AP® COMPUTER SCIENCE A
2008 SCORING GUIDELINES

Question 3: Opossum Critter (GridWorld)

|Part A processActors 6 points
+1/2 initialize friend/foe counter(s)
+2 1/2 loop and identify actors
+1 traverse actors
+1/2 correctly access an element of actors (in context of loop)
+1/2 access all elements of actors (lose this if index out-of-bounds)
+1 1/2 identify actor category and update counters (in context of loop)
+1/2 call isFriend(nextActorFromList)
+1/2 call isFoe(nextActorFromList)
+1/2 update counters appropriately in both cases
+3 update OpossumCritter state
+1 correctly identify whether to play dead
+1 appropriate result if playing dead
+1/2 setColor(Color.BLACK)
+1/2 numStepsDead++
+1 appropriate result if normal
+1/2 setColor(Color.ORANGE)
+1/2 numStepsDead = 0
|Part B: selectMovelL ocation 3 points
+1 determine appropriate case (using == with Color is okay)
+1/2 correctly identify one case (dead, playing dead, normal)
+1/2 correctly identify all three cases
+2 appropriate return values
+1/2 return null if really dead
+1/2 return current location if playing dead
+1 return super .selectMovelLocation(locs) otherwise
+1/2 super.selectMovelLocation(locs)
+1/2 return value from call
Usage: -1 if violate postconditions (e.g., removeSel fFromGrid())

-1 for BLACK or “Black” instead of Color . BLACK
-1/2 for call to (nonexistent) default Location constructor

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 CANONICAL SOLUTIONS

Question 3: Opossum Critter (GridWorld)

PART A:

public void processActors(ArrayList<Actor> actors)
{

int numFriends = 0O;

int numFoes = O;

for (Actor nextActor : actors)

if (isFriend(nextActor))
numFriends++;
else if (isFoe(nextActor))
numFoes++;
}

it (numFoes > numFriends)

{
setColor(Color _BLACK);
numStepsDead++;

}

else

{
setColor(Color _ORANGE);
numStepsDead = 0;

}

}

PART B:

public Location selectMovelLocation(ArrayList<Location> locs)
{
it (numStepsDead == 3)
return null;
else if (numStepsDead > 0)
return getLocation();
else
return super.selectMovelLocation(locs);
}

OR

public Location selectMovelLocation(ArrayList<Location> locs)

{
if (getColor().equals(Color.BLACK))

if (nhumStepsDead == 3)
return null;
else
return getLocation();
}

return super.selectMovelLocation(locs);

}

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

A3a,

(a) Override the processActors method for the OpossumCritter class. This method should look at
all elements of actors and determine whether or not to play dead according to the types of the actors. If
there are more foes than friends, the OpossumCritter indicates that it is playing dead by changing its
color to Color.BLACK. When not playing dead, it sets its color to Coloxr .ORANGE. The instance
variable numStepsDead should be updated to reflect the number of consecutive steps the
OpossumCritter has played dead.

Complete method processActors below.

/** Whenever actors contains more foes than friends, this OpossumCritter plays dead.
* Postcondition: (1) The state of all actors in the grid other than this critter and the
* elements of actors is unchanged. (2) The location of this critter is unchanged.
* @param actors a group of actors to be processed

*/
public void processActors (ArrayList<Actor> actors)

Nk & vesdCovnd <O
WX foeclunt=0,

-%O/(AC* O'/O\ Y aC/’&*O/CJ)
o é/\ (otriead(e)=4 Y2
Lrieadeount

/

?K%f

£ ceCoant 1,

W (Loecounr 78y L@/\dcﬁw"’)
Serolor(Colo Ll ACK), umZtegs Dead 14

9
et (olor (Color OR AVOE -
urdhepsDead = 0)

el

Part (b) begins on page 14.

GO ON TO THE NEXT PAGE.
-13-
©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

B

(b) Override the selectMoveLocation method for the OpossumCritter class. When the
OpossumCritter is not playing dead, it behaves likea Critter. The next location for an
OpossumCritter that has been playing dead for three consecutive steps is null. Otherwise, an
OpossumCritter thatis playing dead remains in its current location.

Complete method selectMoveLocation below.

