
© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2010 GENERAL SCORING GUIDELINES

Apply the question-specific rubric first. To maintain scoring intent, a single error is generally accounted for only once
per question thereby mitigating multiple penalties for the same error. The error categorization below is for cases not
adequately covered by the question-specific rubric. Note that points can only be deducted if the error occurs in a part that
has earned credit via the question-specific rubric. Any particular error is penalized only once in a question, even if it
occurs on different parts of that question.

Nonpenalized Errors

spelling/case discrepancies if no
ambiguity*

local variable not declared if others are
declared in some part

use keyword as identifier

[] vs. () vs. <>

= instead of == (and vice versa)

length/size confusion for array, String,
and ArrayList, with or without ()

private qualifier on local variable

extraneous code with no side effect;
e.g., precondition check

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent and { } used elsewhere

default constructor called without parens;
e.g., new Fish;

missing () on parameterless method call

missing () around if/while conditions

missing ; when majority are present

missing public on class or constructor
header

extraneous [] when referencing entire
array

extraneous size in array declaration,
e.g., int[size] nums = new int[size];

Minor Errors (1/2 point)

confused identifier (e.g., len for length
or left() for getLeft())

local variables used but none declared

missing new in constructor call

modifying a constant (final)

use equals or compareTo method on
primitives, e.g., int x; …x.equals(val)

array/collection access confusion ([] get)

assignment dyslexia,
e.g., x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean
values

"null" for null

Applying Minor Errors (½ point):
A minor error that occurs exactly
once when the same concept is
correct two or more times is
regarded as an oversight and not
penalized. A minor error must be
penalized if it is the only
instance, one of two, or occurs
two or more times.

Major Errors (1 point)

extraneous code that causes side effect;
e.g., information written to output

interface or class name instead of variable
identifier; e.g., Bug.move() instead of
aBug.move()

aMethod(obj) instead of
obj.aMethod()

attempt to use private data or method
when not accessible

destruction of persistent data (e.g.,
changing value referenced by parameter)

use class name in place of super in
constructor or method call

void method (or constructor) returns a
value

* Spelling and case discrepancies for identifiers fall under the “nonpenalized” category only if the correction can be unambiguously
inferred from context; for example, “ArayList” instead of “ArrayList”. As a counter example, note that if a student
declares “Bug bug;” then uses “Bug.move()” instead of “bug.move()”, the context does not allow for the reader to
assume the object instead of the class.

AP® COMPUTER SCIENCE A
2010 SCORING GUIDELINES

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 3: Trail

Part (a) isLevelTrailSegment 5 points
Intent: Return true if maximum difference ≤ 10 (segment is level); false otherwise

 +3 Determination of information needed to test level-trail condition
 +1/2 Creates and maintains local state for determination of maximum

(or minimum);
alternate solution: tests difference in elevations

+1/2 Accesses the value of any element of this.markers

 +1 All and only appropriate elements of this.markers participate in
determination of information needed to test level-trail condition;
no out-of-bounds access potential

 +1 Compares element to state in context of updating maximum

(or minimum);
alternate solution: tests difference in elevations

 +1 Correctly determines information needed to test level-trail condition for the

elements examined; must address two or more pairs of elements

 +1 Returns true if determined maximum difference is ≤ 10, false otherwise

Part (b) isDifficult 4 points
Intent: Return true if trail is difficult (based on number of changes of given magnitude); false otherwise

 +3 Determine number of changes, greater than or equal to 30, between consecutive

values in this.markers

+1/2 Creates, initializes and accumulates a count of number of changes
+1/2 Accesses the value of any element of this.markers in

context of iteration
+1/2 Accesses the value of all elements of this.markers,

no out-of-bounds access potential
+1/2 Computes difference of all and only consecutive values

in this.markers
+1 Updates accumulated count if and only if absolute value

of difference is >= 30

 +1 Returns true if accumulated count is >= 3; false otherwise

AP® COMPUTER SCIENCE A
2010 CANONICAL SOLUTIONS

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 3: Trail

Part (a):

public boolean isLevelTrailSegment(int start, int end) {
 int min = this.markers[start];
 int max = this.markers[start];
 for (int i = start + 1; i <= end; i++) {
 if (min > this.markers[i]) {
 min = this.markers[i];
 }
 if (max < this.markers[i]) {
 max = this.markers[i];
 }
 }
 return ((max - min) <= 10);
}

