

AP® Computer Science A
2015 Scoring Guidelines

© 2015 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo
are registered trademarks of the College Board.
Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

https://www.collegeboard.org
https://www.apcentral.collegeboard.org

AP® COMPUTER SCIENCE A

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

2015 GENERAL SCORING GUIDELINES

Apply the question assessment rubric first, which always takes precedence. Penalty points can only be
deducted in a part of the question that has earned credit via the question rubric. No part of a question
(a, b, c) may have a negative point total. A given penalty can be assessed only once for a question, even
if it occurs multiple times, or in multiple parts of that question. A maximum of 3 penalty points may be
assessed per question.

1-Point Penalty

(v) Array/collection access confusion ([] get)

(w) Extraneous code that causes side effect (e.g., writing to output, failure to compile)

(x) Local variables used but none declared

(y) Destruction of persistent data (e.g., changing value referenced by parameter)

(z) Void method or constructor that returns a value

No Penalty

o Extraneous code with no side effect (e.g., precondition check, no-op)

o Spelling/case discrepancies where there is no ambiguity*

o Local variable not declared provided other variables are declared in some part

o private or public qualifier on a local variable

o Missing public qualifier on class or constructor header

o Keyword used as an identifier

o Common mathematical symbols used for operators (× • ÷ < > <> ≠)

o [] vs. () vs. <>

o = instead of == and vice versa

o length/size confusion for array, String, List, or ArrayList, with or without ()

o Extraneous [] when referencing entire array

o [i,j] instead of [i][j]

o Extraneous size in array declaration (e.g., int[size] nums = new int[size];)

o Missing ; where structure clearly conveys intent

o Missing { } where indentation clearly conveys intent

o Missing () on parameter-less method or constructor invocations

o Missing () around if or while conditions

*Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction can
be unambiguously inferred from context; for example, “ArayList” instead of “ArrayList”. As a
counterexample, note that if the code declares “Bug bug;”, then uses “Bug.move()” instead
of “bug.move()”, the context does not allow for the reader to assume the object instead of the class.

AP® COMPUTER SCIENCE A
2015 SCORING GUIDELINES

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 1: Diverse Array

Part (a) arraySum 2 points

Intent: Compute and return sum of elements in 1D array arr, passed as parameter

 +1 Accesses all elements of arr, (no bounds errors on arr)

 +1 Initializes, computes, and returns sum of elements

Part (b) rowSums 4 points

Intent: Compute and return 1D array containing sums of each row in the 2D array arr2D, passed as
 parameter

 +1 Constructs correctly-sized 1D array of ints

 +1 Accesses all words in arr2D (no bounds errors on arr2D)

 +1 Computes sum of row in arr2D using arraySum and assigns to element in 1D array

 +1 Returns 1D array where kth element is computed sum of corresponding row in 2D array

for all rows

Part (c) isDiverse 3 points

Intent: Determine whether arr2D, passed as parameter, is diverse

 +1 Computes and uses array of row sums from arr2D using rowSums

 +1 Compare all and only pairs of row sums for equality (No bounds errors on row sums array;

point not awarded if no adjustment when compares any row sum with itself)

 +1 Returns true if all compared row sums are different and false otherwise

(point not awarded for immediate return)

Question-Specific Penalties

 -1 (g) Uses getLength/getSize for array size

 -1 (y) Destruction of persistent data (arr or arr2D)

AP® COMPUTER SCIENCE A
2015 CANONICAL SOLUTIONS

© 2015 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 1: Diverse Array

Part (a):

public static int arraySum(int[] arr){
 int sum=0;
 for (int elem : arr){
 sum += elem;
 }
 return sum;
}

Part (b):

public static int[] rowSums(int[][] arr2D){
 int [] sums=new int[arr2D.length];
 int rowNum=0;
 for(int[] row : arr2D){
 sums[rowNum]=arraySum(row);
 rowNum++;
 }
 return sums;
 }

Part (c):

public static boolean isDiverse(int[][] arr2D){
 int [] sums=rowSums(arr2D);
 for (int i=0; i < sums.length; i++){
 for (int j=i+1; j < sums.length; j++){
 if (sums[i]==sums[j]){
 return false;
 }
 }
 }
 return true;
 }

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

AP® COMPUTER SCIENCE A
2015 SCORING GUIDELINES

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 2: Guessing Game

Class: HiddenWord 9 points

Intent: Define implementation of class to represent hidden word in guessing game

 +1 Uses correct class, constructor, and method headers

+1 Declares appropriate private instance variable

+1 Initializes instance variable within constructor using parameter

+6 Implement getHint

+1 Accesses all letters in both guess and hidden word in loop
(no bounds errors in either)

+4 Process letters within loop

+1 Extracts and compares corresponding single letters from guess and
hidden word

+1 Tests whether guess letter occurs in same position in both guess and
hidden word

+1 Tests whether guess letter occurs in hidden word but not in same position
as in guess

+1 Adds correct character exactly once to the hint string based on the
test result

+1 Declares, initializes, and returns constructed hint string

Question-Specific Penalties

 -1 (t) Uses get to access letters from strings

 -2 (u) Consistently uses incorrect name instead of instance variable name for hidden word

