
AP® COMPUTER SCIENCE A
2008 SCORING GUIDELINES

Question 2: String Coder

Part A: decodeString 4 1/2 points

 +1 traverse parts
 +1/2 correctly access an element of parts (in context of loop)
 +1/2 access all elements of parts (lose this if index out-of-bounds)

 +2 retrieve substrings from masterString
 +1/2 correctly call getStart() and getLength() on accessed part
 +1 1/2 extract a substring from masterString
 +1/2 masterString.substring(X,Y)
 +1 extract correct substring

 +1 1/2 build and return decoded string
 +1 correctly build string from substrings of masterString
 +1/2 return built string

Part B: encodeString 4 1/2 points

+1/2 construct an ArrayList<StringPart> (must assign to a variable, generic okay)

 +3 1/2 find, collect string parts, and build list (in context of loop)
 +1 findPart(X), where X is word or a substring of word

+1 calls to findPart involve progressively smaller suffixes of word
 +1/2 add found string part to ArrayList of string parts
 +1 build correct list of string parts (must have used findPart)

+1/2 return ArrayList of string parts

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 CANONICAL SOLUTIONS

© 2008 The College Board. All rights reserved.

Question 2: String Coder

PART A:

public String decodeString(ArrayList<StringPart> parts)
{
 String expanded = "";
 for (StringPart nextPart : parts)
 {
 int ending = nextPart.getStart()+nextPart.getLength();
 expanded += masterString.substring(nextPart.getStart(), ending);
 }
 return expanded;
}

PART B:

public ArrayList<StringPart> encodeString(String word)
{
 ArrayList<StringPart> parts = new ArrayList<StringPart>();

 while (word.length() > 0)
 {
 StringPart nextPart = findPart(word);
 parts.add(nextPart);
 word = word.substring(nextPart.getLength());
 }
 return parts;
}

ALTERNATE SOLUTION:

public ArrayList<StringPart> encodeString(String word)
{
 ArrayList<StringPart> parts = new ArrayList<StringPart>();

 int index = 0;
 while (index < word.length())
 {
 StringPart nextPart = findPart(word.substring(index));
 parts.add(nextPart);
 index += nextPart.getLength();
 }
 return parts;
}

Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 SCORING COMMENTARY

Question 2

Overview

This question focused on abstraction, string manipulation, ArrayList traversal, and algorithm
implementation. Students were provided the framework of a StringPart class for identifying a
substring of a string (by specifying start index and length). Using this idea of a string part, algorithms for
encoding and decoding strings as sequences of parts of a master string were described. In part (a)
students were required to implement the described algorithm for decoding a string given its
representation as an ArrayList of StringPart objects. This involved traversing the ArrayList,
accessing the appropriate substrings in the master string (using the substring method), and
concatenating the substrings to obtain the original string. In part (b) students had to implement the
encoding algorithm, which involved constructing an ArrayList of StringPart objects that
represented the given string. A helper method, findPart, was provided for extracting the individual
string parts, which had to be added to an ArrayList in sequence.

Sample: A2A
Score: 9

In part (a) the solution utilizes a for-each loop to access all the elements of ArrayList<StringPart>
parts. Outside the loop, the student declares and initializes a String identified as result. Auxiliary
variables start and length are declared inside the loop body and assigned correct values based on
the results returned by the getStart and getLength methods from the StringPart class called on
an element of parts. The correct start and start+length parameters are used in the
masterString.substring call and the resulting value is stored in String temp. The += operator
is then used to concatenate temp with result, which is returned after the loop exit.

In part (b) ArrayList<StringPart> list is declared and instantiated; the fact that <StringPart>
is not used with the constructor does not affect correctness. A local String variable str is assigned the
value of the method’s parameter word and then str is used throughout the method. The context of a
loop is established by while (str.length()>0). The call to findPart is syntactically correct and
the result is stored in StringPart s, which is then added to the ArrayList list. Then int len
is declared and assigned the result from s.getLength(). Extraneous code that causes no side effect,
such as the meaningless guard of the update of str since the condition will always be true, is not
penalized. The call of the String method substring str = str.substring(len) gives the
correct value of str to be used as the parameter in the next call to findPart. The correctly built
ArrayList list is returned after the loop exit.

Sample: A2B
Score: 6

In part (a) the solution utilizes a traditional for loop with int i as the loop control variable and an ending
condition of i <parts.size(). Outside the loop, the student declares result and uses a String
constructor to initialize to an empty string. Within the loop, each element of parts is accessed by using
parts.get(i). This is correct, but much less code would have been required if a for-each loop had been
used. Duplicate calls are made to parts.get(i) but int start is assigned the result returned by the
call to parts.get(i).getStart() to avoid a duplicate call of getStart. The correct start and
start+parts.get(i).getLength() parameters are used in the masterString.substring call,
and the resulting value is immediately concatenated with result. The return result statement
then appears after the loop exit.

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 SCORING COMMENTARY

Question 2 (continued)

In part (b) ArrayList<StringPart> parts is declared but not instantiated so the ½ point for
constructing an ArrayList of StringParts was not awarded. The context of a loop is established,
even though the loop is never finished. The call to findPart is syntactically correct and earned 1 point.
The result is used as a parameter in the call to the ArrayList method add, which was awarded ½ point
for being syntactically and semantically correct, even though parts has not been instantiated. The body of
the loop is never completed to shorten the parameter in the calls to findPart and the resulting parts
Arraylist is not returned.

Sample: A2C
Score: 3

In part (a) the solution attempts to use a traditional for loop {for(int i=0; i<parts.size();
i++)} to traverse parts. Although the loop bounds are correct, individual elements of parts are
never accessed so the two ½ points for correctly accessing an element and accessing all elements were not
awarded. In addition the ½ point was not awarded for parts.getStart() and parts.getLength()
because parts is an ArrayList, not a StringPart. The getStart and getLength methods
are instance methods defined in the StringPart class. Since the substring method is not accessed
as masterString.substring(…), the 1½ points for extracting a substring from masterString
were not awarded. However, since String word is declared, initialized to "", and the substring
extraction attempts concatenated with word, the 1 point for correctly building the string from substrings
was awarded. The final ½ point was earned by return word after the loop exit.

This solution earned a total of three of the ½ points in part (b). The ½ point was awarded for declaring and
instantiating the parts ArrayList. The instructions for the problem clearly state, “The helper method
findPart must be used to choose matching string parts in the master string.” Failure to do this resulted in
the loss of 3 whole points for the syntactically correct call of findPart, the calls to findPart involving
progressively smaller suffixes of word, and building the correct list of string parts (must have used
findPart). However, parts.add(new StringPart(k, length)) is enough to earn the ½ point for
the add. Also return parts outside all loops is enough to earn the ½ point for returning an ArrayList
of string parts.

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