// Alternative solution (compares differences; uses early return):

public boolean isLevelTrailSegment(int start, int end) {
 for (int i = start; i < end; i++) {
 for (int j = start + 1; j <= end; j++) {
 if (Math.abs(this.markers[i] - this.markers[j]) > 10) {

return false;
 }
 }
 }
 return true;
}

Part (b):

public boolean isDifficult() {
 int numChanges = 0;
 for (int i = 0; i < this.markers.length - 1; i++) {
 if (Math.abs(this.markers[i] - this.markers[i + 1]) >= 30) {
 numChanges++;
 }
 }
 return (numChanges >= 3);
}

These canonical solutions serve an expository role, depicting general approaches to a solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2010 SCORING COMMENTARY

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 3

Overview

This question focused on array traversal, finding an extreme value (minimum and/or maximum) within a
specified segment of an array, and counting occurrences of array elements satisfying a given condition.
Students were given a class that contained an instance data array that represented elevations and were
asked to write two unrelated methods. Part (a), isLevelTrailSegment, required students to
determine whether there was an overall difference of at most 10 in a segment of the array defined by the
two parameters passed to the method. The wording of the question led students to a solution of first
finding the maximum and minimum values and then checking if the difference of these values was at
most 10. That approach was not required, and some students used alternatives that did not involve such
computations. The second method, isDifficult, required students to examine the differences of
pairs of consecutive array element values and determine if at least three of those differences had an
absolute value greater than 30.

Sample: 3A
Score: 9

In part (a) the student creates and maintains variables for determining the highest and lowest elevations.
The loop correctly examines all elements in the array markers between start and end. There are
correct comparisons to determine the highest and lowest elevations. The student returns a correct value
based on the difference between the highest and lowest elevations that were considered. Part (a) earned all
5 points.

In part (b) the student correctly creates, initializes and accumulates a count of the number of large elevation
changes. The loop accesses all elements of the array markers and computes the differences of all
consecutive elevations. There is a correct comparison of the absolute value of the computed difference to 30.
The student returns a correct value based on the number of large elevation changes. Part (b) earned all
4 points.

Sample: 3B
Score: 7

In part (a) the student creates and maintains variables for determining the highest and lowest elevations. The
loop correctly examines all elements in the array markers between start and end. There are correct
comparisons to determine the highest and lowest elevations; however, these calculated values are incorrect
because min and max are initialized to the parameter start. The student returns a correct value based
on the difference between the highest and lowest elevations that were considered. Part (a) earned 4 points.

In part (b) the student correctly creates, initializes and accumulates a count of the number of large elevation
changes. The loop accesses all elements of the array markers and computes the differences of all
consecutive elevations. The comparison of the absolute value of the computed difference incorrectly
considers only values above 30. The student returns a correct value based on the number of large elevation
changes. Part (b) earned 3 points.

AP® COMPUTER SCIENCE A
2010 SCORING COMMENTARY

Question 3 (continued)

Sample: 3C
Score: 3

In part (a) the student does not create or maintain any variables for determining the highest and lowest
elevations. There are accesses to elements in the array markers, but there is an out-of-bounds error.
There is no comparison to a minimum or maximum state variable. The test for being level only considers
consecutive elevation changes. The student incorrectly returns the result of only the last level test. Part (a)
earned ½ point.

In part (b) the student correctly creates, initializes and accumulates a count of the number of large elevation
changes. The loop accesses elements of the array markers but has an out-of-bounds access as well. The
student correctly computes the differences of all consecutive elevations but incorrectly compares the
computed difference to -30. The student returns a correct value based on the number of large elevation
changes. Part (b) earned 2½ points.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

http://www.collegeboard.com

	AP® COMPUTER SCIENCE A
	2010 GENERAL SCORING GUIDELINES
	Nonpenalized Errors
	Minor Errors (1/2 point)
	Major Errors (1 point)

	2010 SCORING GUIDELINES
	Question 3: Trail

	2010 CANONICAL SOLUTIONS
	Question 3: Trail

	2010 SCORING COMMENTARY
	Question 3