/** Selects the location for the next move.
* Postcondition: (1) The returned location is an element of locs, this critter's current location,
* or null. (2) The state of all actors is unchanged.
* @param locs the possible locations for the next move
* @retuxrn the location that was selected for the next move, or null to indicate

* that this OpossumCritter should be removed from the grid.
*/
public Location selectMoveLocation(ArrayList<Location> locs)

(\{;(//\Mff\%&?;’\}w& ==0)
Ceharn Quper.Riect Mo elcatioy U o),

)
?\C)W B Q/ MVV\M'@?QD Oad X 5)

e Amrninil
3
2 \9e

]
fexarn getlolationl/

GO ON TO THE NEXT PAGE.
-14-

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

A3,

(a) Override the processActors method for the OpossumCritter class. This method should look at
all elements of actors and determine whether or not to play dead according to the types of the actors. If
there are more foes than friends, the OpossumCritter indicates that it is playing dead by changing its
colorto Color.BLACK. When not playing dead, it sets its color to Color .ORANGE. The instance
variable numStepsDead should be updated to reflect the number of consecutive steps the
OpossumCritter has played dead.

Complete method processActors below.

/** Whenever actors contains more foes than friends, this OpossumCritter plays dead.
* Postcondition: (1) The state of all actors in the grid other than this critter and the
* elements of actors is unchanged. (2) The location of this critter is unchanged.

* @param actors a group of actors to be processed
*/
public void processActors (ArrayList<Actor> actors)

VM 0T adors.gize ()

Kla==0)
P Sreps Qead= 0,

L2 U)

3

Wy Giend =0

W oe=0),

for (ink %70y %e) w)

2 € (ackors. e (k) 15 Friend) \
T Sendas)3
\QQacms.qekL\\.is?o&U)

L foeax 3y
3
e Q%ev@(\u\d\

t oA Coler (Co\of LA)'y

seA Loekon{ atiboanan)))
DU Siens Trad4d

3
e\s
sl Colet &(\)\d BRANGE)’,
nutnSkeps Dead = 0
Part (b) begins on page 14.

3 13- GO ON TO THE NEXT PAGE.

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

A3b,

(b) Override the selectMoveLocation method for the OpossumCritter class. When the
' OpossumCritter is not playing dead, it behaves like a Critter. The next location for an
OpossumCritter that has been playing dead for three consecutive steps is null. Otherwise, an
OpossumCritter thatis playing dead remains in its current location.

Complete method selectMoveLocation below.

/** Selects the location for the next move.
* Postcondition: (1) The returned location is an element of locs, this critter's current location,
* or null. (2) The state of all actors is unchanged.
* @param locs the possible locations for the next move
* @return the location that was selected for the next move, or null to indicate
* that this OpossumCritter should be removed from the grid.
*/
public Location selectMoveLocation(ArrayList<Location> locs)
Y n = loes . size LY,

\4(‘\::0} ool

X (2 aexloahion);
W& U\MS\@QSW7 D8R aumdiepsDeadd <3)
; Ferag o)e\L,.oq&-\mQ |
L (oumSiep s Dt »=3)
%

3
v ez (o) (Maiedom (D *q))
fahen Yoes o (e)]

Cthuet pul |

7

GO ON TO THE NEXT PAGE.
-14-

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

A3c,

(a) Override the processActors method for the OpossumCritter class. This method should look at
all elements of actors and determine whether or not to play dead according to the types of the actors. If
there are more foes than friends, the OpossumCritter indicates that it is playing dead by changing its
colorto Color.BLACK. When not playing dead, it sets its color to Color.ORANGE. The instance
variable numStepsDead should be updated to reflect the number of consecutive steps the
OpossumCritter has played dead.

Complete method processActors below.

/** Whenever actors contains more foes than friends, this OpossumCritter plays dead.
* Postcondition: (1) The state of all actors in the grid other than this critter and the
* elements of actors is unchanged. (2) The location of this critter is unchanged.
* @param actors a group of actors to be processed

p:lk/)lic void processActors (ArraylList<Actor> actors)
{ Colop TN = e Coloolor- ORANEE),
for (Ackor o~ actet £
S0 (o s riens)
f .(0‘ 15 Trien :
%0\.0(Rob = new Color(Color JBMCK‘)’
numStepsDead +

Part (b) begins on page 14.
GO ON TO THE NEXT PAGE.
-13- .

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

A3c,

(b) Override the selectMoveLocation method for the OpossumCritter class. When the
OpossumCritter is not playing dead, it behaves like a Critter. The next location for an
OpossumCritter that has been playing dead for three consecutive steps is null. Otherwise, an
OpossumCritter thatis playing dead remains in its current location.

Complete method selectMoveLocation below.

