

AP® Computer Science A
2005 Scoring Commentary

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and
opportunity. Founded in 1900, the association is composed of more than 4,700 schools, colleges, universities, and other
educational organizations. Each year, the College Board serves over three and a half million students and their parents, 23,000
high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid,
enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced
Placement Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is
embodied in all of its programs, services, activities, and concerns.

Copyright © 2005 by College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP,
AP Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Entrance Examination Board.
Admitted Class Evaluation Service, CollegeEd, Connect to college success, MyRoad, SAT Professional Development, SAT
Readiness Program, and Setting the Cornerstones are trademarks owned by the College Entrance Examination Board.
PSAT/NMSQT is a registered trademark of the College Entrance Examination Board and National Merit Scholarship
Corporation. Other products and services may be trademarks of their respective owners. Permission to use copyrighted College
Board materials may be requested online at: http://www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program and Pre-AP: apcentral.collegeboard.com.

AP® COMPUTER SCIENCE A
2005 SCORING COMMENTARY

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

2

Question 1

Overview

This question focused on abstraction and data structure access. It involved storing and manipulating a collection
of hotel reservations. Students were given a Reservation class and the skeleton of a Hotel class for
representing the collection. The Hotel class had two private data fields defined, an array of room
reservations, and an ArrayList to serve as a waiting list when the rooms were full. In part (a) students needed
to iterate over the array, searching for an empty room (i.e., an array entry that was null). If an empty room
were found, then a reservation had to be created and assigned to that array entry. If not, then the customer had to
be added to the ArrayList. In part (b) students were required to cancel a room reservation and move a
customer from the waiting list if possible. This involved calling a method of the Reservation class to
determine the correct room number, setting the corresponding entry in the rooms array to null, and then
determining whether the ArrayList was empty. If not, then the first entry in the ArrayList had to be
removed and assigned to the rooms array.

Sample: 1A
Score: 9

In part (a) the student correctly loops over the rooms array and correctly tests each element to see if it is an empty
room (null). If an empty room is found, the student correctly creates a new reservation using guestName and
k, the index of the empty room. The student also assigns the new reservation to the null location in rooms
and then returns the reservation without completing the loop. If the loop completes, there are no empty rooms so the
student adds the guestName to waitList and returns null.

In part (b) the student uses res.getRoomNumber() to determine the room number of the canceled reservation
and immediately assigns that element in rooms to null. The student then checks to see if anyone is on the
waitList. If the waitList has entries, the student removes the first name from waitList (which also gets
the first name from waitList) and calls requestRoom with that name. This method creates the new
reservation, assigns it to a null location in rooms, and returns the newly created reservation. The student
immediately returns this result from the current method. If the waitList was empty originally, the student
returns null (the location in rooms had already been set to null).

Sample: 1B
Score: 6

In part (a) the student correctly loops over the rooms array and correctly tests each element to see if it is an empty
room (null). If an empty room is found, the student attempts to create a new reservation but obtains the room
number by calling getRoomNumber() on a null reference, resulting in loss of the new reservation
correctness half point. The student then correctly returns the reservation without completing the loop. The student
lost both half points for handling the waitList because waitList.add and return null are within
the loop.

AP® COMPUTER SCIENCE A
2005 SCORING COMMENTARY

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

3

Question 1 (continued)

In part (b) the student attempts to use a loop (rather than calling res.getRoomNumber()) over the rooms
array to determine the room number of the canceled reservation and loses the correctness half point since the if
test may result in a null pointer exception. By then assuming that the loop worked correctly, the student
assigns the correct location in rooms to null. After the loop, the student correctly checks to see if anyone is on
the waitList. If the waitList has entries, the student gets the name of the first person. The student lost the
half point for creating a new reservation because the room number (emptyRoom) is obtained
by a call that would result in a null pointer exception. The student does not assign the new reservation to
any location in rooms and does not remove the first name from waitList but does return the reservation. If
waitList was originally empty, the student correctly returns null (the correct assign is done in the initial
loop).

Sample: 1C
Score: 3

In part (a) the student correctly loops over the rooms array and correctly tests each element to see if it is an empty
room (null). If an empty room is found, the student attempts to create a new reservation but obtains the room
number by calling getRoomNumber() on a null reference, resulting in the loss of the new reservation
correctness half point. The reservation is never returned. The loop ends if the end of the array is reached (x ==
rooms.length) or if hasRoom is true. The latter case caused the student to lose the half point for adding
to waitList since the guest had already been assigned a room but is still added. There is no return null.

