i.e., all values greater than word should be moved one place to the right to make room for word), and
it should also increment numWords by 1. Assume that wordList.length() is greater than
numWords.

In the examples below, numWords = 3 before the following call is made.

InsertInOrder ("pear®, wordList, numWords)

Before the call After the call

wordlist wordList Wor
*apple® "berry® "quince® *apple® "berry® "pear” 'quincr_a' 4
*apple® *berry* *“pear” *apple” "berry" "pear” 3
"apple* *fig" "peach" *apple* "fig®* "peach® "pear* _ 4
"gquince® "raisin* “"tart*® *pear® "quince® "raisin”® “tart* - 4

In writing Insert InOrder, you may include calls to function WordIndex specified in part (a).
Assume that WordIndex works as specified, regardless of what you wrote in part (a).

Complete function InsertInOrder below. Assume that InsertInOrder is called only with
parameters that satisfy its precondition.

void InmsertInOrder (const apstring & word,)
apvector <apstring> & wordList, int & numWords)
// preconditicn: wordList contains numWords strings in alphabetical

i order, 0 £ numWords < wordList.length(}

/{ postcondition: if word was already in wordList, then wordList and
i numiWords are unchanged;

N otherwise, word has been inserted into wordList in
i sorted order, and numWords has been incremented by 1

int ﬁurrFf}
inf wwAT=0; i |
(ul"(ﬂla'l-h :Wﬂ{{iiﬂ'.[{nﬂf‘h*f‘; ﬂun_-?:dj m,gm-—)

if WordzzwordLit[aum]
it e == [;
1§ (worde wive L;.'i't.hhm_l

Luu...:f =Manq -
f
€ .
€ leonti=-[)
E -F.r G‘mr—. =-'.':"; ﬂ..-.m=nu¢.r-l-"’“;5j ﬂm{'{:)
m,d%;g{ﬂfﬂw‘iﬁqwﬂiﬂf_ W'rﬂf‘ﬂ'f‘fL{nﬂ;fﬁ**M? : : - GO ON TO THE NEXT PAGE

Ehrdffimuﬂ] = mf¢
s f

- e e a m wm omegem mren e ey g —— e W T p——— =] 7T L e T

	1999 AP Computer Science A Student Samples
	Question 2
	Sample A - Score High
	Sample G - Score Medium
	Sample I - Score Low

