
AP® COMPUTER SCIENCE A
2008 SCORING GUIDELINES

Question 1: Flight List

Part A: getDuration 4 points

 +1 handle empty case
 +1/2 check if flights is empty
 +1/2 return 0 if empty

 +1 access start time
 +1/2 access flights.get(0)
 +1/2 correctly call getDepartureTime on a flight

 +1 access end time
 +1/2 access flights.get(flights.size()-1)
 +1/2 correctly call getArrivalTime on a flight

 +1 calculate and return duration
 +1/2 call minutesUntil using Time objects
 +1/2 return correct duration (using minutesUntil)

Part B: getShortestLayover 5 points

 +1 handle case with 0 or 1 flight
 +1/2 check if flights.size() < 2
 +1/2 return -1 in that case

 +1 traverse flights

+1/2 correctly access an element of flights (in context of loop)
+1/2 access all elements of flights (lose this if index out-of-bounds)

+2 1/2 find shortest layover (in context of loop)

 +1 get layover time between successive flights (using minutesUntil)
 +1/2 compare layover time with some previous layover
 +1 correctly identify shortest layover

+1/2 return shortest layover

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 CANONICAL SOLUTIONS

© 2008 The College Board. All rights reserved.

Question 1: Flight List

PART A:

public int getDuration()
{
 if (flights.size() == 0)
 {
 return 0;
 }
 else
 {
 Time start = flights.get(0).getDepartureTime();
 Time end = flights.get(flights.size()-1).getArrivalTime();
 return start.minutesUntil(end);
 }
}

PART B:

public int getShortestLayover()
{
 if (flights.size() < 2)
 {
 return -1;
 }
 else
 {
 int shortest = getDuration();
 for (int i = 0; i < flights.size()-1; i++)
 {
 Time arrive = flights.get(i).getArrivalTime();
 Time leave = flights.get(i+1).getDepartureTime();
 int layover = arrive.minutesUntil(leave);
 if (layover < shortest)
 {
 shortest = layover;
 }
 }
 return shortest;
 }
}

Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 SCORING COMMENTARY

Question 1

Overview

This question focused on abstraction, ArrayList traversal, and the application of basic algorithms.
Students were provided with the frameworks of two helper classes: a Time class for representing a
specific time, and a Flight class for representing an airline flight between cities. They were then asked
to implement two methods of a third Trip class, which stores a sequence of Flight objects in an
ArrayList instance variable. In part (a) students were required to implement the getDuration
method for determining the length of a trip. This could be accomplished by calling the appropriate
Flight and Time methods on the first and last flights in the ArrayList instance variable. In part
(b) students were required to implement the shortestLayover method for finding the shortest layover
between flights on the trip. This involved traversing the ArrayList of flights, determining the layover
between successive flights (by calling the appropriate Flight and Time methods), and identifying the
minimum layover duration.

Sample: A1A
Score: 8

In part (a) the student does not check the data structure for a size of zero and does not return a 0 if the
structure is empty. The student then correctly accesses the departure time of the first flight by calling
getDepartureTime correctly on the first element of the ArrayList of flights and correctly accesses
the arrival time of the final flight by calling getArrivalTime on the final element of the ArrayList
of flights. The student correctly uses the returned Time objects as parameters in the call to the
minutesUntil method that will return the correct answer for this solution.

In part (b) the student correctly checks the data structure for a size of at least two flights, which is needed
to create a layover between flights, and the student correctly returns a -1 if the structure was too small.
The student then correctly accesses all of the elements of the data structure. The student uses these
elements to correctly get a layover time between two flights, compares this layover time with the smallest
time so far, and then correctly saves the layover time if it is smaller. The student then returns the smallest
calculated layover.

Sample: A1B
Score: 6

In part (a) the student checks the data structure for a size of zero too late but does return a 0 if the structure
is empty. The student then correctly accesses the departure time of the first flight by calling
getDepartureTime on the first element of the ArrayList of flights and correctly accesses the
arrival time of the final flight by calling getArrivalTime on the final element of the ArrayList of
flights. The student stores each returned Time object and correctly uses those objects to call the
minutesUntil method that will return the correct answer for this solution.

In part (b) the student checks the data structure for a size of at least two flights too late but does return -1
when the structure is too small. The student does not correctly access all of the elements of the data
structure because there is an off by one error in the first loop. The student uses these elements correctly to
get a layover time between two flights and compares this layover time with the smallest time so far.
Because the return is inside the loop, however, the student does not correctly calculate or return the
smallest time.

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 SCORING COMMENTARY

Question 1 (continued)

Sample: A1C
Score: 2

In part (a) the student checks the data structure for a size of zero and correctly returns a 0 based on that
check. The student then incorrectly accesses the departure time of the first flight by calling
getDepartureTime correctly but on an incorrectly accessed first element of the ArrayList of
flights. The student also incorrectly accesses the arrival time of the final flight by calling
getArrivalTime on an incorrect attempt to access the final element of the ArrayList of flights.
The student incorrectly calculates the duration of the trip by trying to subtract the times instead of calling
the minutesUntil method in the Time class.

The student does not write code that can solve part (b).

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