In part (b) the student correctly uses res.getRoomNumber(). There is no test for an empty waitList so
the student lost the test half point. This lack of a test caused loss of the get first entry half point because it is done
in both the empty and non-empty case. The student reverses the arguments and lost the create new reservation half
point and does not assign the reservation to any room. The remove half point was lost due to lack of a
waitList test. There is no return of the reservation, and without a test, both empty case half points are lost.

AP® COMPUTER SCIENCE A
2005 SCORING COMMENTARY

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

4

Question 2

Overview

This question tested students’ ability to design a hierarchy of classes using inheritance. An abstract
Ticket class was provided, and students were asked to design classes derived from Ticket that provided
specialized functionality. In part (a) students were required to design and implement a complete class representing
Advance sales tickets. This involved declaring a private field for storing either the price or the number of
days in advance that the ticket was purchased. It also involved writing a constructor to initialize that field and
overriding the abstract getPrice method of the parent class. In part (b) students were asked to design
and implement a StudentAdvance ticket class, which was derived from Advance and gave a special
discount for students. This involved writing a constructor and overriding both the getPrice and toString
methods. Since data fields in Ticket and Advance were private, it was necessary to use super in
the constructor and both methods in order to include the functionality of the parent methods.

Sample: 2A
Score: 8

In part (a) the student has a completely correct solution.

In part (b) the student does not override getPrice. The student does call super.getPrice and uses it to
assign the correct value to the instance variable price found in StudentAdvance, but confuses the value
that would be returned by a StudentAdvance object that invokes the method getPrice. The student
received credit for the call to super.getPrice, but lost the half points for the getPrice header and
return value.

Sample: 2B
Score: 7

In part (a) the student lost a half point for not making daysInAdvance private or protected. The
student declares cost as both an instance variable and a local variable within one branch of an if statement
in getPrice and thus lost the half point for the return value from getPrice. The code as written contains
a syntax error, but even if the statement double cost = 30 were enclosed in braces or the declaration were
moved before the if (but still in the braces around the if) the cost assigned in that branch would not be
the cost returned.

Part (b) is correct except that toString does not call super.toString()and attempts to access an
inaccessible variable. The student lost the 1½ points for toString. The student declares an unused instance
variable and then shadows it with a local variable, but in this case it does not cause problems and was not
penalized.

AP® COMPUTER SCIENCE A
2005 SCORING COMMENTARY

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

5

Question 2 (continued)

Sample: 2C
Score: 3

In part (a) the student received the half point for the class header, the half point for the constructor header, and the
point for assigning data in the constructor. The instance variables are not private or protected, losing
the half point for a private data field. Instead of overriding getPrice, the student names the method
ticketPrice, losing the half point for the getPrice header. The ticketPrice method computes the
price correctly but fails to return it, losing the half point for returning the correct value. The incorrect overriding
of toString was scored in part (b).

In part (b) the student received only the half point for the class header and the half point for the constructor
header. There is no attempt to call super within the constructor. The ticketPrice method does not
override getPrice, so the student lost the half point for the getPrice header. Instead of calling
super.getPrice, the student compares numOfDays to 10, set price to 15 or 20, and fails to return it.
Even if the price were returned it would not receive the half point for returning the correct value, because the
15 and 20 are hard-wired. The question states that if the pricing scheme for Advance tickets changes, the
StudentAdvance price should continue to be computed correctly with no code modifications. This code fails
that test. The toString method does not call super.toString() and attempts to access an inaccessible
variable, so received no credit. The student received no credit for these sections and thus is not penalized for
failing to declare numOfDays or price in this class.

AP® COMPUTER SCIENCE A
2005 SCORING COMMENTARY

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

6

Question 3

Overview

This question was based on the Marine Biology Simulation Case Study and focused on abstraction and
inheritance. Students needed to show their understanding of the case study and its interacting classes by writing
member functions for a new ZigZagFish class. In part (a) students were required to override the
nextLocation method, which selected the next location following a zig-zag pattern. The implementation of
this method required students to utilize Fish methods to obtain the environment, location, and direction of the
fish, and Environment methods to obtain the correct diagonal location and check to see if it were empty. In
part (b) students had to override the move method to produce the appropriate movement. This involved calling
the nextLocation method, testing that location, and either moving or changing direction depending on that
location.

Sample: 3A
Score: 9

In part (a) the student declares the local variable zig inside the scope of the if statement. The half point for
isEmpty was lost because zig is not defined outside the scope of the if statement. The rest of this
student’s solution is correct.