AP® COMPUTER SCIENCE A
2015 CANONICAL SOLUTIONS

© 2015 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 2: Guessing Game

public class HiddenWord
{
 private String word;

 public HiddenWord(String hWord)
 {
 word = hWord;
 }

 public String getHint(String guess){
 String hint = "";
 for (int i = 0; i < guess.length(); i++){
 if (guess.substring(i,i+1).equals(word.substring(i,i+1))){
 hint += guess.substring(i,i+1);
 } else if (word.indexOf(guess.substring(i,i+1))!= -1){
 hint += "+";
 } else {
 hint += "*";
 }
 }
 return hint;
 }

}

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

AP® COMPUTER SCIENCE A
2015 SCORING GUIDELINES

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3: Sparse Array

Part (a) getValueAt 3 points

Intent: Return the value at row index row and column index col in sparse array

 +1 Accesses all necessary elements of entries (No bounds errors)

+1 Identifies element of entries at row index row and column index col, if exists

+1 Returns identified value or returns 0 if no entry exists in entries with row index row
and column index col

Part (b) removeColumn 6 points

Intent: Remove column col from sparse array

 +1 Decrements numCols exactly once

 +1 Accesses all elements of entries (No bounds errors)

 +1 Computes sum of row in arr2D using arraySum and assigns to element in 1D array

 +1 Identifies and removes entry with column index col

 +2 Process entries with column index > col within loop

 +1 Creates new SparseArrayEntry with current row index, column index -1,

current value

 +1 Identifies and replaces entry with column index > col with created entry

 +1 On exit: All and only entries with column index col have been removed and all and only

entries with column index > col have been changed to have column index -1.
All other entries are unchanged. (Minor loop errors ok)

Question-Specific Penalties

 -2 (t) Consistently uses incorrect name instead of entries

 -1 (u) Directly accesses private instance variables in SparseArrayEntry object

AP® COMPUTER SCIENCE A
2015 CANONICAL SOLUTIONS

© 2015 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 3: Sparse Array

Part (a):

public int getValueAt(int row, int col){
 for (SparseArrayEntry e : entries){
 if (e.getRow() == row && e.getCol() == col){
 return e.getValue();
 }
 }
 return 0;
}

Part (b):

public void removeColumn(int col){
 int i=0;
 while (i < entries.size()){
 SparseArrayEntry e = entries.get(i);
 if (e.getCol() == col){
 entries.remove(i);
 } else if (e.getCol() > col){
 entries.set(i, new SparseArrayEntry(e.getRow(),
 e.getCol()-1,
 e.getValue()));
 i++;
 } else {
 i++;
 }
 }
 numCols--;
}

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

AP® COMPUTER SCIENCE A
2015 SCORING GUIDELINES

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4: Number Group

Part (a) Interface: NumberGroup 2 points

Intent: Define interface to represent a number group

 +1 interface NumberGroup (point lost if visibility private)

 +1 boolean contains(int num);

(point lost if visibility not public or extraneous code present)

Part (b) Class: Range 5 points

Intent: Define implementation of NumberGroup representing a range of numbers

 +1 class Range implements NumberGroup (point lost if visibility private)

 +1 Declares appropriate private instance variable(s)

 +1 Uses correct constructor header

 +1 Initializes instance variables within constructor using parameters

(point lost if bounds errors occur in container use)

 +1 Computes and returns correct value from contains

(point lost for incorrect method header)

Part (c) contains 2 points

Intent: Determine whether integer is part of any of the member number groups

 +1 Calls contains on elements of groupList in context of loop (no bounds errors)

 +1 Computes and returns correct value

Question-Specific Penalties

 -1 (s) Inappropriate use of static

AP® COMPUTER SCIENCE A
2015 CANONICAL SOLUTIONS

Question 4: Number Group

Part (a):

public interface NumberGroup
{
 boolean contains(int num);
}

Part (b):

public class Range implements NumberGroup
{
 private int min;
 private int max;

 public Range(int min, int max)
 {
 this.min=min;
 this.max=max;
 }

 public boolean contains(int num){
 return num >= min && num <= max;
 }
}

Part (c):

public boolean contains(int num){
 for (NumberGroup group : groupList){
 if (group.contains(num)){
 return true;
 }
 }
 return false;
}

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

https://www.collegeboard.org

	AP® Computer Science A 2015 Scoring Guidelines
	2015 GENERAL SCORING GUIDELINES
	1 -Point Penalty
	No Penalty

	2015 SCORING GUIDELINES
	Question 1: Diverse Array

	2015 CANONICAL SOLUTIONS
	Question 1: Diverse Array

	2015 SCORING GUIDELINES
	Question 2: Guessing Game

	2015 CANONICAL SOLUTIONS
	Question 2: Guessing Game

	2015 SCORING GUIDELINES
	Question 3: Sparse Array

	2015 CANONICAL SOLUTIONS
	Question 3: Sparse Array

	2015 SCORING GUIDELINES
	Question 4: Number Group

	2015 CANONICAL SOLUTIONS
	Question 4: Number Group