/** Selects the location for the next move.
* Postcondition: (1) The returned location is an element of locs, this critter's current location,
* or null. (2) The state of all actors is unchanged.
* @param locs the possible locations for the next move
* @return the location that was selected for the next move, or null to indicate
that this OpossumCritter should be removed from the grid.
*/
public Location selectMoveLocation{ArraylList<Location> locs)

rebuen Mt .
SUf’?f . seleck /' ‘O%LDCQHMC))

3

GO ON TO THE NEXT PAGE.
-14-

©2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 SCORING COMMENTARY

Question 3
Overview

This question was based on the GridWorld case study and focused on abstraction and inheritance.
Students showed their understanding of the case study and its interacting classes by extending

Critter toderive an OpossumCritter class with modified behavior. In part (a) students were
required to override the processActors method so that the surrounding neighbors were accessed and
the state of the OpossumCritter updated according to the characteristics of those neighbors. In part
(b) students had to override the selectMovelLocation method so that the resulting move (and
ultimate survival of the OpossumCritter) depended upon its updated state.

Sample: A3a
Score: 8

In part (a) the student correctly initializes the two counter variables friendcount and foecount.
The correct use of the for-each loop earned the access %2 point and the traverse-all %2 point. The method
isFriend is correctly called, but the student lost % point for not calling §1SFoe and also lost %2 point for
updating counters because the value of foecount will be wrong. The 1Ff statement following the loop
correctly determines if this OpossumCritter should play dead by checking if the value of foecount
is greater than the value of Friendcount. If the critter is to play dead, the color is correctly set to black
and numStepsDead is correctly incremented. Otherwise, the color is set to orange and
numStepsDead is reset to 0. The student earned a total of 5 points for part (a).

In part (b) the student correctly identifies the three possible cases: if numStepsDead is 0 (should act like
normal critter), if numStepsDead is 3 (dead), and otherwise (playing dead). If the critter is not
threatened (numStepsDead = 0), it correctly calls super.selectMovelLocation(locs) and
returns the result of this call. If the critter is dead, null is returned. If the critter is playing dead, it will
not move so its current location is returned. The student earned a total of 3 points for part (b).

Sample: A3b
Score: 6

In part (a) the student first checks if actors has any elements in it (checking if the critter has anything
that could be a considered a friend or a foe). If actors.size() is 0 (critter not threatened), the student
resets numStepsDead to 0 but fails to set the critter’s color to orange. The student earned % point for
correctly initializing the two counter variables friend and foe. Since thereisa Ffor loop that
correctly accesses an element of actors (actors.get(Xx)) and correctly traverses through all
elements of actors, the student earned those two %2 points. The methods isFriend and isFoe are
not correctly called, so the student lost these two %2 points. But the appropriate counters are updated in
both the friend case and the foe case, so the student earned that %2 point.

The if statement following the loop correctly determines if this OpossumCritter should play dead
by checking if the value of foe is greater than the value of Friend. If the critter is to play dead, the
color is correctly set to black and numStepsDead is correctly incremented. There is no deduction for the
setlLocation call because it does not change the critter’s location. The student will lose the % point for
changing the color to orange because of the failure to set the color in the not-threatened case at the
beginning of this method. The student earned the % point for resetting numStepsDead to 0. The
student earned a total of 42 points for part (a).

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2008 SCORING COMMENTARY

Question 3 (continued)

In part (b) the student correctly identifies the three possible cases: numstepsDead > 0 &&
numStepsDead < 3 (playing dead), numStepsDead >= 3 (dead), and otherwise (should act like normal
critter). By checking locs.size() inthe beginning, the student is assuming that if there is no place to
move, the critter should remain in its current location. This is not necessarily true. If numStepsDead =
3, the critter will have to die so null should be returned. The student lost the %2 null return point
because of this. If the critter is playing dead, its current location is correctly returned so the student earned
this % point. The student lost the two %2 points for not calling super.selectMoveLocation(locs)
and not returning the result of this call. The student earned a total of 1% points for part (b).

Sample: A3c
Score: 3

In part (a) the student does not initialize any counter variables, so that %2 point was lost. The correct use of
the for-each loop earned the access %2 point and the traverse-all %2 point. The student lost three % points for
the isSFriend call, the isFoe call, and the counter update. One point was lost for not correctly
identifying when to play dead, but since the student has some vague idea of what to do when the critter
might be a foe, the response earned the % point for incrementing numStepsDead but lost the three %
points for setting the color to black or orange and resetting humStepsDead to 0. The student earned a
total of 1% points for part (a).

In part (b) the student correctly identifies one case (dead) and correctly returns null. The student
earned 1 point for part (b).

The total score of 2% points was rounded up to 3.

© 2008 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

