
AP® COMPUTER SCIENCE A 
2007 SCORING GUIDELINES 

 
Question 4: Game Design (Design) 

 
Part A:  RandomPlayer   4 points 
 
 +1/2 class RandomPlayer extends Player 
 
 +1  constructor 
  +1/2 public RandomPlayer(String aName) 
  +1/2 super(aName)  
    
 +2 1/2  getNextMove 
  +1/2 state.getCurrentMoves() 
  +1 if no moves  
   +1/2 test if size = 0 
   +1/2 return "no move" only if 0 moves 
  +1 if moves  
   +1/2 select random move index 
   +1/2 return random move 
    
 
 
Part B:  play    5 points 
 
 +1/2 print initial state (OK to print in loop) 
 
 +3 make repeated moves 

+1 repeat until state.isGameOver() 
  +1/2 state.getCurrentPlayer() 
  +1/2 player.getNextMove(state)  
  +1/2 display player and move 
  +1/2 make move 
   
 +1 1/2 determine winner 
  +1/2 state.getWinner() 
  +1/2 display message if draw (if getWinner returns null)  lose both if done 

before game ends    +1/2 display message if winner 
 
 

© 2007 The College Board. All rights reserved. 
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 



AP® COMPUTER SCIENCE A 
2007 CANONICAL SOLUTIONS 

 
Question 4: Game Design (Design) 

 
PART A: 
 
    public class RandomPlayer extends Player 
    { 
        public RandomPlayer(String aName) 
   { 
       super(aName); 
   } 
 
   public String getNextMove(GameState state) 
   { 
       ArrayList<String> possibleMoves = state.getCurrentMoves(); 
            if (possibleMoves.size() == 0) { 
                return "no move"; 
            } 
            else { 
                int randomIndex = (int)(Math.random()*possibleMoves.size()); 
                return possibleMoves.get(randomIndex); 
            } 
        } 
    } 
 
PART B: 
 
      public void play()  
    {  
        System.out.println("Initial state:" + state);  
       
        while (!state.isGameOver()) {  
            Player currPlayer = state.getCurrentPlayer(); 
            String currMove = currPlayer.getNextMove(state); 
            System.out.println(currPlayer.getName() + ": " + currMove); 
            state.makeMove(currMove); 
        }  
       
        Player winner = state.getWinner(); 
        if (winner != null) { 
            System.out.println(winner.getName() + " wins");  
        } 
        else { 
            System.out.println("Game ends in a draw"); 
        } 
    } 
 
 

© 2007 The College Board. All rights reserved. 
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 



©2007 The College Board. All rights reserved. 
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).



©2007 The College Board. All rights reserved. 
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).



©2007 The College Board. All rights reserved. 
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).



©2007 The College Board. All rights reserved. 
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).



©2007 The College Board. All rights reserved. 
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).



©2007 The College Board. All rights reserved. 
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).



AP® COMPUTER SCIENCE A 
2007 SCORING COMMENTARY 

 
Question 4 

 
Overview 
 
This question centered on abstraction, class design, and inheritance. Students were provided with an 
abstract framework for representing different types of games, including a GameState interface for 
capturing the state of a particular game and a Player class for representing a game player. In part (a) 
students were required to extend Player by designing and implementing a RandomPlayer class 
that always selects its move at random. This involved knowing the syntax of inheritance and also 
recognizing which methods needed to be overridden. Overriding the getNextMove method required 
calling the getCurrentMoves method defined by the GameState interface, randomly selecting a 
move (if one exists), and returning that move. In part (b) students were required to implement the play 
method of a GameDriver class, which calls the appropriate GameState and Player methods to 
alternate player moves until the game is over.  
 
Sample: A4a 
Score: 8½ 
 
For part (a) of this solution, the code includes the proper class header as well as the correct constructor 
header. The constructor includes a correct call to super. The getNextMove method properly locates 
the current moves that are possible and checks to see if there are any possible moves. It then correctly 
returns either “no move” or a randomly selected move. The solution earned all 4 points available for this 
portion of the question. 
 
In part (b) the solution properly prints the state of the game. Both the loop and the call to 
getCurrentPlayer are correct. The call to getNextMove is incorrect because it is missing the 
parameter (state), so this part of the solution lost ½ point. The display of the player’s name and move 
works as requested, and the move is made correctly. The getWinner method is properly called and 
checked and the correct message is printed, so all the remaining points were awarded for this solution. 
 
Sample: A4b 
Score: 5½ 
 
The solution for part (a) includes the proper class header and constructor header but is missing the call to 
super() so it lost that ½ point. The getNextMove method properly locates the current moves that are 
possible and checks to see if there are any possible moves. It then returns either “no move” or a randomly 
selected move. The ½ point for random was lost because of the missing parameter on the call to 
nextInt. The student was awarded 3 of the 4 possible points for this part of the question. 
 
In part (b) the code properly prints the state of the game. Because the call to isGameOver is incorrectly 
implemented (it must be called on the state object) the solution lost the 1 point awarded for this check. 
The current player is properly accessed and earned that ½ point. The student attempts to reimplement the 
getNextMove method, so the getNextMove, display, and makeMove credit was lost. The 
getWinner method is properly called and checked, and the correct message is printed, so the last three 
½ points were earned. For this part the student earned 2½ out of 5 possible points. 
 

© 2007 The College Board. All rights reserved. 
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 



AP® COMPUTER SCIENCE A 
2007 SCORING COMMENTARY 

 
Question 4 (continued) 

 
Sample: A4c 
Score: 1½ 
 
Part (a) of this student’s solution includes the proper class header and earned that ½ point, but the 
constructor header is incorrect and there is no call to super(), which lost the credit given for those 
actions. The method getNextMove does not properly locate the current moves that are possible. The 
check for false is not the correct way to determine whether the number of moves is 0, but the correct 
message is returned if no moves are available earning that ½ point. The remaining code does not fit the 
question requirements, so the solution earned no additional credit. Part (a) earned 1 out of 4 possible 
points.  
 
Part (b) properly prints the state of the game and earned that ½ point but earned no further credit for this 
part of the question. There is no loop, no call to getCurrentPlayer, no call to getNextMove 
(instead the method is reimplemented), no call to makeMove (again the method is reimplemented), and 
the test for a win is incorrect. For this part the student earned ½ point out of 5 possible points. 

© 2007 The College Board. All rights reserved. 
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 