Part (b) is completely correct.

Sample: 3B
Score: 6

In part (a) the student correctly determines the environment, current location, and current direction of the fish.
The student correctly identifies both forward diagonals and uses the variable willZigRight to correctly
choose between them. However, the student never checks to determine if the diagonal location is empty, which
lost a half point, and since it is possible to return a nonempty diagonal location, the student also lost the return
next location half point. The student lost the return current location half point because the current location is
never returned.

In part (b) the student correctly calls nextLocation(). The student attempts to check if the fish had moved,
but checks the wrong location. The student received full credit for reversing the direction of the fish, because it is
in the context of checking for movement. The student correctly updates the fish’s location, but incorrectly updates
willZigRight because willZigRight is never set back to true.

Sample: 3C
Score: 4

In part (a) the student received the half points for accessing the fish’s current direction and location. The student
earned the location half point even though the call to the location method is missing parentheses.

In part (b) the student lost the half point for correctly checking for movement. The check itself is fine, but the
branches of the if-else statement are switched. After deducting this half point, the code for updating the
fish’s location and changing its direction are considered correct. The student also lost 1 point for failing to update
the variable willZigRight.

AP® COMPUTER SCIENCE A
2005 SCORING COMMENTARY

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

7

Question 4

Overview

This question focused on abstraction, array traversal, and the application of basic algorithms. In part (a) students
were required to calculate the average of numbers in a section of an array, given the starting and ending indices.
This involved traversing the correct section of the array, summing values, and then dividing by the size of the
section. In part (b) students were required to traverse the array and test consecutive items to determine whether
the numbers were arranged in increasing order. In part (c) they used the methods they wrote in the previous parts
of the question to compute a conditional average, averaging only the last half of the array if the numbers were
increasing. This last part focused heavily on abstraction, as code reimplementations received no credit.

Sample: 4A
Score: 9

In part (a) the variable used for the calculation of the sum is initialized correctly. The loop control variable ranges
from first to last, inclusive. The sum is calculated correctly. The quotient is calculated and returned. The quotient,
a double value, is the average with both the correct numerator and denominator.

In part (b) the loop control variable correctly ranges from 0 to scores.length-2, which is consistent with
its use as indices for scores. Consecutive pairs of scores are correctly compared in order to determine if the
pair belongs to the set of improving scores. The Boolean value that is calculated and returned correctly
differentiates between a collection of scores that is improving and a collection of scores that is not improving.

In part (c) the method hasImproved is called correctly. In both cases, the average of the scores is calculated
and returned correctly.

Sample: 4B
Score: 7

In part (a) the variable used for the calculation of the sum is initialized correctly. The loop control variable ranges
from first to last, inclusive. The sum is calculated correctly. The quotient is calculated and returned. The student
received the attempt half point for the calculation of the average but lost the correct half point because the count
of the number of scores used in the denominator is incorrect (off by one).

In part (b) the loop control variable correctly ranges from 0 to scores.length-2, which is consistent with
its use as indices for scores. Consecutive pairs of scores are correctly compared in order to determine if the
pair belongs to the set of improving scores. The Boolean value that is calculated and returned correctly
differentiates between a collection of scores that is improving and a collection of scores that is not improving.
While it appears that the Boolean value toggled, the Boolean expression in the while loop ensures that it did
not toggle.

In part (c) the method hasImproved is called correctly. In the case where the scores have improved, the
student has reimplemented the average method, which did not receive credit since the directions clearly
directed the student to call the methods defined in parts (a) and (b). In the other case, the average of the scores is
calculated and returned; however, the range of values used is incorrect (the second parameter is off by one).

AP® COMPUTER SCIENCE A
2005 SCORING COMMENTARY

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

8

Question 4 (continued)

Sample: 4C
Score: 3

In part (a) no points were awarded because no loop is shown in the solution. Note that any calculation of the sum
must include the values from the scores array. The average must include a sum and a count of values from the
scores array.

In part (b) the student attempts to compare consecutive values in the scores array. There is an attempt at the
loop, but the loop control variable processes the value of scores[length], which is incorrect. The student
attempts to compare consecutive pairs of scores but does not allow for the scores to be equal and thus lost the
correctness half point. No points were awarded for calculating and returning the Boolean value, since the value
returned is based on a single comparison (last comparison).

In part (c) the method hasImproved is called correctly. In both cases, the average of the scores is calculated
and returned; however, the second parameter in both calls to average is off by one. Therefore the student lost
both return correct average half points.

