
AP® COMPUTER SCIENCE A
2008 SCORING GUIDELINES

Question 3: Opossum Critter (GridWorld)

Part A: processActors 6 points

 +1/2 initialize friend/foe counter(s)

 +2 1/2 loop and identify actors
 +1 traverse actors

+1/2 correctly access an element of actors (in context of loop)
 +1/2 access all elements of actors (lose this if index out-of-bounds)
 +1 1/2 identify actor category and update counters (in context of loop)

+1/2 call isFriend(nextActorFromList)
+1/2 call isFoe(nextActorFromList)

 +1/2 update counters appropriately in both cases

 +3 update OpossumCritter state
 +1 correctly identify whether to play dead
 +1 appropriate result if playing dead

+1/2 setColor(Color.BLACK)
+1/2 numStepsDead++

 +1 appropriate result if normal
+1/2 setColor(Color.ORANGE)
+1/2 numStepsDead = 0

Part B: selectMoveLocation 3 points

 +1 determine appropriate case (using == with Color is okay)

+1/2 correctly identify one case (dead, playing dead, normal)
+1/2 correctly identify all three cases

 +2 appropriate return values
 +1/2 return null if really dead
 +1/2 return current location if playing dead
 +1 return super.selectMoveLocation(locs) otherwise
 +1/2 super.selectMoveLocation(locs)
 +1/2 return value from call

Usage: -1 if violate postconditions (e.g., removeSelfFromGrid())

-1 for BLACK or “Black” instead of Color.BLACK
-1/2 for call to (nonexistent) default Location constructor

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 CANONICAL SOLUTIONS

© 2008 The College Board. All rights reserved.

Question 3: Opossum Critter (GridWorld)

PART A:

public void processActors(ArrayList<Actor> actors)
{
 int numFriends = 0;
 int numFoes = 0;

 for (Actor nextActor : actors)
 {
 if (isFriend(nextActor))
 numFriends++;
 else if (isFoe(nextActor))
 numFoes++;
 }

 if (numFoes > numFriends)
 {
 setColor(Color.BLACK);
 numStepsDead++;
 }
 else
 {
 setColor(Color.ORANGE);
 numStepsDead = 0;
 }
}

PART B:

public Location selectMoveLocation(ArrayList<Location> locs)
{
 if (numStepsDead == 3)
 return null;
 else if (numStepsDead > 0)
 return getLocation();
 else
 return super.selectMoveLocation(locs);
}

OR

public Location selectMoveLocation(ArrayList<Location> locs)
{
 if (getColor().equals(Color.BLACK))
 {
 if (numStepsDead == 3)
 return null;
 else
 return getLocation();
 }
 return super.selectMoveLocation(locs);
}

Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 SCORING COMMENTARY

Question 3

Overview

This question was based on the GridWorld case study and focused on abstraction and inheritance.
Students showed their understanding of the case study and its interacting classes by extending
Critter to derive an OpossumCritter class with modified behavior. In part (a) students were
required to override the processActors method so that the surrounding neighbors were accessed and
the state of the OpossumCritter updated according to the characteristics of those neighbors. In part
(b) students had to override the selectMoveLocation method so that the resulting move (and
ultimate survival of the OpossumCritter) depended upon its updated state.

Sample: A3a
Score: 8

In part (a) the student correctly initializes the two counter variables friendcount and foecount.
The correct use of the for-each loop earned the access ½ point and the traverse-all ½ point. The method
isFriend is correctly called, but the student lost ½ point for not calling isFoe and also lost ½ point for
updating counters because the value of foecount will be wrong. The if statement following the loop
correctly determines if this OpossumCritter should play dead by checking if the value of foecount
is greater than the value of friendcount. If the critter is to play dead, the color is correctly set to black
and numStepsDead is correctly incremented. Otherwise, the color is set to orange and
numStepsDead is reset to 0. The student earned a total of 5 points for part (a).

In part (b) the student correctly identifies the three possible cases: if numStepsDead is 0 (should act like
normal critter), if numStepsDead is 3 (dead), and otherwise (playing dead). If the critter is not
threatened (numStepsDead = 0), it correctly calls super.selectMoveLocation(locs) and
returns the result of this call. If the critter is dead, null is returned. If the critter is playing dead, it will
not move so its current location is returned. The student earned a total of 3 points for part (b).

Sample: A3b
Score: 6

In part (a) the student first checks if actors has any elements in it (checking if the critter has anything
that could be a considered a friend or a foe). If actors.size() is 0 (critter not threatened), the student
resets numStepsDead to 0 but fails to set the critter’s color to orange. The student earned ½ point for
correctly initializing the two counter variables friend and foe. Since there is a for loop that
correctly accesses an element of actors (actors.get(x)) and correctly traverses through all
elements of actors, the student earned those two ½ points. The methods isFriend and isFoe are
not correctly called, so the student lost these two ½ points. But the appropriate counters are updated in
both the friend case and the foe case, so the student earned that ½ point.

The if statement following the loop correctly determines if this OpossumCritter should play dead
by checking if the value of foe is greater than the value of friend. If the critter is to play dead, the
color is correctly set to black and numStepsDead is correctly incremented. There is no deduction for the
setLocation call because it does not change the critter’s location. The student will lose the ½ point for
changing the color to orange because of the failure to set the color in the not-threatened case at the
beginning of this method. The student earned the ½ point for resetting numStepsDead to 0. The
student earned a total of 4½ points for part (a).

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 SCORING COMMENTARY

Question 3 (continued)

In part (b) the student correctly identifies the three possible cases: numstepsDead > 0 &&
numStepsDead < 3 (playing dead), numStepsDead >= 3 (dead), and otherwise (should act like normal
critter). By checking locs.size() in the beginning, the student is assuming that if there is no place to
move, the critter should remain in its current location. This is not necessarily true. If numStepsDead =
3, the critter will have to die so null should be returned. The student lost the ½ null return point
because of this. If the critter is playing dead, its current location is correctly returned so the student earned
this ½ point. The student lost the two ½ points for not calling super.selectMoveLocation(locs)
and not returning the result of this call. The student earned a total of 1½ points for part (b).

Sample: A3c
Score: 3

In part (a) the student does not initialize any counter variables, so that ½ point was lost. The correct use of
the for-each loop earned the access ½ point and the traverse-all ½ point. The student lost three ½ points for
the isFriend call, the isFoe call, and the counter update. One point was lost for not correctly
identifying when to play dead, but since the student has some vague idea of what to do when the critter
might be a foe, the response earned the ½ point for incrementing numStepsDead but lost the three ½
points for setting the color to black or orange and resetting numStepsDead to 0. The student earned a
total of 1½ points for part (a).

In part (b) the student correctly identifies one case (dead) and correctly returns null. The student
earned 1 point for part (b).

The total score of 2½ points was rounded up to 3.

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

