
AP® COMPUTER SCIENCE A
2009 SCORING GUIDELINES

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

Question 2: Stockpile Critter (GridWorld)

 +1 class header
 +1/2 properly formed class header for StockpileCritter
 +1/2 extends Critter class

 +1 1/2 stockpile state
 +1/2 declares instance variable capable of maintaining state
 +1/2 private visibility
 +1/2 initialization of state appropriate to usage of variable

 +1 overrides methods and maintains all necessary postconditions
 (No points awarded if overrides act method)

 +1 processActors overridden (No points awarded if overrides act method)

 +1 stockpile state maintenance
 +1/2 accumulates based on number of actors passed to processActors
 +1/2 decrements appropriately each act

 +1 1/2 removes neighboring actors from grid
 +1/2 removes at least one neighboring actor from grid
 +1 removes all neighboring actors from grid

 +2 self-removal
 +1/2 checks status of stockpile by using state variable in a relational expression
 +1/2 ever removes self from grid
 +1 removes self from grid when and only when stockpile state indicates empty

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2009 SCORING COMMENTARY

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

Question 2

Overview

This question involved reasoning about the code from the GridWorld case study, emphasizing object-
oriented concepts. Students demonstrated their understanding of the case study and its interacting
classes by extending the Critter class to derive a StockpileCritter class with modified
behavior. This question tested numerous concepts: creating a class, inheriting from an existing class,
overriding appropriate methods, and maintaining the overridden methods’ postconditions. Students were
specifically instructed not to override the act method, and they were explicitly cautioned to abide by
the postconditions of all methods.

Sample: A2a
Score: 8

The student correctly declares a class StockpileCritter that extends Critter. There is a private
instance variable, stockpile, that is correctly initialized. The student overrides
selectMoveLocation but fails to maintain all postconditions because the decrement of the stockpile
causes a change in the critter’s state. The student overrides the method processActors correctly.
Within processActors, the student correctly adds the number of neighboring actors to the stockpile
and correctly removes all these neighbors from the grid. The check for “a instanceOf Actor” is
redundant but causes no ill effects. The student checks the status of the stockpile in
selectMoveLocation and returns null when the stockpile is empty. This allows
removeSelfFromGrid to be called in all appropriate cases. There is also a correct decrement to the
stockpile.

Sample: A2b
Score: 5

The student correctly declares a class StockpileCritter but uses implements Critter instead
of extends Critter. There is a private instance variable, energy, that is correctly initialized. The
student fails to override the method selectMoveLocation but overrides the method
processActors correctly. Within processActors, the student incorrectly loops over
getNeighbors(getLocation) instead of over actors. This resulted in a ½-point loss for failing to
accumulate based on the parameter actors and also resulted in a full-point loss for not correctly
removing all the grid neighbors. The student received ½ point for removing one neighbor from the grid.
There is a correct decrement to the stockpile. The student checks the status of the stockpile and correctly
calls removeSelfFromGrid in one case. The student incorrectly calls removeSelfFromGrid when
energy == 0.

Sample: A2c
Score: 2

The student correctly declares a class StockpileCritter that extends Critter. There is a private
instance variable, energy. The student did not get the ½ point for “initialization of state appropriate to
usage” because there is no usage of this instance variable.

